
DyKnow: A Framework for Processing Dynamic Knowledge and Object
Structures in Autonomous Systems

Fredrik Heintz and Patrick Doherty
Dept. of Computer and Information Science

Linköping University, Sweden
{frehe, patdo}@ida.liu.se

Abstract

Any autonomous system embedded in a dynamic and
changing environment must be able to create qualitative
knowledge and object structures representing aspects of its
environment on the fly from raw or preprocessed sensor
data in order to reason qualitatively about the environment.
These structures must be managed and made accessible to
deliberative and reactive functionalities which are depen-
dent on being situationally aware of the changes in both the
robotic agent’s embedding and internal environment. Dy-
Know is a software framework which provides a set of func-
tionalities for contextually accessing, storing, creating and
processing such structures. The system is implemented and
has been deployed in a deliberative/reactive architecture for
an autonomous unmanned aerial vehicle. The architecture
itself is distributed and uses RT CORBA as a communica-
tions infrastructure. We describe the system and show how
it can be used in execution monitoring and chronicle recog-
nition scenarios for UAV applications.

1. Introduction

Research in cognitive robotics is concerned with endow-
ing robots and software agents with higher level cognitive
functions that enable them to reason, act and perceive in
a goal-directed manner in changing, incompletely known,
and unpredictable environments. Research in robotics has
traditionally emphasized low-level sensing, sensor process-
ing, control and manipulative tasks. One of the open chal-
lenges in cognitive robotics is to integrate techniques from
both disciplines and develop architectures which support
the seamless integration of low-level sensing and sensor
processing with the generation and maintenance of higher
level knowledge structures grounded in the sensor data.

Knowledge about the internal and external environments
of a roboticagent is often both static and dynamic. This is
due to the great amount of background or deep knowledge

required by the agent in understanding its world and to the
dynamics in the embedding environment where objects of
interest are cognized, hypothesized as being of a particu-
lar type or types and whose dynamics must be continuously
reasoned about in a timely manner. This implies signal-to-
symbol transformations at many levels of abstraction with
different and varying constraints on real-time processing.

Much of the reasoning involved with dynamic objects
and the dynamic knowledge related to such objects involves
issues of situation awareness. How can a robotics architec-
ture support the task of getting the right information in the
right form to the right functionalities in the architecture at
the right time in order to support decision making and goal-
directed behavior? Another important aspect of the prob-
lem is the fact that this is an on-going process. Data and
knowledge about dynamic objects has to be provided con-
tinuously and on-the-fly at the rate and in the form most ef-
ficient for the receiving cognitive or reactive robotics func-
tionality in a particular context.

Context is important here because the most optimal rates
and forms in which a robotic functionality receives data are
often task and environmentally dependent. Consequently,
autonomous agents must be able to declaratively specify
and re-configure the character of the data received. By
robotic functionalities, we mean control, reactive and de-
liberative functionalities ranging from sensor manipulation
and navigation to high-level functionalities such as chroni-
cle recognition, trajectory planning, execution monitoring,
and hypothesis generation.

In order to make these ideas more precise, we will begin
with a scenario from an unmanned aerial vehicle project the
authors are involved in which requires many of the capabil-
ities discussed so far. We will then proceed to the details of
a deployed software architecture which has been used in ac-
tual flights and has many of these capabilities.

Picture the following scenario. An autonomous un-
manned aerial vehicle (UAV), in our case, a helicopter, is
given a mission to identify and track a vehicle with a par-
ticular signature in a region of a small city. The signa-

ture is provided in terms of color and size (and possi-
bly 3D shape). Assume that the UAV has a 3D model of
the region in addition to information about building struc-
tures and the road system. These models can be provided
or may have been generated by the UAV itself. Addition-
ally, assume the UAV is equipped with a GPS and INS1

for navigating purposes and that its main sensor is a cam-
era on a pan/tilt mount.

Let’s consider the processing from the bottom up, even
though in reality, there will be many feedback loops in the
UAV architecture. One way for the UAV to achieve its task
would be to initiate a reactive task procedure (parent pro-
cedure) which calls the systems image processing module
with the vehicle signature as a parameter. The image pro-
cessing module might then try to identify colored blobs in
the region of the right size, shape and color as a first step.
These object descriptions would have to be sent to a mod-
ule in the architecture called the dynamic object repository
(DOR) which is responsible for the dynamic management
of such objects. Each of thesevision objectswould contain
features related to the image processing task such as RGB
values with uncertainty bounds, length and width in pix-
els, position in the image, a sub-image of the object which
can be used as a template for tracking, an estimate of veloc-
ity, etc.

From the perspective of the UAV, these objects are only
cognized to the extent that they are moving colored blobs of
interest and the feature data being collected should continue
to be collected while tracking those objects perceived to be
of interest. What objects are of interest? The parent proce-
dure might identify that or those objects which are of inter-
est based on a similarity measure according to size, color
and movement. In order to do this, the DOR would be in-
structed to create one or moreworld objectsand link them
to their respective vision objects. At this point the object
is cognized at a more qualitative level of abstraction, yet
its description in terms of its linkage structure contains both
cognitive and pre-cognitive information which must be con-
tinuously managed and processed due to the interdependen-
cies of the features at various levels.

A world object could contain additional features such
as position in a geographic coordinate system rather than
the low-level image coordinate. Generating a geographic
coordinate from an image coordinate continuously, called
co-location is a complex process that involves combining
dynamic data about features from several different objects
such as the camera object, helicopter object and world ob-
jects, together with data from an onboard geographical in-
formation system (GIS) module which is also part of the ar-
chitecture. One would require a computational unit of sorts

1 GPS and INS are acronyms for geographic positioning system and in-
ertial navigation system, respectively.

that takes streamed data as input and outputs a new stream
at a higher level of abstraction representing the current geo-
graphical coordinate of the object. This co-location process
must occur in real-time and continually occur as the world
object is tracked. This implies that all features for all dy-
namic objects linked to the world object in focus have to be
continually updated and managed.

At this point, the parent task may want to make a com-
parison between the geographical coordinate and the posi-
tion of that coordinate in terms of the road system for the
region, information of which is stored in the onboard GIS.
This indexing mechanism is important since it allows the
UAV to reason qualitatively about its spatial surroundings.
Let’s assume this is done and after some period of tracking
and monitoring the stream of coordinates, the parent pro-
cedure decides that this looks like a vehicle that is follow-
ing the road.on-roadobjects might then be created for each
of the world objects that pass the test and linked to their
respective world objects. An on-road object could contain
more abstract and qualitative features such as position in a
road segment which would allow the parent procedure to
reason qualitatively about its position in the world relative
to the road, other vehicles on the road, and other building
structures in the vicinity of the road. At this point, streams
of data are being generated and computed for many of the
features in the linked object structures at many levels of ab-
straction as the helicopter tracks the on-road objects.

The parent procedure could now use static knowledge
stored in onboard knowledge bases and the GIS together
with this dynamic knowledge to hypothesis as to the type
of vehicle. The hypothesis would of course be based on the
linkage structure for an on-road object and various features
at different levels of abstraction. Assume the parent proce-
dure hypothesizes that the on-road object is a car. Acar ob-
ject could then be created and linked to the existing link-
age structure with additional high-level feature information
about the car.

Whether or not the sum of streamed data which makes up
the linkage structure represents a particular type of concep-
tual entity will only ever remain a hypothesis which could
very well change, based on changes in the character of the
streams of data. Monitors, users of these structures, would
have to be set up to observe such changes and alert the par-
ent procedure if the changes become too abnormal relative
to some criteria determined by the parent procedure. Ab-
normality is a concept that is well-suited for being reasoned
about at a logical level and the streamed data would have to
be put into a form amenable to this type of processing.

How then can an architecture be set up to support the
processes described in the UAV scenario above? This is the
main topic of this paper and in it we propose a software sys-
tem called theDyKnow Framework.2

The paper is structured as follows. In section 2, the UAV
platform used in the project is briefly described. In sec-
tion 3, DARA, a Distributed Autonomous Robotics Archi-
tecture for UAVs is briefly described. DyKnow is an essen-
tial module in this architecture. In section 4, the underly-
ing ontology for dynamic knowledge and object structures
is described. In section 5, the basic structure and imple-
mentation of the DyKnow Framework is described. In sec-
tions 6.2 and 6.3, two deliberative functionalities which use
the DyKnow Framework are considered, chronicle recogni-
tion and execution monitoring, in addition to the dynamic
object repository (DOR).

2. The WITAS UAV Platform

The WITAS3 Unmanned Aerial Vehicle Project [1]
is an ambitious, long-term basic research project whose
main objectives are the development of an integrated hard-
ware/software VTOL (Vertical Take-Off and Landing) plat-
form for fully-autonomous missions and its future deploy-
ment in applications such as traffic monitoring and sur-
veillance, emergency services assistance, photogrammetry
and surveying.

The WITAS Project UAV platform we use is a slightly
modified Yamaha RMAX (figure 1). It has a total length of
3.6 m (incl. main rotor), a maximum take-off weight of 95
kg, and is powered by a 21 hp two-stroke engine. Yamaha
equipped the radio controlled RMAX with an attitude sen-
sor (YAS) and an attitude control system (YACS).

Figure 1. The WITAS RMAX Helicopter

The hardware platform consists of three PC104 embedded
computers (figure 2). The primary control system consists of a PIII
(700Mhz) processor, a wireless modem (serial line RS232C) and

2 ”DyKnow” is pronounced as ”Dino” in ”Dinosaur” and stands forDy-
namic Knowledge and Object Structure Processing.

3 WITAS (pronouncedvee-tas) is an acronym for the Wallenberg
Information Technology and Autonomous Systems Laboratory at
Linköping University, Sweden.

the following sensors: an integrated INS/DGPS (serial), a baro-
metric altitude sensor (analog), a sonar and infrared altimeter (ana-
log), and a compass (serial). It is connected to the YAS and YACS
(serial), the image processing computer (serial) and the delibera-
tive computer (Ethernet). The image processing system consists
of a second PC104 embedded computer (PIII 700MHz), a color
CCD camera (S-VIDEO, serial interface for control) mounted on
a pan/tilt unit (serial), a video transmitter (composite video) and
a recorder (miniDV). The deliberative/reactive system runs on a
third PC104 embedded computer (PIII 700MHz) which is con-
nected to the PCS with Ethernet using CORBA event channels.
The D/R system is described in more detail in the next section.

For further discussion, it is important to note that compu-
tational processes are executed concurrently on distributed
hardware. Data flow is both synchronous and asynchronous
and the concurrent distributed nature of the hardware plat-
form contributes to diverse latencies in data flow through-
out the system.

�������

��	
��������

������

�����������������	��������

�����������������	����� ��

����������!�"��	����� ��

�#��$�����#%������

$��

��� �&� '(

	�(&
)�*
*'	+�

+�
,�

&'�

)
	+-

&'�

*�	
��
*'&)�'

���	
(��..
�
/�"�"

���0���

+�
+�'*
'�

��1��

+�)�
+ �&&
�

)��
+ �&&
�

�&'2
�(

�
+'�)'��

���
3
*

��'&�

�
*'(&�)�'&

$��

45�

����������

�
 �*'+)
���'&)�'

��1���
 �*'+)
�
� �)�'�	

6�	���
1))�),�

�'&)�'
�

�'

��2

+�)*�

�����

����

��	
���� �)�'�	

�'&��7�/#%�8����

	�&�#�9

6�	���
1))�),�

�
&'�

��������

��	
��������

���0�

'&��

Figure 2. DARA Hardware Schematic

3. DARA: A Distributed Autonomous
Robotics Architecture

The DARA system [3] consists of both delibera-
tive and reactive components which interface to the control
architecture of the primary flight controller (PFC). Cur-
rent flight modes include autonomous take-off and landing,
pre-defined and dynamic trajectory following and hover-
ing. We have chosen Real-Time CORBA [6]4 as a basis for

4 We are currently using TAO/ACE.TheAceOrb is an open source im-
plementation of CORBA 2.6.

the design and implementation of a loosely coupled dis-
tributed software architecture for our aerial robotic sys-
tem.

Many of the functionalities which are part of the archi-
tecture can be viewed as clients or servers where the com-
munication infrastructure is provided by CORBA facilities
and other services such as real-time event channels. Figure 3
depicts an (incomplete) high-level schematic of some of the
software components used in the architecture. Each of these
may be viewed as a CORBA server/client providing or re-
questing services from each other and receiving data and
events through both real-time and standard event channels.

The modular task architecture (MTA) which is part of
DARA is a reactive system design in the procedure-based
paradigm developed for loosely coupled heterogeneous sys-
tems such as the WITAS aerial robotic system. Reactive be-
haviors are implemented astask procedures(TP) which are
essentially event-driven. A TP may open its own (CORBA)
event channels, and call its own services (both CORBA and
application-oriented services such as path planners) includ-
ing functionalities from the DyKnow framework. They are
executed concurrently.

Given the distributed nature of both the hardware and
software architectures in addition to their complexity, one of
the main issues is getting data to the right place at the right
time in the right form and to be able to transform the data to
the proper levels of abstraction for use by high-level delib-
erative functionalities and middle level reactive functional-
ities. In the following sections we will describe a very im-
portant component of the DARA system which contributes
to achieving this.

��������	
��
���

�����	���

���������
�����	���

�����	

����

�����	���

��������
���������
�	��
 ������!��� "

��# ���

����	
	��
$��%	
�

&����	
��
��
���		��
$��%	
�

�����������
$��%	
�

������������
$��%	
�

'��	
����
&��������

����	
��
&�����
&��������

(����
&��������

(�)�(
(�)�(����	��

(��������
���	��� ������!(� "

*���	�	%�
$	��������
���	��

&��������

Figure 3. DARA Software Schematic

4. An Ontological Specification for DyKnow

In any knowledge representation endeavor, it is impor-
tant to provide a concise specification of the entities or as-
pects which are the focus of representation. That being said,
it is surprisingly difficult to do this in the context of DARA
and DyKnow for the following reasons:

• There are often multiple representations of the same entities
or aspects associated with those entities. Often this may be
known by the system, but equally often it may not.

• The physical locations of representational structures associ-
ated with entities must be taken into account due to the dis-
tributed and combined asynchronous/synchronous nature of
the DARA architecture which often results in unpredictable
and varying latencies.

• The dual requirement of not only reasoning about the enti-
ties and aspects being represented, but the representational
structures themselves since the ultimate purpose of DyKnow
is that of situational awareness, getting the right information
in the right form to the right place in a timely manner.

Ontologically, we view the external and internal environ-
ment of the agent as consisting of entities representing phys-
ical and non-physical objects, properties associated with
these entities, and relations between entities. We will call
such entitiesobjectsand those properties or relations asso-
ciated with objects will be calledfeatures. Features may be
static or dynamic and parameterized with objects. Due to
the potentially dynamic nature of a feature, that is, its abil-
ity to change value through time, afluent is associated with
each feature. A fluent is simply a function of time whose
range is the feature’s type. For a dynamic feature, the flu-
ent values will vary through time, whereas for a static fea-
ture the fluent will remain constant through time.

Some examples of features would be theestimated ve-
locity of a world object, thecurrent road segmentof an on-
road object, or thedistance betweentwo car objects. Each
fluent associated with these examples implicitly generates
a continuous stream of time tagged values of the appropri-
ate type.

Additionally, we will introducelocations, policies, com-
putational unitsand fluent streamswhich refer to aspects
of fluent representations in the actual software architecture.
At first glance, this may appear as an ontological level er-
ror because software architectures are intended to imple-
ment declarative specifications of entities in our ontologies.
On the other hand, it is useful to use the representational
domain which the architecture implements as a domain of
discourse for an autonomous agent if one is interested in
reasoning about limited reflective capability as to source,
quantity and quality of data flowing through a system and
dynamically specifying its use by various functionalities to
achieve tasks.

A location is intended to denote any pre-defined phys-
ical or software location that generates feature data in the
DARA architecture. Some examples would be onboard or
offboard databases, CORBA event channels, physical sen-
sors or their device interfaces, etc. In fact, a location will
be used as an index to reference a representational structure
associated with a feature. This structure denotes the pro-
cess which implements the fluent associated with the fea-
ture. A fluent implicitly represents a stream of data, afluent
stream. The stream is continuous, but can only ever be ap-
proximated in an architecture. Apolicy is intended to repre-
sent a particular contextual window or filter used to access

a fluent data stream. Particular functionalities in the archi-
tecture may need to sample the stream at a particular rate
or interpolate values in the stream in a certain manner. Poli-
cies will denote such collections of constraints.Computa-
tional unitsare intended to denote processes which take flu-
ent streams as input, perform operations on these streams
and generate new fluent streams as output.

In summary, the ontology consists of objects, features,
fluents, in addition to fluent streams, locations, policies, and
computational units. Each of these entities has to be repre-
sented either syntactically or in the form of a data structure
within the architecture and many of these data structures are
grounded through sensor data perceived through the robotic
agent’s sensors.

An ontologically difficult issue involves the meaning of
an object. In a distributed architecture such as DARA, infor-
mation about a specific object is often distributed through-
out the system, some of this information may be redundant
and it may often even be inconsistent due to issues of pre-
cision and approximation. For example, given a car object,
we have seen that it is part of a linkage structure which may
contain otherobjectssuch as onroad, world and vision ob-
jects. In addition, many of the features associated with these
objects are computed in different manners in different parts
of the architecture with different latencies.

One candidate definition for an object could be the ag-
gregate of all feature/value pairs which take the object as a
parameter for each feature. It could even be the case that two
linkage structures in fact represent the same object in the
world but the system is unable to determine this. Two ob-
jects may even be of the same type and have linkage struc-
tures associated with them, yet the components of the link-
age structures may be different. For example, given two car
objects, one may not have an onroad object as part of its
linkage structure. It is important to point out that objects as
intended here have some similarities with OOP objects, but
many differences.

5. The DyKnow Framework

In section 4, we considered a number of ontological dis-
tinctions that have to be represented within DARA as data
structures. In addition, since declarative specifications of
both features and policies that determine views of fluent
streams are 1st-class citizens in DyKnow, a language for re-
ferring to features, locations, computational units and poli-
cies has to be provided.

5.1. The Specification Level

Let’s begin at the declarative level. We use an ex-
tended version of a logic of action and change called

TAL [2] to provide the syntax for features and flu-
ents. Any structured primitive featuref is denoted as
f(loc, policy, arg1, . . . , argk). The parameterloc de-
notes a system location from a pre-defined set of loca-
tions associated with DARA. The location could be a
database, an event channel, a sensor, etc. The parame-
ter policy denotes a set of constraints one wishes to place
on the featuref ’s system representation of its associated flu-
ent. The system representation of the fluent will gener-
ate a stream of fluent data of the proper type. Often, one
may want to control the character of the fluent stream in
terms of sampling rate, interpolation strategy, etc. The pa-
rametersarg1, . . . , argk denote the arguments to the fea-
ture. For simplicity, we assume these areobject symbols.
These will be described in section 6.1. Here are a few ex-
amples:

estimatedVelocity(DOR, policy1, carObj1),
greenValue(DOR, policy3, visionObj10),
sfs1 = cameraPos(DOR, policy4, cameraObj1),
sfs2 = cameraPos(camSensor1, policy5, cameraObj1)
Note that in the latter two cases, we are essentially talk-

ing about the same property of the onboard camera, in the
first via a representation of camera information in the DOR,
while in the second via the actual sensor interface.

Additionally, we allow structured complex features,
whose intended purpose is to denote features defined in
terms of others through some operation on the input fea-
tures. Any structured complex featuref is denoted as
f(loc, compUnit(fs1, . . . , fsl), policy, arg1, . . . , argk).
In this case, the only difference between a structured primi-
tive feature and a structured complex feature is that an addi-
tional function representing a computational unit is added,
with structured primitive or complex features as argu-
ments. For example, one might like to fuse stream data
from the two different sources of data for camera posi-
tion, denotedsfs1 andsfs2, above. This would be denoted
as cameraPos(cumod, compU1(sfs1, sfs2), pol1, heli)
whereheli refers to the UAV platform andcumod, a com-
putational unit module in DARA.

One could argue that too many aspects of the architec-
ture’s implementation level are being lifted into the declara-
tive specification language, but that is just the point. Various
high-level functionalities in autonomous systems may of-
ten be required to reason about sources, quantity, and qual-
ity of data in the absence of operator assistance. Context
will also determine what kind of data and how much is re-
quired for the task at hand. This particular framework pro-
vides the means of reflecting on aspects of the underlying
architecture of the system. In fact, in complex distributed
environments, autonomous agents may in fact be receiving
data streams from outside sources and the location and pol-
icy parameters could easily reflect this and be used in the
systems reasoning processes.

5.2. The Data Representation Level

The meaning of features, fluents, locations, poli-
cies, computational units, and objects is determined
through representational structures in DARA. These in
turn are grounded through sensors on a continual ba-
sis during the achievement of mission tasks. The nature
of these representational structures is the topic of this sec-
tion.

Associated with each primitive structured feature sym-
bol is aprimitive feature representation structure

〈sfs,fluent spec.,fluent generator , update spec.,

access spec., cache spec.〉

A primitive feature representation structure pro-
vides information about access and update methods
(access spec., update spec.) for a feature at a loca-
tion (sfs); storage constraints for samples of the feature
(cache spec.) and constraints (fluent spec.) on a pro-
cess (fluent generator) which can be invoked to gen-
erate a stream of data representing the fluent associated
with the feature in question. From a semantic perspec-
tive, a feature representation structure denotes in some
sense, the meaning of the fluent associated with the fea-
ture in the sfs. The system can not represent the flu-
ent more precisely due to the inherent limitations of its
implementation at this specific location in the architec-
ture.

For example, different types of sensors may place an up-
per or lower bound on legal sampling capability, or partic-
ular types of event channels may only allow push or pull
or both push and pull subscription to data. These particu-
lar constraints can not be changed by any user of this fea-
ture at this location, although if there are choices as to ac-
cess, these may be further constrained by the representa-
tional equivalent of a policy which we will consider shortly.
Thecache specification can specify how many data values
are stored or for what interval of time data values should be
stored in the cache. For instance, the location may only al-
low the storage of the current value, or of the current and
previous value, or of a bounded stream of values generated
in the last 3 seconds.

Associated with each complex structured feature symbol
is acomplex feature representation structure

〈sfs,fluent spec., compUnit(fs1, . . . , fsl),
access spec., cache spec.〉

There is little difference between a complex and primi-
tive feature representation structure other than that the flu-
ent generator is replaced with an instantiated computational
unit and there is no update specification since the intention
is that such structures represent nodes in a data flow net-
work consisting of combinations of streams and computa-

tional units. For example, such a structure would be used to
translate between coordinates in an image and geographi-
cal coordinates.

The internal data structure used to represent a fluent
stream is the sample trace, which is a set of samples. Sam-
ple traces are generated by the fluent generator or computa-
tional unit relative to the sum of constraints in the different
specifications. A sample is a triple〈ti, ts, v〉 consisting of
a value and two time-points. The first time-point, the index
time, represents the time at which its corresponding value
is relevant, e.g. the time a picture was taken from which the
position of an object was extracted. The second time-point,
the sample time, is the time at which the sample was cre-
ated. This information is important when reasoning about
latencies. The time-points themselves can be sampled ei-
ther from a discrete or a continuous clock.

Associated with each policy is apolicy descriptor. A pol-
icy descriptor instantiates an interface to a specific feature
representation and can be used to place further constraints
on the fluent stream generated by the specific feature rep-
resentation. Any functionality in DARA that wants to ac-
cess a specific feature must do so through a policy descrip-
tor. The policy descriptor is thus contextual in nature and
there can be many users of a specific feature representa-
tion, each with its own unique policy. There are many uses
of policy descriptors. For instance, they can be used to im-
plement specific sampling rates and when specific values
aren’t provided by the associated feature representation, the
policy descriptor can interpolate stream values in different
ways to assure values for each sample. A descriptor can
be used as a filter and only generate values within upper
and/or lower bounds, or only generate values when there is
a change in the stream. In the forthcoming examples, some
of these techniques will be demonstrated.

5.3. The Semantic Level

The specification level provides the DARA system with
a logical tool consisting of an extended version of a logic
of action and change, TAL (temporal action logic) which
can be used to specify features used in DARA, data flow
networks constructed from computational units and flu-
ent streams, and policies which contextually modify flu-
ent streams for particular constraints associated with mis-
sion tasks. In addition, TAL can be used as a basis for plan
generation, execution monitoring, diagnosis, and chronicle
recognition, although currently, it is primarily used for spec-
ification purposes.

The data representation level implements the DyKnow
framework which relates the formal specification to sensory
input via a suite of representational structures described in
the previous section. The data representation level can also
be used separately from the specification level by the differ-

ent deliberative, reactive and control functionalities in the
DARA system.

In fact, one can view DyKnow as implementing a dis-
tributed qualitative signal processing tool where the system
is given the functionality to generate dynamic representa-
tions of parts of its internal and external environment in a
contextual manner through the use of policy descriptors and
feature representation structures. The dynamic representa-
tions can be viewed as collections of time series data at var-
ious levels of abstraction, each time series representing a
particular feature and each bundle representing a particular
history or progression. Another view of such dynamic rep-
resentations and one which is actually put to good use is to
interpret the fluent stream bundles as partial temporal mod-
els in the logical sense. These partial temporal models can
then be used on the fly to interpret temporal logical formu-
las in TAL or other temporal formalisms. Such a function-
ality can be put to good use in constructing execution mon-
itors, predictive modules, diagnostic modules, etc. The net
result is a very power mechanism for dealing with a plethora
of issues associated with focus of attention and situational
awareness.

6. Applications using DyKnow

In the following two subsections, we will show how the
DyKnow framework can be used to generate fluent streams
for further processing by two important deliberative func-
tionalities in the DARA system, chronicle recognition and
execution monitoring. Both are implemented in the UAV
system. Before doing this, we provide a short description of
the Dynamic Object Repository (DOR), an essential part of
the DARA which uses the DyKnow framework to provide
other functionalities in the system with information about
the properties of dynamic objects most often constructed
from sensor data streams.

6.1. The Dynamic Object Repository

The Dynamic Object Repository (DOR) is essentially a
soft realtime database used to construct and manage the ob-
ject linkage structures described in the introduction. The
DOR is implemented as a CORBA server and the image
processing module interfaces to the DOR and supplies vi-
sion objects. Task procedures in the MTA access feature in-
formation about these objects via the DyKnow framework,
creating descriptors on-the-fly and constructing linkages.
Computational units are used to provide values for more ab-
stract feature properties associated with these objects. For
example, the co-location process involving features from
the vision, helicopter and camera objects, in addition to in-
formation from the GIS, use computational units to output
geographical coordinates. These are then used to update the

positional features in world objects linked to the specific vi-
sion objects in question.

Objects are referenced via unique symbols which are
created by the symbol generation module which is part of
the DOR. Each symbol is typed using pre-defined domains
such as car, world-object, vision-object, vehicle, etc. Sym-
bols can be members of more than one domain and are used
to instantiate feature representations and as indexes for col-
lecting information about features which take these symbols
as arguments. Since domains collect symbols whichrefer-
encea certain type of object, one can also conveniently ask
for information about collections or aggregates of objects.
For example, “take all vision objects and process a particu-
lar feature for each in a certain manner”.

6.2. An Application to Chronicle Recognition

Chronicles are used to represent complex occurrences of
activity described in terms of temporally constrained event
structures. In this context, an event is defined as a change in
value of a feature. For example, in a traffic monitoring ap-
plication, a UAV might fly to an intersection and try and
identify how many vehicles turn left, right or drive straight
through a specific intersection. In another scenario, the UAV
may be interested in identifying vehicle overtaking. Each
of these complex activities can be defined in terms of one
or more chronicles. In the WITAS UAV, we use the CRS.
chronicle recognition system developed by France Telecom.
CRS is an extension of IxTeT [4]. Our chronicle recognition
module is wrapped as a CORBA server.

As an example, suppose we would like to recognize vehi-
cles passing through an intersection. Assume cars are being
identified and tracked through the UAV’s camera as it hov-
ers over a particular intersection. Recall that the DOR gen-
erates and maintains linkage structures for vehicles as they
are identified and tracked. It can be assumed that the fol-
lowing structured features exist:
pos = position(DOR, policy1, car1)
roadseg = road segment(DOR, roadSegment(pos), policy2,
car1)
incross = in crossing(DOR, inCrossing(roadseg), policy3,
car1)

pos is a feature of a car object and its fluent stream can
be accessed via the DOR as part of its linkage structure.
roadseg is a complex feature whose value is calculated via
a computational unitroadSegment which takes the geo-
graphical position of a world object associated with the car
object as argument and uses this as an index into the GIS to
return the road segment that the vehicle is in. Similarly,in-
cross is a complex feature structure whose boolean value
is calculated by using a computational unit that takes the

roadSegment fluent stream as input and returns a boolean
output stream calculated via a lookup in the GIS.

For the sake of brevity, a car is defined to pass through
an intersection if its road segment type is not a crossing then
it eventually is in a road segment that is a crossing and then
it is again in a road segment that is not a crossing. In this
case, if the fluent stream generated byincross generates
samples going from false to true and then eventually true
to false within a certain time frame then the car is recog-
nized as passing through a crossing. The chronicle recogni-
tion system would receive such streams and recognize two
change events which match its chronicle definition.

The stream itself requires some modification andpolicy3
specifies this via amonotonic timeconstraint and achange
constraint. The monotonic time constraint would make sure
the stream is ordered, i.e. the time stamp of events increase
monotonicly . The change constraint specifies how change
is defined for this stream. There are several alternatives
which can be used:

• any change policy– any difference between the previous and
current value is a change;

• absolute change policy– an absolute difference between the
previous and current value larger than a parameterdelta is a
change;

• relative change policy– a normalized difference between the
previous and current value larger than a parameterdelta is a
change.

There are obvious variations on these policies which
are intended to deal with oscillatory values due to uncer-
tainty of data, etc., and definitions of chronicles can become
quite complex. This example is only intended to provide an
overview as to how DyKnow is used by other modules.

6.3. An Application to Execution Monitoring

The WITAS UAV architecture has an execution monitor-
ing module which is based on the use of a temporal logic,
LTL (linear temporal logic with intervals [5]), which pro-
vides a succinct syntax for expressing highly complex tem-
poral constraints on activity in the UAV’s internal environ-
ment and even aspects of its embedding environment. For
example safety and liveness conditions can easily be ex-
pressed. Due to page limitations we can only briefly de-
scribe this functionality. Essentially, we appeal to the in-
tuitions about viewing bundles of fluent streams as partial
models for a temporal logic and evaluating formulas rel-
ative to this model. In this case though, the model is fed
piecewise (state-wise) to the execution monitor via a state
extraction mechanism associated with the execution moni-
tor. A special progression algorithm [5] is used which eval-
uates formulas in a current state and returns a new formula
which if true on the future states would imply that the for-
mula is true for the complete time-line being generated.

The DyKnow system is ideal for generating such
streams and feeds these to the execution monitor. Sup-
pose we would like to make sure that two task proce-
dures (all invocations) in the reactive layer of the DARA,
called A and B, can never execute in parallel. For exam-
ple, A and B may both want to use the camera resource.
This safety condition can be expressed in LTL as the tempo-
ral formula G¬(∃x∃y tp name[x]=A∧ tp running[x]=true
∧ tp name[y]=B∧ tp runing[y]=true), where “G” in the
formula is the modal operator for “at all times”. To mon-
itor this condition the execution monitor requires fluent
streams for each of the possible instantiations of the pa-
rameterized featurestp name and tp running which can
be generated by the reactive layer of the DARA. These
are fed to the instantiated execution monitor which ap-
plies the progression algorithm to the temporal formula
above relative to the fluent streams generated via the Dy-
Know framework. This algorithm is run continuously. If
the formula evaluates to false at some point, an alert mes-
sage is sent to a monitor set up by the functionality
interested in this information and modifications in the sys-
tem configuration can be made.

References

[1] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall,
K. Nordberg, E. Skarman, and J. Wiklund. The WITAS un-
manned aerial vehicle project. InProceedings of the 14th Eu-
ropean Conference on Artificial Intelligence, pages 747–755,
2000.

[2] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnström.
(TAL) temporal action logics: Language specification and tu-
torial. Electronic Transactions on Artificial Intelligence, 2(3-
4):273–306, 1998.http://www.ep.liu.se/ej/etai/1998/009/.

[3] P. Doherty, P. Haslum, T. Merz, E.Skarman, G. Conte, S. Du-
ranti, F. Heintz, P.-O. Pettersson, T. Persson, and B. Wingman.
A distributed architecture for intelligent unmanned aerial ve-
hicle experimentation. 2004. Submitted to ECAI 04.

[4] M. Ghallab. On chronicles: Representation, on-line recogni-
tion and learning. InProceedings of the International Confer-
ence on Knowledge Representation and Reasoning (KR-96),
1996.

[5] K. B. Lamine and F. Kabanza. Reasoning about robot actions:
A model checking approach. InAdvances in Plan-Based Con-
trol of Robotic Agents, LNAI, pages 123–139, 2002.

[6] Object Computing, Inc. TAO Developer’s Guide, Version
1.1a, 2000. See alsohttp://www.cs.wustl.edu/
˜schmidt/TAO.html .

