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Abstract. We consider the directed Steiner tree problem (DSTP) with a

constraint on the total number of arcs (hops) in the tree. This problem

is known to be NP-hard, and therefore, only heuristics can be applied
in the case of its large-scale instances.

For the hop-constrained DSTP, we propose local search strategies

aimed at improving any heuristically produced initial Steiner tree. They
are based on solving a sequence of hop-constrained shortest path prob-

lems for which we have recently developed efficient label correcting al-

gorithms.
The presented approach is applied to finding suitable 3D locations

where unmanned aerial vehicles (UAVs) can be placed to relay informa-

tion gathered in multi-target monitoring and surveillance. The efficiency
of our algorithms is illustrated by results of numerical experiments in-

volving problem instances with up to 40 000 nodes and up to 20 million
arcs.

Keywords. Steiner trees, hop constraints, local search heuristics, label

correcting algorithms, unmanned vehicles placement

Introduction

We consider the directed Steiner tree problem (DSTP) formulated as follows.
Given a weighted directed graph with a selected root node and a set of terminal
nodes, find a directed tree of minimal weight (or cost) which is rooted in the root
node and spanning all terminal nodes as leaves. By directed tree, we mean here
an arborescence, i.e. a directed graph in which there exists a unique directed path
from the root node to any other node in the tree.

Since DSTP is known to be NP-hard, there is little chance to find an exact
solution in large problems, and therefore, approximation algorithms are used in
such cases (see [1,2,3,4,5,6]). Some strategies for improving approximate solutions
are available in the literature (see, e.g., [7,8,9,10]).
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In this paper, we will consider the DSTP with a limitation on the total number
of arcs (hops) by a given integer. We call it the directed Steiner problem with
hop constraints (SPH). It is obviously more difficult than DSTP. SPH and similar
problems were considered earlier in many publications, e.g. in [11] where the
number of hops is limited in each directed path in the Steiner tree.

We present here new local search strategies aimed at improving SPH solutions
produced by approximation algorithms. This local search is a further development
of our approach to solving SPH appeared in [12]. It will be based, like in [12], on
our label correcting algorithms proposed in [13,14,15] for finding Pareto optimal
paths corresponding to the minimization of the path cost and the number of hops.

Our work is motivated by the necessity of solving the problem of 3D place-
ment of unmanned aerial vehicles (UAVs) used for multi-target monitoring and
surveillance [12,13,14,15]. Our algorithms are able to efficiently exploit some fea-
tures of the resulting large scale SPH problems, in which the tree cost is associ-
ated with the quality of the UAV placement, and the number of hops is directly
related to the number of involved UAVs.

The paper is organized in seven sections. In Section 1 we formulate SPH prob-
lem and derive conditions to be satisfied by its optimal solution. These conditions
motivate our approach. Section 2 presents auxiliary algorithms aimed at solving
hop-constrained shortest path problems. These algorithms are used in Section 3
where we consider the problem of improving local components of a currently avail-
able Steiner tree. In the same section local search strategies are introduced. A
generic SPH algorithm is presented in Section 4 where its implementation issues
are also discussed. In Section 5 we formulate a UAV-based multi-target surveil-
lance problem and show how to reduce it to the SPH problem. Section 6 reports
numerical results of using our local search heuristics for solving very large-scale
test problems related to the UAV-based multi-target surveillance. The contribu-
tions of the paper are summarized in Section 7.

1. Problem Formulation and Optimality Conditions

Let G = (N,A) be a weighted directed graph, where N is the set of nodes and A
is the set of arcs. We suppose given: nonnegative costs cij associated with each
arc (i, j) ∈ A, a root node r ∈ N and a set of terminal nodes T ⊂ N . Let S(ρ,Λ)
stand for all directed trees in G whose root node is ρ ∈ N , and whose set of leaves
is Λ ⊂ N . The trees in S(r, T ) are called directed Steiner trees. We shall use the
abbreviated notation S for the set of all directed Steiner trees S(r, T ). Since the
terminal nodes in T are required to be leaves of directed Steiner trees, we can
assume without loss of generality that the outdegree of these nodes is zero. A
collection of disjoint directed trees will be called a forest. For a subgraph s of G,
we denote the sum of the costs of all arcs in s and the total number of arcs (hops)
in s by c(s) and h(s), respectively.

Given a positive integer H, the directed Steiner tree problem with hop con-
straints is to solve

min{c(s) : s ∈ S, h(s) ≤ H}. (1)



A subgraph of a directed tree s will be called a subtree of s if it is a directed
tree, and for each of its nodes, the arcs in s that are outgoing for this node are
all either internal or external with respect to the subgraph.

Consider any subtree σ̄ of a tree s ∈ S. Let Λ(σ̄) denote the set of the leaves
of σ̄. Consider also the graph denoted by s\ σ̄ that is obtained from s by removing
all the internal arcs and nodes of σ̄, except the nodes Λ(σ̄) and the root node of
σ̄. Observe that this removal splits s into two subgraphs, namely, a lower subtree
L(s \ σ̄) rooted in r and a forest rooted in Λ(σ̄). Based on this observation, the
key necessary optimality conditions of SPH that will be exploited in our local
search strategies can be formulated as follows.

Theorem 1 Let s∗ be an optimal solution to problem (1). Then any subtree σ̄ of
the Steiner tree s∗ solves the problem

min
ρ∈L(s∗\σ̄)

min
σ∈S(ρ,Λ(σ̄))

{c(σ) : h(σ) ≤ h(σ̄)}. (2)

Proof. Suppose, to the contrary, that σ̄ is not optimal in problem (2). This
means that, for some ρ ∈ L(s∗ \ σ̄), there exists a tree σ′ ∈ S(ρ,Λ(σ̄)) such that

c(σ′) < c(σ̄) and h(σ′) ≤ h(σ̄). (3)

Let g be a graph obtained from s∗ by replacing σ̄ by σ′. Although g may not
be a tree, it contains directed paths from the root r to the terminal nodes in T .
Moreover, the internal nodes of these paths do not contain any of the terminal
nodes T . Therefore, if g contains ties, or if a leaf of g is not a terminal node, a
Steiner tree s ∈ S can be obtained by removing from g some of its arcs. If g ∈ S,
we consider s = g. Then the non-negative arc costs and the inequalities (3) imply

c(s) < c(s∗) and h(s) ≤ h(s∗) ≤ H.

This contradicts the assumption that s∗ is an optimal solution to problem (1)
and completes the proof.

Given a Steiner tree s ∈ S which approximately solves the SPH problem (1),
Theorem 1 suggests that this approximate solution may be improved by choosing
a proper subtree σ̄ and then solving problem (2) for a better subtree, and hence a
better Steiner tree. One can then continue by repeatedly choosing a new subtree
and applying the same procedure.

In general, problem (2) may be of the same complexity as problem (1), unless
the choice of the subtree σ̄ is restricted by a certain class. For instance, if σ̄ is
a path, then (2) is reduced to finding for each ρ ∈ L(s \ σ̄) a hop-constrained
shortest path from ρ to the leaf of σ̄. Each of these hop-constrained shortest path
problems is polynomially solvable, e.g. with the use of modified Bellman-Ford
algorithms considered in [16,17,18]. Thus, a natural requirement for the choice
of σ̄ is that the resulting problem (2) is to be efficiently solved. This was the
case with the local search proposed in [12] for SPH, and this is the case with its
improved version introduced in the next section.



We shall use the following terms and notations. Node i in s ∈ S is called a
Steiner node of s if i /∈ {r} ∪ T . A Steiner node whose outdegree in s is greater
than one is called a star node. The set of all star nodes in s is denoted by N?(s).
The nodes in the set K(s) = N?(s) ∪ {r} ∪ T are called key nodes. A directed
path in s is called a key path if it begins and ends in K(s), and none of its internal
nodes is a key node. For every star node i, there exist in s only one key path
that ends in i and at least two key paths that begin in i. The subtree composed
of these key paths is called the star subtree associated with i ∈ N?(s), and it is
denoted by si. Let S?(ρ,Λ) stand for all star trees in G whose root node is ρ ∈ N
and the set of leaves is Λ ⊂ N .

Given s ∈ S, consider a directed tree whose nodes are the key nodes K(s).
The set of its arcs A(s) is composed of the pairs (i, j) such that there exists a
key path in s from i ∈ K(s) to j ∈ K(s). We call R(s) = (K(s), A(s)) a reduced
tree. Obviously, r is the root of R(s), and the set of its leaves is the same as in s,
namely, T .

We shall use the following notations

i− = {j ∈ N : (j, i) ∈ A} and i+ = {j ∈ N : (i, j) ∈ A}

for the sets of immediate predecessors and successors of node i ∈ N in the graph
G, respectively.

Let iR− and iR+ denote, respectively, the immediate predecessor and the set
of all immediate successors of node i in the reduced tree R. Obviously, iR− is the
starting node of the key path that ends in i, and iR+ is the set of end nodes of the
key paths that start in i.

We present below a weaker version of Theorem 1 for the reason that it suits
better for motivating our local search. To clarify the relation between the next
result and Theorem 1, we note that, for any star node i in s, we have iR+ = Λ(si).

Theorem 2 Let s∗ be an optimal solution to problem (1). Then for each of its star
nodes i ∈ N?(s∗), the corresponding star subtree s∗i of the Steiner tree s∗ solves
the problem

min
ρ∈L(s∗\s∗

i
)

min
σ∈S?(ρ,iR

+
)
{c(σ) : h(σ) ≤ h(s∗i )}. (4)

Proof. We observe that

S?(ρ,Λ) ⊆ S(ρ,Λ), ∀ρ ∈ N,Λ ⊂ N,

which means that the feasible set in problem (4) is a subset of the feasible set in
problem (2). By Theorem 1, s∗i solves problem (2). Then s∗i solves also problem
(4) because it is clearly feasible in (4).

It should be emphasized that the optimality conditions presented by this
theorem are necessary, but not sufficient conditions. This means that if a Steiner
tree is such that each of its star subtrees is optimal, it is not, in general, an
optimal solution to problem (1).
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Figure 1. An illustrative example for problem (11)

As an example, consider the graph in Figure 1, where r = 1 and T = {4, 5, 6}.
The set of arcs consists of those depicted and all other possible arcs that are not
depicted. Recall that, as it was assumed, the outdegree of the terminal nodes
is zero. The costs of all undepicted arcs are equal to 10, and the costs of those
depicted are indicated in the figure. Consider the Steiner tree s given by the solid
arcs in Figure 1. This s is composed of only one star subtree, namely, s2 = s. This
subtree solves problem (4), but the s is not optimal in problem (1) for H = 5. It
can be easily seen that the graph that is composed in Figure 1 of the same arcs
as s, but arc (2,4) substituted by (3,4), solves the SPH problem (1).

In the next section, we present auxiliary algorithms that will be involved in
solving problems of the form (4).

2. Label Correcting Algorithms for Constrained Shortest Paths

In this section we consider directed paths in G from nodes in a given subset
L ⊂ N to a node j ∈ N . Let P (L, j) denote the set of these paths. Consider the
bi-criteria problem

min{(c(π), h(π)) : π ∈ P (L, j)}. (5)

Here, it is required to find directed paths π ∈ P (L, j) that minimize, in the
following sense, both the path cost c(π) and the number of hops h(π). We say
that path π′ dominates path π′′ if the inequalities

c(π′) < c(π′′) and h(π′) ≤ h(π′′),

or

c(π′) ≤ c(π′′) and h(π′) < h(π′′)

hold. By definition (see, e.g. [19,20]), path π∗ ∈ P (L, j) is Pareto optimal if there
is no other path π ∈ P (L, j) which dominates π∗.

If π∗ ∈ P (L, j) is a Pareto optimal solution with h(π∗) = k, we call it a k-hop
Pareto path. If there are multiple k-hop Pareto paths for a given k, it is sufficient
for our purposes to finding only one of them. Let Vk denote the set of all nodes
j ∈ N for which there exists a k-hop Pareto path from L to j. If there exists a



k-hop Pareto path π∗ ∈ P (L, j), we denote gk(j) = c(π∗). Given k, let k′ be, if
exists, the largest integer k′ < k for which there exists a k′-hop Pareto path from
L to j, i.e. for which j ∈ Vk′ . Denote

g−k (j) =

{
gk′(j), if k′ exists,
+∞, otherwise.

The next result presents optimality conditions for k-hop Pareto paths from
the nodes in a set L to a node j. They are related to the availability of (k−1)-hop
Pareto optimal paths from L to the predecessors of j. They are also related to
the ability of those (k − 1)-hop paths to provide j with a k-hop path which is
shorter than all paths from L to j with less than k hops. The following optimality
conditions will be used in constructing and theoretically justifying our algorithms.

Theorem 3 A k-hop Pareto path π∗ ∈ P (L, j) exists iff the set j− ∩ Vk−1 is not
empty and

min{gk−1(i) + cij : i ∈ j− ∩ Vk−1} < g−k (j). (6)

The predecessor of j in π∗ is a minimizer for the left-hand-side of inequality (6),
and gk(j) equals the value in the left-hand-side.

Proof. Suppose that a k-hop Pareto path π∗ ∈ P (L, j) exists. Let node i ∈ j−
be the immediate predecessor of node j in the path π∗. Denote by π∗i the path
obtained from π∗ by removing (i, j), the last arc. Assume, to the contrary, that
j− ∩ Vk−1 = ∅. Then i /∈ Vk−1, which means that there exists a path from L to i
that dominates π∗i . By adding the arc (i, j) to this path, we obtain a path from
L to j which dominates π∗. This contradicts the assumption that π∗ is a k-hop
Pareto path and thus proves that i ∈ Vk−1. Moreover, the node i is a minimizer for
the left-hand-side of inequality (6) and this inequality holds, because otherwise π∗

would not be a k-hop Pareto path. This means that the value in the left-hand-side
is the length of the path π∗.

Suppose now that j− ∩ Vk−1 6= ∅, and inequality (6) holds. Then there exists
i which minimizes the left-hand-side of inequality (6). Since i ∈ Vk−1, there exists
a (k − 1)-hop Pareto path π∗i ∈ P (L, i). It can be easily shown that the path π∗

obtained from π∗i by adding the arc (i, j) is a k-hop Pareto path from L to j.

According to this theorem, if (6) holds for a node j ∈ N , then

gk(j) = min{gk−1(i) + cij : i ∈ j− ∩ Vk−1}.

This equality can be viewed as a Bellman-type recurrence equation [17,21,22,23].
The label correcting algorithms developed in [13,14,15] solve, in polynomial

time, the bi-criteria problem (5) for sets L composed of only one node. We present
here modifications of these algorithms intended to solve a more general problem in
which L may contain arbitrarily many nodes, and in which there additionally are
upper bounds c̄ and h̄ for path cost and and number of hops, respectively. To put
it in another way, we are interested in finding Pareto optimal paths π∗ ∈ P (L, j)
that solve the problem



min{(c(π), h(π)) : π ∈ P (L, j), c(π) ≤ c̄, h(π) ≤ h̄}. (7)

Theorem 3 can be easily extended to the optimal solutions to this problem.
Due to the presence of upper bounds in problem (7), some of the nodes in

N may have an empty set of Pareto optimal paths. This allows for localizing the
search over a certain subset of nodes, and hence decreasing the computational
burden.

Each of the two algorithms introduced in this section produce Pareto optimal
solutions to problem (7) for the nodes j ∈ N for which there exist feasible paths.
The labels returned by the algorithms for node j represent a complete set of
Pareto optimal paths from the nodes in L to node j. The labels have the form of
triples

{k, gk(j), pk(j)}. (8)

Here each of the triples corresponds to a k-hop Pareto path, with gk(j) and pk(j)
standing for the path cost and the predecessor of j in this path, respectively. In
our applications, the set of labels is very sparse. They typically contain just a few
triples per node. For the theoretical background of the algorithms in this section,
we refer to [13,14,15].

In the algorithms, the iteration number k corresponds to the number of hops,
and g(i) stands for the length of the currently shortest path from L to i of those
paths so far considered in the solution process. The algorithms run at the k-
th iteration over only those nodes i that belong to the set Vk−1 and, whenever
possible, improve the value of g(j) for j ∈ i+. If at that iteration the value of g(j)
changes at least once, i.e. when it becomes less than g−k (j), this, by Theorem 3,
indicates that there exists a k-hop Pareto path from L to j. The gk(j) and pk(j)
are updated in accordance with the change of g(j).

The first of the outlined algorithms can be formally presented as follows.

Algorithm 1.
k ← 0
for each i ∈ N do

if i ∈ L then
g(i)← 0, g0(i)← g(i), p0(i)← nil

else
g(i)← +∞, g0(i)← g(i)

end (for)
V0 ← L
for k = 1, 2, . . . , h̄ do

if Vk−1 = ∅ then stop else Vk ← ∅
for each i ∈ Vk−1 do

for each j ∈ i+ do
c← gk−1(i) + cij
if c < g(j) and c ≤ c̄ then

g(j)← c, gk(j)← g(j), pk(j)← i, Vk ← Vk ∪ {j}
end (for)

end (for)
end (for)



The correctness of this algorithm and the next one can be justified by a direct
analogy with the justification presented in [13,14] for their prototypes.

The next algorithm takes advantage of using a solution to the following one-
criterion shortest path problem

min{c(π) : π ∈ P (L, j), c(π) ≤ c̄, h(π) ≤ h̄}. (9)

It is obviously easier than the bi-criteria problem (7). There exist efficient algo-
rithms for solving problem (9) (see e.g. [17,22,25]). Some of them, like Dijkstra’s
algorithm, are able to simultaneously solve this problem for all nodes j that have
a feasible solution. They produce a forest of directed shortest paths rooted in
L. Let K denote the height of the forest, i.e. the maximal number of hops over
all directed paths that compose the forest. The set of nodes of the forest can be
partitioned into subsets N∗0 , N

∗
1 , . . . , N

∗
K , where each N∗k consists of the nodes

whose path from L in the forest has k hops.
Note that if node j belongs to N∗k , then g(j) does not change in Algorithm 1

after iteration k. In the next algorithm, the unnecessary check for improving g(j)
is avoided by disabling at the k-th iteration all incoming arcs for nodes j ∈ N∗k .

Algorithm 2.
find a forest of shortest paths and set labels (8) for the forest nodes
k ← 0
for each i ∈ N do

if i ∈ L then
g(i)← 0

else
g(i)← +∞, g0(i)← g(i)

end (for)
V0 ← L
for k = 1, 2, . . . ,K − 1 do

for each j ∈ N∗k do
for each i ∈ j− do

i+ ← i+ \ {j}
end (for)

end (for)
Vk ← N∗k
for each i ∈ Vk−1 do

for each j ∈ i+ do
c← gk−1(i) + cij
if c < g(j) and c ≤ c̄ then

g(j)← c, gk(j)← g(j), pk(j)← i, Vk ← Vk ∪ {j}
end (for)

end (for)
end (for)

It is easier to implement Algorithm 1, but the comparison of the prototypes
of these two algorithms presented in [13,14] was in favor of Algorithm 2.



3. Local Search

The local search strategies considered in this section exploit the optimality condi-
tions presented by Theorem 2. They are aimed at improving a given Steiner tree
by improving its subtrees of the following two types. The first type refers to the
star subtrees. The second one refers to the key paths that end in the terminal
nodes. The latter will be called terminal paths.

3.1. Star Subtree Improvement

In [12], star subtrees were used as candidates for locally improving s. A candidate
subtree is obtained in that paper by choosing a star node i ∈ N?(s) and then
solving the problem

min
σ∈S?(iR−,i

R
+

)
{c(σ) : h(σ) ≤ h̄}, (10)

where h̄ equals h(si) or other proper value. As noted in [12], problem (10) can be
solved in polynomial time with the use of the label correcting algorithm developed
in [13,14,15] for finding Pareto optimal paths. It should be mentioned here that
the local search suggested in [24] is also based on improving star subtrees, but
it is not applicable to solving problem (10) because it is unable to handle hop
constraints.

Consider some features of the local search based on solving problem (10).
Let σ′ solve problem (10). In practice, it is a rare case when the replacement of
si in s by σ′ results in ties. Assume that this is not the case for σ′. If the star
node of σ′ coincides with any of the key nodes in N?(s) \ {i}, then the total
outdegree of the key nodes, denoted here by d(s), decreases, otherwise it does not
change. Therefore, if the initial Steiner tree s ∈ S is such that the strict inequality
d(s) < d(s∗) holds, where s∗ is an optimal Steiner tree, the same usually holds in
practice for all subsequently generated improved approximations to the solution
of the SPH problem (1). This means that the local search suggested in [24] has
no chance to catch the topology of s∗ characterized by d(s∗), except the very rare
case when ties appear. One can see that the new local search presented below is
free of this shortcoming.

Our new local search is aimed, like in [12], at improving star subtrees si, but
instead of solving problem (10), we suggest to solve problem (4), in which s∗ is
substituted by its current approximation s. This turns (4) into the problem

min
ρ∈L(s\si)

min
σ∈S?(ρ,iR

+
)
{c(σ) : h(σ) ≤ h̄}. (11)

The choice h̄ = h(si) in (11) is aimed at decreasing c(s) and preventing
from increasing h(s). If to choose h̄ > h(si), this, apart from a potentially more
substantial decrease of c(s), may result in an increase of h(s) by up to h̄− h(si)
hops. Any value of h̄ below h(si) admits a possible increase of c(s) and serves to
decrease h(s). The last choice can be used for finding a Steiner tree feasible with
respect to the hop constraint h(s) ≤ H.



Since the optimization is performed in (11) over all nodes ρ ∈ L(s\si) includ-
ing the root of si, this wider choice of ρ offers a better possibility for improving
si in comparison to solving problem (10). The local search based on (11) inherits
the ability of the old local search to decrease d(s), but it also allows for increasing
it when neither the root of the solution to (11), nor its star node, coincide with
any of the key nodes of s.

The new local search produces either an optimal solution to (11), which is the
most typical case in practice, or even a better solution. This is because the set of
the candidate solutions used by the local search is, in general, wider than S?(ρ, iR+).
Moreover, recall that in the optimality conditions presented by Theorem 2, it is
assumed that the star tree is a subtree of an optimal Steiner tree, while the local
search is applied to a Steiner tree, which is usually not optimal.

Consider the following idea of solving problem (11). It is based on labeling
the nodes as described below. Each node in N gets, at most, |iR+|+1 sets of Pareto
optimal solutions in the form of labels (8). One set of labels results from solving
problem (5) for L = L(s \ si). For obtaining the other sets of labels, a reversed
graph is used, i.e. the directed weighted graph Ĝ = (N, Â) in which

Â = {(i, j) : (j, i) ∈ A} and ĉij = cji.

The remaining sets of labels are produced by solving problem (5) in Ĝ for each
leaf node τ ∈ iR+, i.e. for L = {τ}. Note that some of the sets of labels of node
j ∈ N may be empty if this node is infeasible in the corresponding problem (5).
We say that node j is completely labeled if it has |iR+|+ 1 nonempty sets of labels.

The required labels can be produced by running |iR+| + 1 times any of the
two algorithms presented in the previous section. Assume as given a Steiner tree
s ∈ S, one of its star nodes i ∈ N?(s) and a parameter h̄. Suppose that the
optimal value of the objective function in (11) is bounded above by a given c̄.
If h̄ = h(si), then in the mentioned algorithms it is natural to choose c̄ = c(si),
which would allow for narrowing the local search.

Consider a labeled node j ∈ N . Each of its labels corresponds, depending on
the set containing this label, to a certain path either from L(s \ si) to j, or from
j to a leaf node of the star subtree si. Each label determines the cost gk(j) and
the number of hops k of the corresponding path.

Consider the Steiner tree s defined by the solid arcs in Figure 1. In this
simple example, the only star node is 2. Thus, in problem (11), we have i = 2,
L(s \ si) = {1} and iR+ = {4, 5, 6}. Let h̄ = 6, allowing the solution to use up
to one more hop than the current star subtree. Nodes 1, 2 and 3 are completely
labeled with four sets of labels each. For instance, from node 2 we can reach node
5 in one hop at a cost of 10, and in two hops at a cost of 3. Node 2 has the
following sets of labels of the form {k, gk(2)}2 associated with the Pareto optimal
paths from 1 to 2, and from 2 to 4, 5, and 6:

path 1→ 2 : {1, 1},
path 2→ 4 : {1, 4}, {2, 3},
path 2→ 5 : {1, 10}, {2, 3},
path 2→ 6 : {1, 1}.

(12)

2For simplicity, we omit pk(2).



Coming back to the general case, we suppose now that node j is completely
labeled. Let Ξ stand for all possible combinations of |iR+| + 1 labels chosen from
different sets of labels of this node. Consider a combination ξ ∈ Ξ. Each of the
corresponding paths can be retrieved from the available labels (8) as described in
[13,14]. The paths compose a directed graph denoted by σξ, which may not be a
star tree. Moreover, σξ does not necessarily belong to the set S?(iR−, i

R
+), because

σξ may contain ties, the paths may have some arcs in common or some nodes of
iR+ may be internal for the paths. For example, by choosing in (12) the following
combination ξ:

path 1→ 2 : {1, 1},
path 2→ 4 : {2, 3},
path 2→ 5 : {2, 3},
path 2→ 6 : {1, 1},

(13)

we obtain the graph σξ that is composed in Figure 1 of the same arcs as s, but
arc (2,4) substituted by (3,4). Since the paths in σξ from 2 to 4 and 5 have arc
(2,3) in common, σξ is a directed tree, but not a directed star tree.

Each combination ξ is characterized by the two numbers, denoted here by
cξ and hξ, that are two sums of the g- and k-components of all labels in the
combination ξ, i.e. they are, respectively, the total cost and number of hops of
the corresponding paths.

Because of the possible arcs in common, we have

c(σξ) ≤ cξ and h(σξ) ≤ hξ.

To illustrate this, consider the combination (13). In this case, c(σξ) = 6 and
h(σξ) = 5, while cξ = 8 and hξ = 6.

If σξ has ties, this graph can be easily reduced, by cutting the ties, to a
directed tree σ̄ξ which has the same root node as σξ and spans the nodes in iR+.
This can be done, e.g., by finding in the graph σξ a tree of directed shortest paths
and then removing the arcs that do not belong to the paths from the root node
to iR+. Since the arc costs are nonnegative, this results in the inequalities

c(σ̄ξ) ≤ cξ and h(σ̄ξ) < hξ.

For a completely labeled node j and the corresponding set of combinations
Ξ, define

C(j) = min{cξ : ξ ∈ Ξ, hξ ≤ h̄}.

Thus, C(j) stands for the total cost of the best combination of the paths for the
given node j. In our example, the nodes 1, 2 and 3 are completely labeled. If
node 1 is used as a new star node, the total cost of all cheapest paths is 10, but
this combination is not feasible as it requires 8 hops. For the cheapest feasible
combination the total cost C(1) = 16. We also see that C(2) = 8 and C(3) = 15.
Note that C(j) may not exist even if node j is completely labeled. This occurs



when j has no feasible combination of paths with respect to the total number of
hops hξ.

Although the number of combinations in Ξ may grow exponentially with the
problem size, the value of C(j) can be computed in polynomial time. Consider the
following procedure of computing C(j) based on combining the available |iR+|+ 1
sets of labels. It starts with any set of labels, say the one that corresponds to
L(s \ si). Then the collection of the combined sets is successively extended by
including one by one the sets from those corresponding to the nodes in iR+. At every
step of the procedure, a combined set of labels of the {k, g}-type is constructed
for the current collection of sets. The maximal number of such labels is h̄. In each
combined label {k, g}, the value of g equals the minimal total length of the paths
from L(s\si) to j and from j to the currently collected nodes in iR+ provided that
the total number of hops of that paths is k. The combined labels are updated as
follows.

Let

[. . . , {k′, g′}, . . .]

be the current set of combined labels. It is initially composed of the labels that
correspond to L(s \ si). Let

[. . . , {k′′, g′′}, . . .]

be the set of labels that corresponds to the newly selected node in iR+. The new
set of combined labels

[. . . , {k, g}, . . .]

is produced by summing pair-wise the labels {k′, g′} and {k′′, g′′} with the aim
to improve the label {k, g}, where k = k′ + k′′ ≤ h̄. As a result,

g = min{g′ + g′′ : k′ + k′′ = k}.

Note that there may not exist a label {k, g} for some values of k. If the final set
of combined labels is not empty, C(j) is equal to the smallest value of g.

Consider a modification of the presented procedure that consists in maintain-
ing, for every set of combined labels, a monotonic decrease of g with increase of
k. This assumes removing the labels that violate the monotonicity, which speeds
up the labeling process. One can easily verify that the modified procedure, as well
as the original one, returns the correct value of C(j).

Our new local search consists in labeling the nodes as described above, and
then finding a node j∗ which minimizes C(j). The information about the prede-
cessors contained in the labels allows for finding the collection of paths that pro-
vides the total path cost C∗ = C(j∗). In the next result, we compare the results
of our local search with the solution to problem (11).



Lemma 4 Let σ∗ be a solution to problem (11). Suppose that σ′ is composed of
the collection of paths that provides the minimal total path cost C∗. Then

c(σ′) ≤ C∗ ≤ c(σ∗) (14)

and h(σ′) ≤ h̄. Moreover, if |iR+| = 2, then σ′ solves problem (11).

Proof. The collection of paths that provides the total path cost C∗ is, by the
construction, such that the total number of arcs in the paths does not exceed h̄.
Since this collection may have some arcs in common, the inequality h(σ′) ≤ h̄
holds.

For the same reason and because the arc costs are non-negative, the first
of the inequalities in (14) holds. Let i∗ be the star node of σ∗. This node is
obviously completely labeled. Then C(i∗) exists and, by the construction of C(i∗),
we have C(i∗) ≤ c(σ∗). On the other hand, by the definition of C∗, the inequality
C∗ ≤ C(i∗) holds and proves the second inequality in (14).

Suppose that |iR+| = 2. The directed graph σ′ obviously has no ties. Then it
must belong to S?(ρ, iR+), and therefore, σ′ solves problem (11).

The inequalities in (14) can be illustrated by the example in Figure 1, where
the star tree s is composed of the solid arcs, and the directed tree σ′ is composed
of the same arcs except (2,4), which is substituted by (3,4). The optimal solution
to problem (11) is σ∗ = s. In this example, we have

c(σ′) = 6 < C∗ = 8 < c(σ∗) = 9

and h(σ′) = h(σ∗) = 5.

3.2. Terminal Path Improvement

Suppose that the initial Steiner tree s ∈ S is not of the star-type, which is the
most typical case. Then s contains at least one star node such that all the key
paths originating in this node are terminal paths. The process of improving star
subtrees keeps these terminal nodes connected in the same way, i.e. via a joint
star node, despite the fact that this may not be the case for the optimal Steiner
tree. There is a chance to change this way of connecting the terminal nodes by
trying to improve the terminal paths by solving the problem

min
ρ∈L(s\st)

min
π∈P (ρ,t)

{c(π) : h(π) ≤ h̄}, (15)

where t ∈ T , and st is the terminal path in s associated with t. The possible
choices of h̄ affects the values of c(s) and h(s) much like in the case of problem
(11).

The local search that we suggest for improving terminal paths is closely re-
lated to our local search aimed at improving star subtrees. Namely, the nodes
j ∈ N are, first, suggested to be labeled with the triples (8) that originate from
solving problem (5) in the revised graph Ĝ for L = {t}. Then a solution to prob-
lem (15) is obtained by choosing among the labeled nodes in L(s \ st) the one



with the smallest value of gk, where k ≤ h̄. We shall refer to the two suggested
local search strategies as star - and path-search.

In our example, consider any star tree whose star node is 3. It can be improved
by the star-search for h̄ = 5. The resulting star tree σ′ is presented in Figure 1 by
the solid arcs. Since this σ′ is optimal in problem (11) for the given h̄, it cannot
be further improved by the star-search. Let us apply to s = σ′ the path-search
with the aim to improve s4, the one-hop terminal path of from 2 to 4. In this
case, the nodes are labeled as follows:

node 1 : {1, 10}, {2, 5}, {3, 4},
node 2 : {1, 4}, {2, 3},
node 3 : {1, 1}.

The labels show that, for h̄ = h(s4) = 1, the best cost equal to 1 is associated
with the one-hop path from 3 to 4. The use of this key path instead of the old
one decreases c(s) from 9 to 6 while keeping the total number of hops unchanged.

Suppose that the star-search is applied to a star subtree which contains at
least one key path. Then the labels required for solving problem (15) are readily
available. This means that it looks reasonable to have this star-search followed
by the path-search based on the available labels.

An alternative is to produce in advance the labels associated with the Pareto
optimal paths from the root node r and to each of the terminal nodes T . This
can be done before solving SPH (1), and then the stored labels can be used in
the subsequent calculations.

4. Heuristic SPH Algorithms

Given a Steiner tree s, we shall refer to the star subtrees and key paths si, where
i ∈ N?(s) ∪ T , as local components of s.

We present here an approach to approximately solving the SPH problem (1).
It consists in, first, finding an initial Steiner tree s, and then sequentially choosing
a local component of s with the aim to improve it by the use of the local search
introduced in the previous section.

The sequence of treating the local components of s assumes the availability of
a queue of the corresponding key nodes. The queue is denoted here by Q, where
Q(1) stands for the node that defines the local component to be treated at the
current iteration. The basic principle of including a key node i in the Q is that the
corresponding local component si can potentially be improved by the local search.
If the local search resulted in an improvement, the improved local component is
replaced in s by the collection of paths that ensures the improvement. In the case
of ties in s, they are cut to make it a Steiner tree. The changes in the Steiner tree
during the current iteration imply the corresponding changes in the reduced tree.
A few possible ways of arranging the order of nodes in the queue are discussed
below. If Q is empty, this obviously means that none of the star subtrees or key
paths of s can be improved by the local search.

The outlined heuristic approach is presented by the following algorithm.



Algorithm 3.
find an initial s ∈ S
compose a queue Q containing all nodes in N?(s) ∪ T
while Q 6= ∅ do

i← Q(1), delete Q(1)
choose h̄ for the local search
try to improve si with the use of the local search
if improvement do

update s
cut ties
update R(s)
update Q

end (if )
end (while)

A large variety of heuristic SPH algorithms can be constructed on the base
of this generic algorithm. Consider the following ways of its implementation.

Any fast DSTP heuristic, like the shortest path heuristic [26], can be used
for generating an initial Steiner tree s. The resulting s may be infeasible, i.e. the
constraint h(s) ≤ H may be violated. With the aim of reducing h(s), one can
perturb all the arc costs cij by adding a positive scalar ε to each of them before
using the chosen DSTP heuristic. This arc cost perturbation introduces implicitly
a penalty which grows in proportion to the number of hops.

If the labels (8) associated with the Pareto optimal paths from the root node
r and those terminating in T are produced in advance, their use can speed up
the construction of the initial s. If these readily available labels are used in the
shortest path heuristic, the increase of ε in the penalized path cost gk(j) + εk
could help to reduce h(s), because this path cost is determined by the discussed
above arc costs changed from cij to cij + ε. The underlying rationale is related to
the property that the number of hops in the directed shortest path between any
two given nodes calculated for the perturbed arc costs is monotonically decreasing
or non-increasing with the increase of the ε (see [14]). Moreover, for all sufficiently
large values of ε, the resulting shortest path has the minimal number of hops over
all paths between that two nodes.

The parameter h̄ of the local search plays an important role in Algorithm 3
in attaining and then maintaining the feasibility of s with respect to the hop
constraint h(s) ≤ H. The value of h̄ changes from iteration to iteration, depending
on h(s) and h(si), where si is the local component of s to be currently improved.
In general,

h̄ = h(si) + ∆h, (16)

where the integer parameter ∆h depends on h(s).
If the initial or current Steiner tree s is infeasible, one can set for the local

search ∆h = −1 with the aim to decrease h(s). Note that the local search may
not find for the corresponding h̄ any local solution with fewer hops than in si.
Nevertheless, in this case, the available labels may allow the local search to find a
local solution with a cost smaller than c(si). It is natural to regard the Steiner tree



as improved not only when h(s) decreases, but also when c(s) decreases even if
h(s) does not change. The sequence of iterations aimed at attaining the feasibility
of s composes the first stage of the solution process.

As soon as the Steiner tree s becomes feasible, the solution process passes on
to the second stage at which the feasibility of s is maintained. This can be done
by choosing in (16) the parameter value

∆h =

{
0, if h(s) = H,
1, if h(s) < H.

(17)

At this stage, the Steiner tree is regarded as improved not only when c(s) de-
creases, but also when h(s) decreases even if c(s) does not change.

Consider the case when h(s) ≤ H−2. Note that if a local component si cannot
be improved for h̄ = h(si) + 1, it may still be improved for a larger value of h̄. In
view of this, it looks reasonable to continue the second stage when h(s) ≤ H − 2
and there is no si that could be improved for h̄ = h(si) + 1. For the continuation,
one can switch from (17) to the choice

∆h = max{H − h(s), 0}.

Like (17), this choice maintains the feasibility of the Steiner tree.
According to Algorithm 3, if the updated s is not a tree, a directed Steiner

tree must be obtained by properly cutting all ties in s. This can be done, for
instance, by finding in the graph s a shortest path tree rooted in r and then
removing the arcs in this tree that do not belong to the directed paths from r to
the terminal nodes in T . Any cut of ties results in a further improvement of s in
terms of both c(s) and h(s).

The determining constituents of the queue Q are a subset of key nodes that
compose the Q and a linear order of these nodes. Before considering some ways of
setting the order, consider the composition of the Q. By convention we will call
a key node i ∈ N?(s) optimal for a given h̄, if it was proved by the local search
that the corresponding local component si cannot be improved for this value of
h̄. Consider separately the two cases when ∆h ≥ 0 and when ∆h = −1 at the
current iteration. The Q is composed at this iteration of all nodes in N?(s) ∪ T
except the key nodes i that are optimal for the h̄ given by (16) in the former case,
and for h̄ = h(si) in the latter case.

Thus, it looks reasonable to store for each optimal key node the corresponding
value or values of h̄. Consider an iteration at which the local search improved the
Steiner tree for a given h̄. If there were no loops or arcs in common, and each of
the produced Pareto optimal paths has at least one arc, the star node of the star
tree composed by this paths is optimal for this h̄. An optimal key node j may
lose its optimality when the local search results in any change of sj . In general, a
key node j of the improved s is not optimal and must be placed in the queue, if
j meets one of the following two requirements referring to the current iteration:

• at least one, but not all, of its key paths was produced by the local search;
• none of its key paths was produced by the local search, and jR−∪jR+ changed.



This means that the root and terminal nodes of the local component that was

improved by the local search are among the candidates for placing in the Q.

Before discussing possible ways of organizing the queue Q, we notice that the

local search mostly does not result in changing the local components of s whose

key nodes are not adjacent in R(s) to the currently treated key node i. Each

key node i ∈ N?(s) ∪ T is characterized by the number of hops ν(i) in the path

from the root node r to the i in the reduced tree R(s). One possibility is to keep

the key nodes sorted in the Q in the increasing value of ν(i). In this case, the

local components that are closer to the root node r are improved at the earlier

iterations of Algorithm 3. At the later iterations, they are expected to be less

affected by the changes in the local components that are more distant from the r.

Similar expectations are related to the alternative way of organizing the queue,

according to which the the key nodes are sorted in the Q in the decreasing value

of ν(i).

Each key node i ∈ N?(s)∪T is characterized by the cost c(si) and the number

of hops h(si). It would be natural to expect that the key node with the largest

number of hops has a higher potential to improve the Steiner tree than the other

key nodes in the queue. Similar expectations apply to the key node with the

larges value of the associated cost. Thus, one more way of organizing the queue

is related to sorting the nodes in the decreasing value of the associated number

of hops or cost, or their combination.

If the labels (8) associated with T are available, it is relatively cheap to try

to improve the terminal paths by checking these labels in the nodes of s. In view

of this, if the recently improved local component contains a terminal path, the

corresponding terminal node can be placed first in the Q. It is also reasonable to

try to improve the terminal paths at the final stage of Algorithm 3. This can be

ensured by keeping the terminal nodes in the end of the Q since the initiation of

the queue. This admits that some of the terminal nodes may appear twice in the

Q at the subsequent iterations.

5. Application to UAV Communication Networks

Many applications for unmanned aerial vehicles include the need for surveillance

of distant targets, including search and rescue operations, traffic surveillance and

forest fire monitoring as well as law enforcement applications. The information

gathered must often be transmitted continuously from a set of surveillance UAVs

to a base station. Urgent high-volume sensor data such as live video requires

high uninterrupted communications bandwidth. Minimizing quality degradation

therefore tends to require line-of-sight communications, which is problematic in

urban or mountainous areas.

While larger UAVs such as the UASTech Yamaha RMAX (Figure 2) can

sometimes reduce this problem by increasing altitude, this is not always permitted

by aviation regulations. The maximum communication range is typically also

limited, especially when using smaller and lower-cost UAVs such as the LinkQuad



Figure 2. The UASTech Yamaha RMAX helicopter system [27,28].

Figure 3. The LinkQuad quadrotor system.

Micro Aerial Vehicle3 (Figure 3). Smaller UAVs may also be unable to ascend to
sufficient altitude.

Instead, one can use a set of relay UAVs [29] passing on information. The
UAVs should then be positioned so that a tree-structured connectivity is provided
between the base station and all surveillance UAVs. The positioning should not
only allow an uninterrupted flow of information but also optimize a quality mea-
sure. Algorithms for calculating relay trees should be sufficiently scalable to be
able to calculate positions involving a large number of UAVs, to enable the use of
relatively inexpensive miniature vehicles with limited communication range. Fur-
thermore, such calculations must be performed in a timely manner as the ground
operator expects a prompt response.

5.1. Relay Chains and Relay Trees

We will first formally define relay chains and trees in continuous space.
Assume that a certain number of UAVs with identical communication capa-

bilities are available and let U ⊆ R3 be the region where the UAVs may safely be
placed. This region must only include points sufficiently far away from obstacles
for the required safety clearances to be satisfied. No-fly-zones where UAVs are

3http://www.uastech.se



not permitted may also be excluded from U . Assume that x0 ∈ R3 \ U is the
position of a base station, and that the positions of the surveillance targets are
T = {t1, . . . , tm} ∈ R3 \ U .

Assume as given two Boolean reachability functions. The communication
reachability function fcomm(x, x′) specifies whether communication between two
entities at points x, x′ ∈ U is feasible. The surveillance reachability function
fsurv(x, x

′) specifies whether a surveillance UAV at x ∈ U could surveil a target
at x′ ∈ R3 \ U . These functions should be based on specific characteristics of the
associated equipment. For example, fcomm could be defined in terms of a lim-
ited communication range and a line-of-sight requirement in order to minimize
quality degradation, though more complex models of signal propagation would
also be possible. For camera surveillance, a maximum surveillance range and a
line-of-sight requirement could be used.

We also use two cost functions, namely, the communication cost function
ccomm(x, x′) and the surveillance cost function csurv(x, x

′) that denote the non-
negative costs of communication and surveillance, respectively. These functions
are valid only if the corresponding reachability function holds between the po-
sitions. The term cost is used in a very broad sense, and can be used to model
arbitrary measures for evaluating the suitability of positions for UAV placement.
For instance, communication costs can depend on factors such as signal strength,
which often decreases with the square of the distance [30], and surveillance costs
can be related to the quality of the sensed information.

We can now define a relay chain between x0 and a single target t1 as
a sequence of positions [x0, x1, . . . , xk, t1], where {x1, . . . , xk} ⊆ U , such that
fcomm(xi, xi+1) for all i ∈ [0 . . . k − 1], and fsurv(xk, t1). The length of a
chain is defined as the number of agents required, including the base sta-
tion: len([x0, x1, . . . , xk, t1]) = k + 1. The cost of a relay chain is defined as∑k−1
i=0 ccomm(xi, xi+1) + csurv(xk, t1).

A relay tree between x0 and the targets {t1, . . . , tm} consists of a set of
relay chains that together form a tree structure. Note that these chains may
share positions, corresponding to one UAV relaying information from several
other UAVs. For each target ti ∈ T there exists a chain in the relay tree which
starts in x0 and ends in ti. Let k be the number of UAVs required to realize
the tree and let the non-target positions in the tree be denoted by [x0, . . . , xk].
Also, let x− denote the unique predecessor of position x. Then, the total cost is∑k
i=1 ccomm(x−i , xi) +

∑m
i=1 csurv(t

−
i , ti).

5.2. Discretization and Network Formulation

Finding relay positions that yield high quality relay trees is difficult since the fea-
sible set in R3 × . . .×R3︸ ︷︷ ︸

k

is disjoint due to obstacles, and the number of subsets

typically is too large. As each subset has at least one local extreme point, the
number of local extrema may be too large. Therefore, methods for continuous op-
timization have practically no chance to find any reasonably good approximation
of the global optimum. The efficiency of our approach leans upon discretizing the
environment and solving a network optimization problem that originates from a
discrete approximation of the continuous problem.



The first step of discretization consists of selecting a finite set of positions U′ ⊆
U that will be considered for UAV placement. Nodes must naturally be sufficiently

dense that communication and surveillance remains possible. Less obvious is that

a high density is required to make good use of the maximum communication

and surveillance range while using as few internal nodes (UAVs) as possible. For

the type of urban and mountainous terrain we are interested in, a regular 3D

grid has proven quite suitable. The grid is placed over the terrain and a graph is

constructed from the unobstructed grid cells. To improve connectivity in certain

situations, the grid can be augmented by nodes placed less regularly, e.g. with a

preference for placing nodes near obstacles or in narrow passages.

After defining U′, we associate each position x ∈ U′ ∪ {x0, t1, . . . , tm} with

a unique node, where n0 denotes the base station node associated with x0. For

convenience, we use the same symbol, T, for the set of nodes {τ1, . . . , τm} associ-

ated with the surveillance targets {t1, . . . , tm} as for the target positions. Let N

be the set of all nodes.

For each x ∈ U′ corresponding to n ∈ N and satisfying fcomm(x0, x), create an

arc e = (n0, n) of cost ccomm(x0, x) representing the possibility of communication

between the base station and position x. For each x, x′ ∈ U′ corresponding to

n, n′ ∈ N and satisfying fcomm(x, x′), create a directed arc e = (n, n′) of cost

ccomm(x, x′) representing the possibility of communication between positions x

and x′.

Finally, for each τi ∈ {τ1, . . . , τm} corresponding to ti and for each x ∈ U′

corresponding to n ∈ N and satisfying fsurv(x, ti), create a directed arc e = (n, τi)

of cost csurv(x, ti) representing the fact that a surveillance UAV at x would be

able to surveil the target at ti. Let A be the set of all arcs.

Then, G = (N,A) is a directed graph corresponding to the original continuous

problem instance. Note in particular that the target nodes have no outgoing arcs

and that all their incoming arcs satisfy fsurv, ensuring that its predecessor in

any path from the base station to the surveillance target must be suitable for a

surveillance UAV. Note also that most parts of this graph only depend on the

environment and not on the position of the base station or the surveillance targets,

and can be precalculated.

The problem of finding a relay tree is clearly a variation of the Steiner tree

problem over G. The root node of the tree will correspond to the base station

and the terminals correspond to the targets. Steiner nodes directly connected to

terminals correspond to surveillance UAVs, while the remaining Steiner nodes

correspond to relay UAVs. As target nodes lack outgoing arcs, they will necessarily

be leaves, and information will only be routed through UAVs. If the number of

UAVs required to realize the tree is limited, the resulting problem is SPH (1),

where H is equal to the maximal number of UAVs plus the number of targets.

The important feature of the considered problem of placing UAVs is that

|T | << |N | and the height of the tree of shortest paths in G is far less than |N |.
This feature ensures the high efficiency of our heuristic SPH algorithms when

solving applied problems of this type.



6. Numerical Experiments

In this section, we report very preliminary results related to the local search
heuristics introduced above. Here we focus on solving problem (11) for successively
improving the Steiner tree approximation s. The new star-search based on (11)
will be compared with the old one that is related to solving problem (10).

The two star-searches were embedded into Algorithm 3, where h̄ = h(si) was
used, and no hop constraint h(s) ≤ H was involved, which corresponds to H =∞.
Algorithm 2 was used by the local searches for the labeling. The initial Steiner
tree s was generated by the shortest path heuristic [26] which was applied using
the non-perturbed arc costs cij . The queue Q was composed of the star nodes
only, because the path-search was not applied. In the initial Q, the star nodes
i ∈ N?(s) were sorted by the value of ν(i) in decreasing order, i.e. from the leaves
of R(s) to the root. Whenever s was improved by the local search, the star nodes
to be included in the Q were placed at the end of the Q, provided that they are
not already in the Q.

When the local search found a better star subtree, not only c(s), but some-
times also h(s) was improved. The considered two versions of Algorithm 3 were
always able to improve the initial Steiner tree in terms of the cost and, in most
cases, the number of hops. When they returned different solutions, the new local
search was more successful, as expected, in the most cases. We present below the
details of the comparison.

Our algorithms were implemented in C++. The numerical results presented
here were produced on a standard PC with a 2.4 GHz CPU and 3GB RAM (only
one core was involved in the computational process). It should be emphasized
that the algorithms can also be executed using the on-board computers of the
UASTech Yamaha RMAX helicopter (Figure 2), which can run the same software
architecture as used during testing [31].

We tested our optimization algorithms on problems related to the 3D place-
ment of UAVs used for multi-target monitoring and surveillance. The test prob-
lems cover four different environments of the same size of 1000 times 1000 meters
and a height of 80 meters. In the first case, it imitates an urban environment
with semirandom placement of 100 tall buildings. The second one is of the same
type, but the buildings are placed more randomly, and it additionally has two
200 meters wide boulevards which cross in the middle of the area. The third en-
vironment is a 3D model of an emergency services training ground in Revinge
in southern Sweden, one of the areas where we perform test flights. Finally, the
fourth environment is a 3D model of a part of Stockholm.

Our uniform discretization, the same for each environment, produced cells
of the size 10× 10× 20 meters. For each environment, 100 combinations of base
station position and target positions were randomly generated. We generated 10
random target positions in the way that they compose 5 clusters, each containing
2 targets with a cluster size of 100 meters.

The reachability functions fcomm(x, x′) and fsurv(x, x
′) follow the free line-

of-sight principle, with a communication and surveillance range of 100 m. The
arc costs were calculated as follows



Table 1. Number of best solutions for the new and old star-searches.

Environment |N | |A| Total New Old

Randomized urban 31 882 9 334 723 36/8 30/7 6/1

Urban with boulevards 31 835 12 202 259 26/10 21/9 5/1

Revinge 37 350 17 001 210 21/8 14/7 7/1

Stockholm 40 020 20 302 025 22/10 17/6 5/4

cij =

{
2500, if 0 ≤ dij ≤ 50,
2500 + (dij − 50)2, if 50 ≤ dij ≤ 100,

where dij is the distance between the corresponding positions. This cost imitates
the signal degradation with the increasing distance.

The results of our numerical experiments are summarized in Table 1, where
|N | and |A| are the number of nodes and arcs in the graph, respectively. The
elements in the other columns are of the form nc/nh. In column ‘Total’, nc and
nh indicate the number of problem instances (out of 100) in which the solutions
produced by the new and old local searches were different in c(s) and h(s), re-
spectively. In column ‘New’, nc and nh indicate the number of instances in which
the new local search produced the best solution in c(s) and h(s), respectively.
Column ‘Old’ is constructed in a similar way, and it refers to the old local search.

Figure 4 gives a more detailed illustration of the performance for the two local
searches. Here we take into account only those cases in which the local searches
returned different values of c(s). The performance profile of a local search is a
step function with each point on its graph presenting the number of problem
instances in which this local search was either the best in terms of c(s), or at
most τ times worse than the best c(s). Thus, the lower of any couple of profiles
corresponds to the less efficient local search. Based on both Table 1 and Figure 4,
we conclude that the new local search is, in general, more efficient than the old
one in producing Steiner trees of a lower cost and fewer number of hops.

It should be emphasized that the implemented algorithms are very fast, even
in the case of the very large network optimization test problems considered in
this section. For example, in the case of the randomized urban environment, the
average CPU time of running the shortest path heuristic, the old and new local
searches was 3, 36 and 42 seconds, respectively. For the Stockholm environment,
it was 7, 74 and 81 seconds, respectively. Note again that these examples involve
up to 40 000 nodes and up to 20 million arcs.

7. Final Remarks

The main result of this paper is the development of heuristic algorithms for solving
the directed hop-constrained Steiner tree problem. Due to their efficiency, our
algorithms fit well in finding suitable 3D locations where UAVs can be placed
to relay information gathered in multi-target monitoring and surveillance. We
reported here the results of effectively solving very large-scale problems related
to the optimal placement of UAVs.
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Figure 4. Performance profiles for the environments Randomized urban (top left), Urban with
boulevards (top right), Revinge (bottom left) and Stockholm (bottom right).

As it was mentioned above, our generic SPH algorithm admits a freedom in
its implementation, in particular, when arranging the queue Q and choosing the
parameter value for h̄ in the local search. The efficiency of each implementation is
problem dependent. We plan to find efficient implementations for our UAV-based
applications.
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