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Abstract

This contribution aims at unifying two recent trends in applied particle �l-
tering (pf). The �rst trend is the major impact in simultaneous localization
and mapping (slam) applications, utilizing the Fastslam algorithm. The
second one is the implications of the marginalized particle �lter (mpf) or
the Rao-Blackwellized particle �lter (rbpf) in positioning and tracking ap-
plications. Using the standard Fastslam algorithm, only low-dimensional
vehicle models are computationally feasible. In this work, an algorithm is
introduced which merges Fastslam and mpf, and the result is an algo-
rithm for slam applications, where state vectors of higher dimensions can
be used. Results using experimental data from a uav (helicopter) are pre-
sented. The algorithm fuses measurements from on-board inertial sensors
(accelerometer and gyro) and vision in order to solve the slam problem,
i.e., enable navigation over a long period of time.

Keywords: Rao-Blackwellized/marginalized particle �lter, sensor fusion,
simultaneous localization and mapping, inertial sensors, UAV, vision.
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E-mail: {rickard, schon, tornqvist, fredrik}@isy.liu.se E-mail: giaco@ida.liu.se
Phone: +46 13-281000 Phone: +46 13-281000

Abstract— This contribution aims at unifying two recent
trends in applied particle filtering (PF). The first trend is
the major impact in simultaneous localization and mapping
(SLAM) applications, utilizing the FastSLAM algorithm. The
second one is the implications of the marginalized particle
filter (MPF) or the Rao-Blackwellized particle filter (RBPF)
in positioning and tracking applications. Using the standard
FastSLAM algorithm, only low-dimensional vehicle models
are computationally feasible. In this work, an algorithm is
introduced which merges FastSLAM and MPF, and the result
is an algorithm for SLAM applications, where state vectors
of higher dimensions can be used. Results using experimen-
tal data from a UAV (helicopter) are presented. The algo-
rithm fuses measurements from on-board inertial sensors (ac-
celerometer and gyro) and vision in order to solve the SLAM
problem, i.e., enable navigation over a long period of time.

Keywords: Rao-Blackwellized/marginalized particle fil-
ter, sensor fusion, simultaneous localization and mapping,
inertial sensors, UAV, vision.

1. INTRODUCTION

The main task in localization/positioning and tracking is to
estimate, for instance, the position and orientation of the ob-
ject under consideration. The particle filter (PF), [1, 2], has
proved to be an enabling technology for many applications of
this kind, in particular when the observations are complicated
nonlinear functions of the position and heading [3]. Further-
more, the Rao-Blackwellized particle filter (RBPF) also de-
noted the marginalized particle filter (MPF), [4–9] enables
estimation of velocity, acceleration, and sensor error models
by utilizing any linear Gaussian sub-structure in the model,
which is fundamental for performance in applications as sur-
veyed in [10]. As described in [9], the RBPF splits the state
vector xt into two parts, one part xp

t which is estimated using
the particle filter and another part xk

t where Kalman filters are
applied. Basically, it uses the following factorization of the
posterior distribution of the state vector, which follows from
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Figure 1. The Yamaha RMAX helicopter used in the exper-
iments. The on-board system is equipped with an IMU sensor
(accelerometer and gyro) and a vision sensor. The on-board
GPS receiver is used for evaluation only.

Bayes’ rule,

p(xp
1:t, x

k
t |y1:t) = p(xk

t |x
p
1:t, y1:t)p(xp

1:t|y1:t), (1)

where y1:t , {y1, . . . , yt} denotes the measurements up to
time t. If the model is conditionally linear Gaussian, i.e., if
the term p(xk

t |x
p
1:t, y1:t) is linear Gaussian, it can be opti-

mally estimated using the Kalman filter, whereas for the sec-
ond factor we have to resort to the PF.

Simultaneous localization and mapping (SLAM) is an exten-
sion of the localization or positioning problem to the case
where the environment is un-modeled and has to be mapped
on-line. An introduction to the SLAM problem is given in
the survey papers [11, 12] and the recent book [13]. From a
sensor point of view, there are two ways of tackling this prob-
lem. The first way is to use only one sensor, such as vision,
see e.g., [14–17] and the second way is to fuse measurements
from several sensors. This work considers the latter. The
FastSLAM algorithm introduced in [18] has proved to be an
enabling technology for such applications. FastSLAM can be
seen as a special case of RBPF/MPF, where the map state mt,
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containing the positions for all landmarks used in the map-
ping, can be interpreted as a linear Gaussian state. The main
difference is that the map vector is a constant parameter with
a dimension increasing over time, rather than a time-varying
state with a dynamic evolution over time. The derivation is
completely analogous to (1), and makes use of the following
factorization

p(x1:t,mt|y1:t) = p(mt|x1:t, y1:t)p(x1:t|y1:t). (2)

The FastSLAM algorithm was originally devised to solve the
SLAM problem for mobile robots, where the dimension of the
state vector is small, typically consisting of three states (2D
position and a heading angle) [13]. This implies that all plat-
form states can be estimated by the PF.

Paralleling the evolution of PF applications to high dimen-
sional state vectors, the aim of this contribution is to build
on our earlier work [19] which unify the ideas presented
in [9, 20]. This is done in order to extend the FastSLAM [18]
algorithm to be able to cope with high dimensional state vec-
tors as well. Basically, the main result follows from

p(xp
1:t,x

k
t ,mt|y1:t)

= p(mt|xk
t , xp

1:t, y1:t)p(xk
t |x

p
1:t, y1:t)p(xp

1:t|y1:t).
(3)

The derived algorithm is applied to experimental data from an
autonomous aerial vehicle using the RMAX helicopter plat-
form (Figure 1). The main navigation sensor unit, consists
of three accelerometers, three gyros, a pressure sensor, and a
camera. GPS is used only for evaluation purposes.

In Section 2 the problem under consideration is formulated in
more detail. The proposed algorithm is given and explained
in Section 3. This algorithm is then applied to an application
example in Section 4. Finally, the conclusions are given in
Section 5.

2. PROBLEM FORMULATION

The aim of this work is to solve the SLAM problem when
the state dimension of the platform (UAV) is too large to be
estimated by the PF. This section provides a more precise
problem formulation and introduces the necessary notation.

The total state vector to be estimated at time t is

xt =
(
(xp

t )T (xk
t )T mT

t

)T
, (4)

where xp
t denotes the states of the platform that are estimated

by the particle filter, and xk
t denotes the states of the platform

that are linear-Gaussian given information about xp
t . These

states together with the map (landmarks) mt are estimated
using Kalman filters. The map states mt consists of the entire
map at time t, i.e.,

mt =
(
mT

1,t . . . mT
Mt,t

)T
, (5)

where mj,t denotes the position of the jth map entry and Mt

denotes the number of entries in the map at time t.

The aim of this work can be formalized as trying to estimate
the following filtering probability density function (PDF),

p(xp
t , x

k
t ,mt|y1:t). (6)

In other words, we are trying to solve the nonlinear filtering
problem, providing an estimate of (6). The key factorization,
which allows us to solve this problem successfully is

p(xp
1:t, x

k
t ,mt|y1:t)

=
Mt∏
j=1

p(mj,t|xp
1:t, x

k
t , y1:t)p(xk

t |x
p
1:t, y1:t)︸ ︷︷ ︸

(extended) Kalman filter

p(xp
1:t|y1:t)︸ ︷︷ ︸

particle filter

(7)

In order to devise an estimator for (6) a system model and
a measurement model are needed. The former describes the
dynamic behavior of the platform, that is how the state xt

evolves over time. The measurement model describes the sen-
sors, i.e., it consists of equations relating the measurements yt

to the state xt. We want a general algorithm, which is appli-
cable to many different platforms (aircraft, helicopters, cars,
etc.). Hence, the model structure should be as general as pos-
sible,

xp
t+1 = fp

t (xp
t ) + Ap

t (x
p
t )x

k
t + Gp

t (x
p
t )w

p
t , (8a)

xk
t+1 = fk

t (xp
t ) + Ak

t (xp
t )x

k
t + Gk

t (xp
t )w

k
t , (8b)

mj,t+1 = mj,t, (8c)

y1,t = h1,t(x
p
t ) + Ct(x

p
t )x

k
t + e1,t, (8d)

y
(j)
2,t = h2,t(x

p
t ) + Hj,t(x

p
t )mj,t + e

(j)
2,t , (8e)

where j = 1, . . . ,Mt and the noise for the platform states is
assumed white and Gaussian distributed with

wt =
(

wp
t

wk
t

)
∼ N (0, Qt), Qt =

(
Qp

t Qpk
t

(Qpk
t )T Qk

t

)
.

(8f)

To simplify the notation in the rest of the paper, denote
fp

t (xp
t ) with fp

t , Ap
t (x

p
t ) withAp

t and so on. The measurement
noise is assumed white and Gaussian distributed according to

e1,t ∼ N (0, R1,t), (8g)

e
(j)
2,t ∼ N (0, Rj

2,t), j = 1, . . . ,Mt. (8h)

Finally, xk
0 is Gaussian,

xk
0 ∼ N (x̄0, P̄0), (8i)

and the density for xp
0 can be arbitrary, but it is assumed

known.

There are two different measurement models, (8d) and (8e),
where the former only measures quantities related to the plat-
form, whereas the latter will also involve the map states. Sec-
tion 4 describes a detailed application example using exper-
imental data, where (8d) is used to model inertial sensors
and (8e) is used to model a camera.

2



3. PARTICLE FILTER FOR SLAM UTILIZING
STRUCTURE

This section is devoted to explaining the proposed SLAM al-
gorithm on a rather detailed level. However, whenever we
make use of standard results we just provide the necessary
references.

Algorithm

The algorithm presented in this paper draws on several rather
well known algorithms. It is based on the RBPF/MPF method,
[4–9]. The FastSLAM algorithm [18] is extended by not only
including the map states, but also the states corresponding to
a linear Gaussian sub-structure present in the model for the
platform. Assuming that the platform is modeled in the form
given in (8), the SLAM-method utilizing structure is given in
Algorithm 1.

Algorithm 1: Particle filter for SLAM utilizing structure

1. Initialize the particles

x
p,(i)
1|0 ∼ p(xp

1|0),

x
k,(i)
1|0 = x̄k

1|0,

P
k,(i)
1|0 = P̄1|0, i = 1, . . . , N,

where N denotes the number of particles.

2. If there are new map related measurements available com-
pute the necessary correspondences to the existing states, oth-
erwise proceed to step 3.

3. Compute the importance weights according to

γ
(i)
t = p(yt|xp,(i)

1:t , y1:t−1), i = 1, . . . , N,

and normalize γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t .

4. Draw N new particles with replacement (resampling) ac-
cording to, for each i = 1, . . . , N

Pr(x(i)
t|t = x

(j)
t|t ) = γ̃

(j)
t , j = 1, . . . , N.

5. If there is a new map related measurement, perform map
estimation and management (detailed below), otherwise pro-
ceed to step 6.

6. Particle filter prediction and Kalman filter (for each parti-
cle i = 1, . . . , N )

(a) Kalman filter measurement update,

p(xk
t |x

p
1:t, y1:t) = N (xk

t |x̂
k,(i)
t|t , P

(i)
t|t ),

where x̂
k,(i)
t|t and P

(i)
t|t are given in (11).

(b) Time update for the nonlinear particles,

x
p,(i)
t+1|t ∼ p(xt+1|xp,(i)

1:t , y1:t).

(c) Kalman filter time update,

p(xk
t+1|x

p
1:t+1, y1:t)

= N (xk
t+1|t|x̂

k,(i)
t+1|t, P

(i)
t+1|t),

where x̂
k,(i)
t+1|t and P

(i)
t+1|t are given by (12).

7. Set t := t + 1 and iterate from step 2.

Note that yt denotes the measurements present at time t. The
following theorem will give all the details for how to com-
pute the Kalman filtering quantities. It is important to stress
that all embellishments available for the particle filter can be
used together with Algorithm 1. To give one example, the
so-called FastSLAM 2.0 makes use of an improved proposal
distribution in step 6b [21].

Theorem 1: Using the model given by (8), the conditional
probability density functions for xk

t and xk
t+1 are given by

p(xk
t |x

p
1:t, y1:t) = N (x̂k

t|t, Pt|t), (10a)

p(xk
t+1|x

p
1:t+1, y1:t) = N (x̂k

t+1|t, Pt+1|t), (10b)

where

x̂k
t|t = x̂k

t|t−1 + Kt(y1,t − h1,t − Ctx̂
k
t|t−1), (11a)

Pt|t = Pt|t−1 −KtS1,tK
T
t , (11b)

S1,t = CtPt|t−1C
T
t + R1,t, (11c)

Kt = Pt|t−1C
T
t S−1

1,t , (11d)

and

x̂k
t+1|t = Āk

t x̂k
t|t + Gk

t (Qkp
t )T (Gp

t Q
p
t )
−1zt

+ fk
t + Lt(zt −Ap

t x̂
k
t|t), (12a)

Pt+1|t = Āk
t Pt|t(Āk

t )T + Gk
t Q̄k

t (Gk
t )T − LtS2,tL

T
t , (12b)

S2,t = Ap
t Pt|t(A

p
t )

T + Gp
t Q

p
t (G

p
t )

T , (12c)

Lt = Āk
t Pt|t(A

p
t )

T S−1
2,t , (12d)

where

zt = xp
t+1 − fp

t , (13a)

Āk
t = Ak

t −Gk
t (Qkp

t )T (Gp
t Q

p
t )
−1Ap

t , (13b)

Q̄k
t = Qk

t − (Qkp
t )T (Qp

t )
−1Qkp

t . (13c)

Proof: The derivation was done in [9] for the case
without map features, but with linear Gaussian dynamics as a
sub-structure. However, the extension by including the linear
Gaussian map sub-structure falls within the same framework.
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Likelihood Computation

In order to compute the importance weights {γ(i)
t }N

i=1 in Al-
gorithm 1, the following likelihoods have to be evaluated

γ
(i)
t = p(yt|xp,(i)

1:t , y1:t−1), i = 1, . . . , N. (14)

The standard way of performing this type of computation
is simply to marginalize the Kalman filter variables xk

t and
{mj,t}Mt

j=1,

p(yt|xp,(i)
1:t , y1:t−1) =

∫
p(yt, x

k
t ,mt|xp,(i)

1:t , y1:t−1)dxk
t dmt,

(15)

where

p(yt, x
k
t ,mt|xp,(i)

1:t , y1:t−1) = p(yt|xk
t ,mt, x

p,(i)
t )×

p(xk
t |x

p,(i)
1:t , y1:t−1)

Mt∏
j=1

p(mj,t|xp,(i)
1:t , y1:t−1).

(16)

Let us consider the case where both y1,t and y2,t are present,
i.e., yt =

(
yT
1,t yT

2,t

)T
. Note that the cases where either y1,t

or y2,t are present are obviously special cases. First of all, the
measurements are conditionally independent given the state,
implying that

p(yt|xk
t ,mt, x

p,(i)
t ) = p(y1,t|xk

t , x
p,(i)
t )

Mt∏
j=1

p(y(j)
2,t |x

p,(i)
t ,mj,t).

(17)

Now, inserting (17) into (16) gives

p(yt, x
k
t ,mt|xp,(i)

1:t , y1:t−1) =

p(y1,t|xk
t , x

p,(i)
t )p(xk

t |x
p,(i)
1:t , y1:t−1)×

Mt∏
j=1

p(mj,t|xp,(i)
1:t , y1:t−1)p(y(j)

2,t |x
p,(i)
t ,mj,t), (18)

which inserted in (15) finally results in

p(yt|xp,(i)
1:t , y1:t−1) =

∫
p(y1,t|xk

t , x
p,(i)
t )p(xk

t |x
p,(i)
1:t , y1:t−1)dxk

t

×
Mt∏
j=1

∫
p(y

(j)
2,t |x

p,(i)
t , mj,t)p(mj,t|x

p,(i)
1:t , y1:t−1)dm1,t · · · dmMt,t.

(19)

All the densities present in (19) are known according to

p(xk
t |x

p
1:t, y1:t−1) = N (xk

t |x̂k
t|t−1, Pt|t−1), (20a)

p(mj,t|xp
1:t, y1:t−1) = N (mt|m̂j,t−1,Σt−1), (20b)

p(y1,t|xk
t , xp

t ) = N (y1,t|h1,t + Ctx
k
t , R1), (20c)

p(y(j)
2,t |x

p
t ,mj,t) = N (y(j)

2,t |h2,t + Hj,tmj,t, R
j
2). (20d)

Here it is important to note that the standard FastSLAM ap-
proximation has been invoked in order to obtain (20d). That

is, the measurement equation often has to be linearized with
respect to the map states mj,t in order to be written as (8e).
The reason for this approximation is that we for computa-
tional reasons want to use a model suitable for the RBPF/MPF,
otherwise the dimension will be much too large for the parti-
cle filter to handle. Using (20), the integrals in (19) can now
be solved, resulting in

p(yt|xp,(i)
1:t , y1:t−1) =

N (y1,t − h1,t − Ctx̂
k,(i)
t|t−1, CtP

(i)
t|t−1C

T
t )

×
Mt∏
j=1

N (y(j)
2,t−h2,t−Hj,tm̂j,t−1,Hj,tΣj,t−1(Hj,t)T +Rj

2).

(21)

Map Estimation and Map Management

A simple map consists of a collection of map point entries
{mj,t}Mt

j=1, each consisting of:

• m̂j,t – estimate of the position (three dimensions).

• Σj,t – covariance for the position estimate.

Note that this is a very simple map parametrization. Each
particle has an entire map estimate associated to it. Step 5
of Algorithm 1 consists of updating these map estimates in
accordance with the new map-related measurements that are
available. First of all, if a measurement has been success-
fully associated to a certain map entry, it is updated using the
standard Kalman filter measurement update according to

mj,t = mj,t−1 + Kj,t

(
y
(j)
2,t − h2,t

)
, (22a)

Σj,t =
(
I −Kj,tH

T
j,t

)
Σj,t−1, (22b)

Kj,t = Σj,t−1H
T
j,t

(
Hj,tΣj,t−1H

T
j,t + R2

)−1
. (22c)

If an existing map entry is not observed, the corresponding
map estimate is simply propagated according to its dynamics,
i.e., it is unchanged

mj,t = mj,t−1, (23a)
Σj,t = Σj,t−1. (23b)

Finally, initialization of new map entries have to be handled.
If h2,t(x

p
t ,mj,t) is bijective with respect to the map mj,t this

can be used to directly initialize the position from the mea-
surement y2,t. However, this is typically not the case, im-
plying that we cannot uniquely initialize the position of the
corresponding map entry. This can be handled in different
ways. In Section 4 the vision sensor and different techniques
are briefly discussed.

4. APPLICATION EXAMPLE

In this section we provide a description of the SLAM applica-
tion, where Algorithm 1 is used to fuse measurements from a
camera, three accelerometers, three gyros and an air-pressure
sensor. The sensors are mounted to the RMAX helicopter.
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The main objective is to find the position and orientation of
the sensor from sensor data only, despite problems such as bi-
ases in the measurements. The vision system can extract and
tracks features that are used in SLAM to reduce the inertial
drift and bias in the IMU sensor.

Model

The basic part of the state vector consists of position pt ∈ R3,
velocity vt ∈ R3, and acceleration at ∈ R3, all described in
an earth-fixed reference frame. Furthermore, the state vector
is extended with bias states for acceleration ba,t ∈ R3, and
angular velocity bω,t ∈ R3 in order to account for sensor im-
perfections. The state vector also contains the angular veloc-
ity ωt and a unit quaternion qt, which is used to parametrize
the orientation.

In order to put the model in the RBPF/MPF framework,
the state vector is split into two parts, one estimated using
Kalman filters xk

t and one estimated using the particle filter
xp

t . Hence, define

xk
t =

(
vT

t aT
t (bω,t)T (ba,t)T ωT

t

)T
, (24a)

xp
t =

(
pT

t qT
t

)T
, (24b)

which means xk
t ∈ R15 and xp

t ∈ R7. In inertial estimation it
is essential to clearly state which coordinate system any entity
is expressed in. Here the notation is simplified by suppressing
the coordinate system for the earth-fixed states, which means
that

pt = pe
t , vt = ve

t , at = ae
t , (25a)

ωt = ωb
t , bω,t = bb

ω,t, ba,t = bb
a,t. (25b)

Likewise, the unit quaternions represent the rotation from the
earth-fixed system to the body (IMU) system, since the IMU is
rigidly attached to the body (strap-down),

qt = qbe
t =

(
qt,0 qt,1 qt,2 qt,3

)T
. (26)

The quaternion estimates are normalized, to make sure that
they still parametrize an orientation. Further details regarding
orientation and coordinate systems are given in Appendix A.

Dynamic Model—The dynamic model describes how the plat-
form and the map evolve over time. These equations are given
below, in the form (8a) – (8d), suitable for direct use in Algo-

rithm 1.


vt+1

at+1

bω,t+1

ba,t+1

ωt+1


︸ ︷︷ ︸

xk
t+1

=


I TI 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


︸ ︷︷ ︸

Ak
t


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+


T 2

2 0 0 0
TI 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


︸ ︷︷ ︸

Gk
t

w1,t

w2,t

w3,t

w4,t


︸ ︷︷ ︸

wk
t

(27a)

(
pt+1

qt+1

)
︸ ︷︷ ︸

xp
t+1

=
(

pt

qt

)
︸ ︷︷ ︸
fp

t (xp
t )

+
(

TI T 2

2 I 03×9

04×3 04×9 −T
2 S̃(qt)

)
︸ ︷︷ ︸

Ap
t (xp

t )


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+
(

T 3

6 w1,t

04×1

)
, (27b)

mj,t+1 = mj,t, j = 1, . . . ,Mt, (27c)

where

S̃(q) =

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 , (28)

and where I denotes the 3 × 3 unit matrix and 0 denotes the
3× 3 zero matrix, unless otherwise stated. The process noise
wk

t is assumed to be independent and Gaussian, with covari-
ance Qk

t = diag(Qa, Qbω
, Qba

, Qω).

Measurement Model – Inertial and Air Pressure Sensors—
The IMU consists of accelerometers measuring accelerations
ya,t in all three dimensions, a gyroscope measuring angular
velocities yω,t in three dimensions and a magnetometer mea-
suring the direction to the magnetic north pole. Due to the
magnetic environment it is just the accelerometers and gyro-
scopes that are used for positioning. There is also a barometer
available yp,t, measuring the altitude via the air pressure. The
measurements from these sensors are anti-alias filtered and
down-sampled to 20 Hz. For further details on inertial sen-
sors, see for instance [22–24]. The measurements are related
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to the states according to,

y1,t =

yp,t

yω,t

ya,t

 =

 p3,t

0
−R(qt)ge


︸ ︷︷ ︸

h(xp
t )

+

 01×15

0 0 I 0 I
0 R(qt) 0 I 0


︸ ︷︷ ︸

C(xp
t )


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+

e1,t

e2,t

e3,t


︸ ︷︷ ︸

et

, (29)

which obviously is in the form required by (8). The mea-
surement noise et is assumed Gaussian with covariance Rt =
diag(Rω, Ra).

Measurement Model – Camera—Before the camera images
are used they are adjusted according to the calibration. This
allows us to model the camera using the pinhole model with
focal length f = 1, according to [25, 26],

y2,t = ymj ,t =
1
zc
t

(
xc

t

yc
t

)
︸ ︷︷ ︸

hc(mj,t,pt,qt)

+ e3,t, (30)

where

mc
j,t =

xc
t

yc
t

zc
t

 = R(qcb
t )R(qbe

t )(mj,t − pt) + rc. (31)

Here, rc is a fixed vector representing the translation between
the camera and the IMU (body) and qcb

t is the unit quaternion
describing the rotation from the IMU to the camera. The co-
variance for the measurement noise is denoted Rc.

This particular sensor is equipped with an internal camera,
which is synchronized in time with the inertial measurements.
This provides a good setup for fusing vision information with
the inertial information. Images are available at 4 Hz in a
resolution of 384× 288 pixels. In order to use vision for fea-
ture extraction and estimation we have made use of standard
camera calibration techniques, see e.g., [27].

The features are not exactly in the form suitable for the RBPF
Hence, we are forced to use an approximation in order to ob-
tain a practical algorithm. The standard approximation [13]
is in this case simply to linearize the camera measurement
equations according to,

ymj,t
= hc(mj,t, pt, qt) + e3,t (32a)

≈ hc
j(m̂j,t|t−1, pt, qt)−Hj,tm̂j,t|t−1︸ ︷︷ ︸

h(xp
t )

+ Hj,tmj,t + e3,t, j = 1, . . . ,Mt, (32b)

where the Jacobian matrix Hj,t is straightforwardly com-
puted using the chain rule, i.e.,

Hj,t =
∂hc

∂mj
=

∂hc

∂mc
j

∂mc
j

∂mj
, (33)

The two partial derivatives in (33) are given by

∂hc

∂mc
j

=

(
1
zc 0 − xc

(zc)2

0 1
zc − yc

(zc)2

)
, (34a)

∂mc
j

∂mj
= R(qcb

t )R(qbe
t ). (34b)

“Computing Vision Measurements”— In order to receive a
camera measurement on the form (30), interest points or fea-
tures has to be identified in the image. This is step 2 in Algo-
rithm 1. In this application example, features are found using
the Harris detector [28], which basically extracts well-defined
corners in an image. These feature points are then searched
for in the next images according to Algorithm 2.

Algorithm 2: Vision Algorithm

1. Initialization. Search the whole image for features with
the Harris detector. Save an 11-by-11 pixel patch around each
corner.

2. Predict positions of features detected in old images. Match
saved patches in small search regions around the predicted
positions. Also, apply a weighted criterion to the matching
procedure so that a match close to the prediction is more
likely.

3. Outlier rejection. If a matched feature is far from the pre-
dicted position compared to other features, the measurement
is discarded.

4. In areas of the image without features, search for new fea-
tures with the Harris detector. Around each detected corner
an 11-by-11 pixel patch is extracted and stored.

5. Initialize the detected features in the map.

The feature detection in Algorithm 2 is done in the 2-D im-
age plane. However, found features have to be initialized into
the filter 3-D map. In this application, the features are known
to be close to the ground and we have a good estimate of
the altitude thanks to the air pressure sensor. The features
are therefore initialized on the estimated ground level and ad-
justment are made by implicit triangulization in the particle
filter. In a more general case, where the depth of the features
are unknown, there are several methods available for intial-
ization. For example, the initialization can be delayed a few
time steps until the feature has been seen from several angles
and its depth can be achieved by triangulization. Another al-
ternative is to use an inverse depth parametrization for some
time as in [29]. Also, using a Kalman filter on information
form could solve the problem of representing no information
(infinte covariance) about the feature depth.
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This algorithm has shown to work reliably on our flight data.
However, improvements can be achieved in both computa-
tional speed and detection reliability. There are more elabo-
rate detectors available, for example the scale-invariant fea-
ture transform (SIFT) [30], the speeded up robust features
(SURF) [31] or the fast corner detector [32,33]. It is also pos-
sible to refine the feature detection process even further by es-
timating the slope of an image plane [14]. From a computer
vision perspective the current environment is rather simple,
hence fast and simple corner detectors can be successfully
applied.

UAV Platform

The algorithm proposed has been tested using flight-test data
collected from an autonomous UAV helicopter developed dur-
ing the WITAS Project [34]. The helicopter is based on a
commercial Yamaha RMAX UAV helicopter (Figure. 1). The
total helicopter length is 3.6 m (including main rotor), it is
powered by a 21 hp two-stroke engine and it has a maximum
take-off weight of 95 kg.

The avionics developed during the WITAS Project is inte-
grated with the RMAX platform and it is based on three com-
puters and a number of sensors. The platform developed is
capable of fully autonomous flight from take-off to landing.

The sensors used for the navigation algorithm described in
this paper consist of an inertial measurement unit (three ac-
celerometers and three gyros) which provides helicopter’s ac-
celeration and angular rate along the three body axes, a baro-
metric altitude sensor and a monocular CCD video camera
mounted on a pan/tilt unit. GPS position information is not
used in the navigation filter described here.

The primary flight computer is a PC104 PentiumIII 700MHz.
It implements the low-level control system which includes
the control modes (take-off, hovering, path following, land-
ing, etc...), sensor data acquisition and the communication
with the helicopter platform. The second computer is also
a PC104 PentiumIII 700MHz, it implements the image pro-
cessing functionalities and controls the camera pan-tilt unit.
The third computer is a PC104 Pentium-M 1.4GHz and im-
plements high-level functionalities like path-planning, task-
planning, etc.

Experiment Setup

The flight data were collected during a flight-test campaign
in a training area in south of Sweden. Sensor data and on-
board video were recorded during an autonomous flight. The
helicopter flew autonomously a pre-planned path using a path
following functionality implemented in the software architec-
ture [35]. The helicopter altitude was 60 m above the ground
and the flight speed 3 m/s. The video camera was looking
downwards and fixed with the helicopter body. The video was
recorded on-board and synchronized with the sensor data.
The synchronization is performed by automatically turning
on a light diode when the sensor data start to be recorded.
The light diode is visible in the camera frame. The video is

Table 1. Available characteristics of the sensor used in the
navigation algorithm.

Sensor Output Rate Resolution Bias
Accelerometers 66 Hz 1 mG 13 mG

Gyros 200 Hz 0.1◦/s < 0.1◦/s
Barometer 40 Hz 0.1 m -

Vision 4 Hz 384x288 pixels -
t=156

Figure 2. The scenario seen from the on-board vision sensor,
together with particle clouds representing the landmarks/map
features.

recorded on tape using an on-board video recorder and the
synchronization with the sensor data is done manually off-
line. This procedure allows for synchronization accuracy of
about 40 ms. The video sequence is recorded at 25 Hz frame
rate. For the experiment described here the video frames were
sampled at 4 Hz. The on-board sensor data are recorded at
different sample rate. Table 1 provides the characteristics of
the sensors used in the experiment.

Experimental Results

In Figure 2 the landmarks/map are depicted using the particle
clouds on an image taken from the vision sensor.

In Figure 3 (a) the Cartesian 2D position is depicted for the
RBPF SLAM method, and compared against a GPS based so-
lution. Since the SLAM method, without closing the loop, is
a dead-reckoning solution it is expected to have some drift.
Here, the drift has been greatly reduced if compared to dead-
reckoning of the inertial sensors alone. In Figure 3 (b) the alti-
tude (relative to the starting height) is depicted for the SLAM
method and compared against the GPS based reference and
measured air pressure.

The estimation of the altitude using only vision and IMU is
problematic, since the vision measurement model will not get
sufficient amount of information in this direction. Hence, in
order to reduce or remove a substantial drift in altitude a pres-
sure sensor is used.
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Figure 3. Position and altitude of the RMAX helicopter.

Another thing to note with the particle filter implementation
of SLAM is the degeneration of the map over time. The re-
sampling causes the map associated with the most probable
features to be copied and the others to be discarded. For
mapped features that have been out of sight for a while the
map will then be the same for all particles after some time.
This is not a problem in our example, but would be in the
case of a loop-closure. The cross correlation between the
mapped features would in such an event correct even out-of-
sight features. This capability would be limited here since the
cross correlation among features lies in the diversity of maps
among the particles. This has been noted in, e.g., [36].

5. CONCLUSION

In this paper a FastSLAM algorithm incorporating a UAV plat-
form with many state variables is presented. Traditionally,
FastSLAM factorizes the problem in such a way that a particle
filter solves the dynamics of the own platform and a Kalman

filter bank handles the landmarks (map). Here, this is ex-
tended to also include linear Gaussian substructure in the state
dynamics.

The UAV application consists of an RMAX helicopter,
equipped with an IMU sensor (accelerometer and gyro), a
pressure sensor, and a vision sensor. An on-board GPS sen-
sor is used for evaluation only. In an experiment the pro-
posed sensor fusion particle filter based SLAM algorithm was
successfully evaluated. Without the SLAM method the poor
IMU performance is not sufficient for navigation, whereas the
SLAM technique reduces the drift introduced by the dead-
reckoning sensor.
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APPENDICES

A. COORDINATE SYSTEMS

The following convention is used to rotate a vector from a
coordinate system A to a coordinate system B,

xB = RBAxA.

where RBA is used to denote the rotation matrix describing the
rotation from A to B. Hence, we can get from system A to C,
via B according to

RCA = RCBRBA.

This can also be expressed using unit quaternions qA,

uB = q̄A � uA � qA,

where uA is the quaternion extension of the vector xA, i.e.,
uA = (0 xT

A )T and � represents quaternion multiplica-
tion. Furthermore, ū denotes the quaternion conjugate. See
e.g., [37,38] for an introduction to unit quaternions and other
rotation parameterizations.

It is straightforward to convert a given quaternion into the
corresponding rotation matrix,

R(q) =
(

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

)
.

The following coordinate systems are used in this paper. An
earth-fixed (denoted with e), body or inertial sensor system
(denoted with b), and camera system (denoted c).
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