Link6ping Electronic Articles in
Computer and Information Science

Vol. 4(1999): nr 8

Fuzzy matching of visual cues in
an unmanned airborne vehicle

Thord Andersson
Silvia Coradeschi

Alessandro Saffiotti

Linkoping University Electronic Press
Linkoping, Sweden

http: /www.ep.liu.se/ea/cis/1999/008/



Published on August 16, 1999 by
Linképing University Electronic Press
581 83 Linkdping, Sweden

Linkoping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

(©1999 Thord Andersson, Silvia Coradeschi, and Alessandro Saffiotti
Typeset by the authors using TeX
Formatted using étendu style

Recommended citation:
<Authors>. <Title>. Linkdping electronic articles
in computer and information science, Vol. 4(1999): nr 8.
http: /www.ep.liu.se/ea/cis/1999/008/. August 16, 1999.

This URL will also contain a link to the authors’ home pages.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
including making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owners.

The publication of the article on the date stated above
included also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linkoping University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: http: /www.ep.liu.se/

or by conventional mail to the address stated above.



Abstract

Computer vision systems used in autonomous mobile vehicles
are typically linked to higher-level deliberation processes. One
important aspect of this link is how to connect, or anchor, the
symbols used at the higher level to the objects in the vision sys-
tem that these symbols refer to. Anchoring is complicated by the
fact that the vision data are inherently affected by uncertainty.
We propose an anchoring technique that uses fuzzy sets to repre-
sent the uncertainty in the perceptual data. We show examples
where this technique allows a deliberative system to reason about
the objects (cars) detected by a vision system embarked in an
unmanned helicopter, in the framework of the WiTAs project.
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1 Introduction

Autonomous mobile vehicles need to use computer vision capabilities
in order to perceive the physical world and to act intelligently in it.
These systems also need the ability to perform high-level, abstract
reasoning in order to operate reliably in a dynamic and uncertain
world without the need for human assistance. For example, a mail
delivery robot faced with a closed door should decide whether it is
better to plan an alternative way to achieve its goal, or to resched-
ule its activities and try again this delivery later on. In general, au-
tonomous vehicles need to incorporate a decision-making system that
uses the perceptual data to guide the activity of the vehicle toward
the achievement of the intended task, and also guides the activity of
the perceptual subsystem according to the priorities of this task.

An important aspect in integrating the decision-making and the
computer vision systems is the connection between the abstract rep-
resentations used by the symbolic decision-making system to denote
a specific physical object, and the data in the computer vision system
that correspond to that object. Following [5], we call anchoring the
process of establishing this connection. We assume that the decision-
making process associates each object to a set of properties that (non-
univocally) describe that object. Anchoring this object then means
to use the vision apparatus to find an object whose observed features
match the properties in this description. For example, suppose that
the symbolic system has an object named ‘car-3’ with the description
‘small red Mercedes on Road-61.” Anchoring this object means to:
(i) find an object in the image that matches this description; and (ii)
update the description of ‘car-3’ by using the observed features, so
that the same object can later be re-identified.

One of the difficulties in the anchoring problem is that the data
provided by the vision system are inherently affected by a large
amount of uncertainty. This may result in errors and ambiguities
when trying to match these data to the high-level description of an
intended object. In order to improve the reliability of the anchoring
process, this uncertainty has to be taken into account in the proper
way. In this work, we propose to use techniques based on fuzzy logic
to define a degree of matching between a perceptual signature and
an object description. The possibility to distinguish between objects
that match a given description at different degrees is pivotal to the
ability to discriminate perceptually similar objects under poor ob-
servation conditions. Moreover, these degrees allow us to consider
several possible anchors, ranked by their degree of matching. Finally,
these degrees can be used to reason about the quality of an anchor in
the decision making process; for example, we can decide to engage in
some active perception in order to get a better view of a candidate
anchor.

In the rest of this paper, we deal with the anchoring problem in
the context of an architecture for unmanned airborne vehicles. This



architecture, outlined in the next section, integrates several subsys-
tems, including a vision system and an autonomous decision making
system. In section 3, we discuss how we represent the inexact data
provided by the vision system with fuzzy sets. In section 4, we show
how we compute the degrees of matching between these data and the
intended descriptions. Section 5 illustrates the use of these degrees
by going through a couple of examples, run in simulation. Finally,
section 6 discusses the results and traces future directions.

2 The WiTAS project

The WITAS project, initiated in January 1997, is devoted to research
on information technology for autonomous systems, and more pre-
cisely to unmanned airborne vehicles (UAVs) used for traffic surveil-
lance.

The general architecture of the system is a standard three-layered
agent architecture consisting of a deliberative, a reactive, and a pro-
cess layer. The deliberative layer generates at run-time probabilistic
high-level predictions of the behaviors of agents in their environment,
and uses these predictions to generate conditional plans. The reac-
tive layer performs situation-driven task execution, including tasks
relating to the plans generated by the deliberative layer. The reac-
tive layer has access to a library of task and behavior descriptions,
which can be executed by the reactive executor. The process layer
contains image processing and flight control, and can be reconfigured
from the reactive layer by means of switching on and off groups of
processes. Besides vision, the sensors and knowledge sources of the
system include: a global positioning system (GPS) that gives the
position of the vehicle, a geographical information system (GIS) cov-
ering the relevant area of operation, and standard sensors for speed,
heading and altitude.

The system is fully implemented in its current version. Because
of the nature of the work, most of the testing is being made using
simulated UAVs in simulated environments, even though real image
data has been used to test the vision module. In a second phase of
the project, however, the testing will be made using real UAVs. More
information about the project can be found at [7].

Of particular interest for this presentation is the interaction be-
tween the reactive layer and the image processing in the process layer.
This is done by means of a specialized component for task specific
sensor control and interpretation, called the The Scene Information
Manager (SIM). This system, illustrated in figure 1, is part of the re-
active layer and it manages sensor resources: it reconfigures the vision
module on the basis of the requests of information coming from the
reactive executor, it anchors symbolic identifiers to image elements
(points, regions), and it handles simple vision failures, in particular
temporary occlusion and errors in car re-identification.
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Figure 1: Overview of the Scene Information Manager and its inter-
action with the Vision module and the Reactive Executor.

Two of the main aspects of anchoring implemented in the SIM are
identification of objects on the basis of a visual signature expressed
in terms of concepts, and re-identification of objects that have been
previously seen, but have then been out of the image or occluded for
a short period.

For identification and re-identification the SIM uses the visual
signature of the object, typically color and geometrical description,
and the expected positions of the object. For instance if the SIM has
the task to look for a red, small Mercedes near a specified crossing,
it provides the vision module with the coordinates of the crossing,
the Hue, Saturation and Value defining “red” and the length, width
and area of a small Mercedes. The measurements done in the vision
module have a degree of inaccuracy, and the SIM also provides the
vision module with the intervals inside which the measurement of
each of the features is acceptable. The size of the interval depends
on how discriminating one wants to be in the selection of the objects
and also, in the case of re-identification of an object, on how accurate
previous measurements on the object were.

The vision module receives the position where to look for an ob-
ject and the visual signature of the object and it is then responsible
for performing the processing required to find the objects in the im-
age whose measures are in the acceptability range and report the
information about the objects to the SIM. The vision module moves
the camera toward the requested position and for each object in the
image and for each requested feature of the object, it calculates an
interval containing the real value. If the generated interval intersects
with the interval of acceptability provided in the visual signature for
the feature, the feature is considered to be in the acceptability range.
The vision module reports information about color, shape, position,
and velocity of each object whose features are all in the acceptability
range to the SIM.

Intersection of intervals is a simple, but not very discriminating
method to identify an object. As a consequence, several objects that
are somehow similar to the intended one can be sent back by the



vision module to the SIM. The SIM then needs to apply some criteria
in order to perform a further selection of the best matching object
between those reported by the vision module. The selection of the
best matching object should depend on how well the objects match
the different aspects of the signature, but also on the accuracy of the
measurements performed by the vision and their reliability. In what
follows, we show how we perform this selection using fuzzy signature
matching.

3 Fuzzy-set representation of visual cues

Cues obtained from the vision system, e.g., color, shape, position
and velocity, are affected by uncertainty and imprecision in several
ways. In this work, we propose to explicitly represent the inexactness
which is inherent to these data, and to take this inexactness into
account when performing signature matching. In order to justify our
representation, we need to analyze the way in which we extract the
needed parameters from the image.

Consider the measurement of the shape parameters (length, width
and area) of an observed car. Roughly, the measurement starts with
a segmented and labeled binary image containing our candidate cars.
This binary image is created by combining and thresholding the fea-
ture images produced by the different feature channels available, e.g.,
orientation, color, IR and velocity (currently, we only use the color
channels). For each object in the labeled image, we then compute
the moment of inertia matrix. From this 2 X 2 matrix, we calculate
the two eigenvalues which correspond to the largest and smallest mo-
ment of inertia, respectively, and convert them into the length and
width of the object under the assumption that our objects (cars) are
rectangular. We also measure the area by counting the pixels that
belong to the same object. The length, width and area measures are
then converted to metric measures through multiplication by a scale
factor describing the meter per pixel ratio. This ratio is computed
from the field-of-view angle and from the position and angles of the
camera.

There are a number of factors that influence the correctness of
the values measured by the above procedure. First, in the segmenta-
tion phase, the discretization of the image limits the precision of the
measure. Second, continuing the segmentation phase, we apply some
binary operations (e.g., “fill” and “close”) on the binary image in or-
der to try to connect and “bind” segmented pixels into objects. This
operation slightly alters the shape, thus limiting the precision. The
above two factors together produce a segmentation error, denoted by
€s. Third, the measurement model may be inaccurate, thus introduc-
ing an error, the model error, denoted by €,,; for example the above
assumption that cars are rectangular is almost never completely true.
Note that the impact of the €; and €y, errors on the quality of the
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Figure 2: Fuzzy sets for the measured length (left) and hue (right).

measurements depends on the size of the car in the image, which in
turn depends on its distance from the camera and on the focal length
of the camera. A fourth factor that affects the measurement is the
perspective distortion due to the angle o between the normal of the
car plane and the optical axis: if the car plane is not perpendicular to
the optical axis, the projection of the 3D-car on the image plane will
be shorter. We denote this perspective error by €,. Finally, all the
geometric parameters needed to compute the length may themselves
be affected by errors and imprecision. For example, the distance from
the camera depends on the relative position of the helicopter and the
car; and the o angle depends on the slope of the road; both these val-
ues may be difficult to evaluate. We summarize the impact of these

factors on our measurement in a geometric error term, denoted by
1

€g-

The above discussion reveals that there is a great amount of un-
certainty that affects the measured value, for example, the length of
an object; and that this uncertainty is very difficult to precisely quan-
tify — in other words, we do not have a model of the uncertainty that
affects our measures. Similar observations can be made for other fea-
tures measured by the vision system: for example, the measurement
of the color of an object is influenced by the spectral characteristics
of the light that illuminates that object. Given this difficult nature of
the uncertainty in the data coming from the vision system, we have
chosen to represent these data using fuzzy sets [8]. Fuzzy sets offer a
convenient way to represent inexact data whose uncertainty cannot
be characterized by a precise, stochastic model — but for which we
have some heuristic knowledge. For example, Fig 2 (left) shows the
fuzzy set that represents a given length measurement. For each value
z, the value of this fuzzy set at z is a number in the [0, 1] interval
that can be read as “the degree by which = can be the actual length
of the object given our measurement.” (See [9] for this possibilistic
reading of a fuzzy set.)

In our work, we use trapezoidal fuzzy sets, both for computational

!There are more sources of errors in this process. For example, when « in-
creases, the car projection may seem longer due to the fact that the sides of the
car will appear. Also, the measured value can be totally invalid if there has been
an error in the segmentation and/or labeling phases; for instance, if the car has
been merged with its shadow, or with another car in front of it. Accounting for
these possibilities is part of our current work.



reasons and for ease of construction. The possibilistic semantics give
us some simple guidelines on how to build a trapezoidal fuzzy set to
represent an inexact measurement. The flat top part of the fuzzy
set (its core) identifies those values x that can be fully regarded as
the actual length value given our measurement. In the example in
Fig 2 (left), these values are spread over an interval rather than con-
centrated in a point because of the segmentation effect: our measure-
ment cannot tell us more than what is allowed by the pixel size. The
base of the fuzzy set (its support) identifies those values z that can
possibly be regarded as the actual length value: given the errors that
may affect our measurement, the actual length may be anywhere in
the support interval — but under no circumstances it can be out-
side this interval. Put differently, the support constitutes a sort of
worst case estimate: however big the error is, the actual value must
lie somewhere in this interval. While the core constitutes a best case
estimate: even when there is no error in our measurement, we cannot
be more precise than this.

Let us now discuss in detail how we have built the fuzzy set in
Fig 2. The vision system has calculated the length to 29.9 pixels,
which correspond to I = 4.23 meters. The segmentation error ¢, is
estimated to a constant +1 pixel, which with a scale factor of s = 0.14
meter/pixel gives us €, = 0.14 meter. This segmentation error is
inherent to our measurement process, no matter how good our models
and computations are, and it thus defines the core of the trapezoid
in the picture, given by the interval [l — es,1 + €5] = [4.09,4.37].

Our estimates for the other errors are all collected in the sup-
port of the trapezoid. The model error €, is estimated in a coarse
but simple way by comparing the measured area a,, with the com-
puted area a, = wl (where w is the calculated width). The difference
between these areas defines ¢, such that a,, will lie in the interval
[(Ww—€m)(l —€em), (W en) (I + €en)]. If, for example, a,, is greater
than a., €, becomes: (As a simplification we have assumed that €,
is the same for both the width and for the length.)

am—(W+en)(l+en) =0 = e, = —(w;l) + \/(wzl)z + (am — ac)

(1)
which in our case gives us €,, = 0.04 m. As for the perspective error
€a, in our case we have o = 40.3°. If we assume that we measure the
projected length as [ cos «, then the worst case error due to a becomes
€ = Imax (1 — cos ), where Ipax is the estimation of the maximum
object length. If we set Iyjax = 6 m we get €, = 1.42m. Since the
support of our fuzzy set must include all the values which are possible
in a worst case error situation, we include all the above errors in it.2
This gives us the interval [l — €5 — €y, [ + €5 + € + €] = [4.05,5.83]
for the base of our trapezoid. Note that €, only affect the upper

’In our current experiments in the simulated environment, we have ¢; = 0
since the helicopter pose, the camera parameters, and the road geometry are all
perfectly known.



bound of the interval, i.e., the car may seem smaller in the image
when « increases. The correct length in our example was 4.42 m.

The construction of the fuzzy sets for the other features follow
similar guidelines. For example, Fig 2 (right) shows the fuzzy set that
represents the observed Hue value. (At the current stage of devel-
opment, however, we have mainly focused on the shape parameters.)
Although the definitions of these fuzzy sets are mostly heuristic, they
have resulted in good performance in our experiments.

4 Fuzzy signature matching

We now focus on the problem of anchoring a high-level description
coming from the symbolic system (reactive executor) to the data
coming from the vision module. As an example, consider the case
in which a task needs to refer to ‘a small red Mercedes.” The SIM
system has to link two types of data: on one side, the description
containing the symbols ‘red,’ ‘small’ and ’Mercedes’ received from the
symbolic system; and on the other side, the measurable parameters of
the observed objects which are sent by the vision system. Anchoring
implies to convert these representations to a common frame, and
to find the car that best matches the description. In our case, we
have chosen to convert symbols to the universe of the measurable
parameters.

In general, symbolic descriptions contain linguistic terms like ‘red’
and ‘small’ that do not denote a unique numerical value. Sticking to
a common practice [8, 3], we have chosen to map each linguistic term
of this kind to a fuzzy set over the relevant frame. For example,
we associate the term ‘red’ with the fuzzy set shown in Fig 3 (left):
for each possible value h, the value of red(h) measures, on a [0, 1]
scale, how much h can be regarded as ‘red.”> As a second example,
Fig 3 (right) shows how we represent the length associated to the lin-
guistic term ‘small-Mercedes’ by a fuzzy set over the space of possible
lengths. In our system, we use a database that associates each car
type to its typical length, size, and area, represented by fuzzy sets.
Cars of unknown types are associated with generic fuzzy sets, like the
‘small’ (car) set in the picture. Once again, we only use trapezoidal
fuzzy sets for computational reasons.

Once we have represented both the desired description and the
observed data by fuzzy sets, we can compute their degree of matching
using fuzzy set operations. This choice is justified in our case since
fuzzy sets can be given a semantic characterization in terms of degrees
of similarity [4]. Consider two fuzzy sets A and B over a common
domain X which respectively represent the observed data and the
target description. The degree of matching of A to B, denoted by
match(A, B), is the degree by which the observed value A can be one

3In practice, we associate this term to three sets for hue, saturation, and value,
respectively.
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Figure 3: Fuzzy sets associated to the symbols ‘small-Mercedes’ and
‘red.’

match(A,B) = 0.4 match(A,B) = 0.8 match(A,B) = 1.0

Figure 4: Three examples of partial matching.

of those that satisfy our criterion B. In the experiments presented in
this note, we use the following measure:

fxeX min{A(z), B(z)} dz

Intuitively, (2) measures the degree by which A is a (fuzzy) subset of
B by looking at how much of A is contained in B. (See, e.g., [2] for
different measures.) The behavior of this measure is graphically illus-
trated in Fig. 4. To ensure an efficient computation, we approximate
(2) by the ratio between the area of the inner trapezoidal envelope of
AN B and the area of B. These areas can be computed very easily
when A and B are trapezoidal fuzzy sets.

Once we have computed a degree of matching for each individ-
ual feature, we need to combine all these degrees together in order
to obtain an overall degree of matching between the intended de-
scription and a given percept. In our case, we need to combine the
degrees of matching of the length, width, area, hue, saturation, and
value criteria into one summarized degree of matching. The simplest
way to combine our degrees is by using a conjunctive type of combi-
nation, where we require that each one of the features matches the
corresponding part in the description. Conjunctive combination is
typically done in fuzzy set theory by T-norm operators [6, 3], whose
most used instances are min, product, and the Lukasiewicz T-norm
maz(z+y—1,0). In our experiments, we have noticed that the latter
operator provides the best results. (See [1] for an overview of the use
of alternative operators with applications to image processing.)

The overall degree of matching is used by the SIM to select the
best anchor among the candidate objects provided by the vision mod-
ule. For each candidate, the SIM first computes its degree of matching
to the intended description; then it ranks these candidates by their

match(4,B) =

(2)



Figure 5: The simulated scenario for our examples.

degree; and finally returns the full ordered list to the reactive execu-
tor. Having a list of candidates is convenient if the currently best
one later turns out not to be the one we wanted. Also, it is useful
to know how much the best matching candidate is better than the
other ones: if the two top candidates have similar degrees of match-
ing, we may decide to engage in further exploratory actions in order
to disambiguate the situation before committing to one of them —
for instance, we may give the vision system the task to zoom on each
candidate in turn in the hope to get more precise data.

5 Fuzzy signature matching at work

We illustrate the use of the fuzzy signature matching by two examples
on a scenario taken from the WITAS project. In this scenario, the
deliberative system is interested in a red car of a specified model in
the vicinity of a given crossing. Four cars are situated around that
crossing, moving in different directions. The cars are all red, but of
different models: a small van, a big Mercedes, a small Mercedes, and
a Lotus. In the first example the helicopter is above the cars. In the
second example discriminating between the cars is made more difficult
by the fact that the helicopter views the crossing at an inclination
of about 30 degrees (see Fig. 5): this results in some perspective
distortions, thus introducing more uncertainty in the extraction of
geometrical features.

In our first example, the deliberative system decides to follow
‘Van-B’, which is described as a red van. The SIM sends the proto-
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typical signature of a red van to the vision module. Since all the four
cars in the image are red, and they have fairly similar shapes, the vi-
sion module returns the observed signatures of all the four cars to the
SIM. These signatures are then matched against the desired signature
by our routines, resulting in the following degrees of matching:

ID | Color Shape | Overall
66 1.0 0.58 0.58
67 1.0 0.38 0.38
68 1.0 1.0 1.0
69 1.0 0.0 0.0

The ID is a label assigned by the vision system to each car found
in the image. The degree of matching for the color is obtained by
combining the individual degrees of Hue, Saturation, and Value; in
our case, this will be 1.0 for all the cars as they are all red. The
degree of matching for the shape is the combination of the individual
degrees of matching of length, width, and area. The overall degree
is the Lukasiewitz combination of the color and shape degrees. In
this case, car 68 is correctly* identified as the best candidate, and an
anchor to that car is thus returned to the deliberation system.

In the second example, the deliberative system is interested in
‘Car-D’; a red small Mercedes. The SIM sends the corresponding
prototypical signature to the vision module, and again gets the sig-
natures of all the four cars in the image as an answer. In this case
however, the helicopter is at a long distance from the crossing and
it views the crossing at an inclination of about 30 degrees. By ap-
plying our fuzzy signature matching routine, we obtain the following
degrees:

ID | Color Shape | Overall
66 1.0 0.65 0.65
67 1.0 0.84 0.84
68 1.0 0.0 0.0
69 1.0 0.97 0.97

Cars 66, 67 and 69 match the desired description to some degree,
while car 68 can safely be excluded. The SIM decides that these de-
grees are too close to allow a safe discrimination, and it tries to im-
prove the quality of the data by asking the vision module to zoom on
each one of cars 66, 67, and 69 in turn. Using the observed signatures
after zooming, the SIM then obtains the new degrees of matching:

ID | Color Shape | Overall
66 1.0 0.30 0.30
67 1.0 0.70 0.70
69 1.0 0.21 0.21

“This verification was done manually off-line by analyzing some additional
information, like the road on which a car is.
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The closer view results in a smaller segmentation error, since the
scale factor is smaller, and hence in more narrow fuzzy sets. As a
consequence, all the degrees of matching have decreased with respect
to the previous observation. What matters here, however, is the rela-
tive magnitude of the degrees obtained from comparable observations,
that is, those which are collected in the above table. These degrees
allow the SIM to select car 67 as the best candidate.

The SIM now also has the option to try to further improve its
choice by commanding the helicopter to fly over car 67 and take
another measurement from above the car — the best observation
conditions for the vision system. If we do this, we finally obtain a
degree of matching of 1.00 for car 67. Note that this degree could as
well have dropped, thus indicating that car 67 was not really the car
that we wanted. In this case, the SIM might have used the partial
match information and go back to cars 66 and 69 to get more accurate
views.

6 Conclusions

Anchoring symbols to the physical objects they are meant to de-
note requires the ability to integrate symbolic and numeric data un-
der uncertainty. In this paper, we have considered an instance of
the anchoring problem in which we link the car identifiers used at
the decision-making level to the perceptual data provided by a vi-
sion system. Our experimental results indicate that our technique is
adequate to handle the ambiguities that arise when integrating un-
certain perceptual data and symbolic representations. In particular,
fuzzy signature matching improves our ability to discriminate among
perceptually similar objects in difficult situations (e.g., perspective
distortion). Moreover, degrees of matching allow us to exclude un-
likely candidates, and to rank the likely ones by their similarity to
the intended description. Finally, these degrees can help in deci-
sion making; for example, if these degrees indicate a large amount
of anchoring ambiguity, the system may decide to engage in active
information gathering such as zooming or getting closer to the object
in order to obtain better information.

The work reported in this paper is still in progress, and many
aspects need to be further developed. First, the treatment of per-
spective distortions presented here is rather primitive; in our next
experiments, we shall use different models of each car viewed from
different observation angles. Second, we need to account for still more
sources of errors, including the possibility that the detected object is
not a car. Third, we need to study more sophisticated forms of aggre-
gation of the individual degrees of matching of different features into
an overall degree. For example, in some situations some of the fea-
tures are more critical than others, and we would like their degree of
matching to have a stronger impact on the overall degree. Fourth, we
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plan to include features of a different nature in the matching process,
like the observed position and velocity of the cars. Finally, until now
we have only performed experiments in simulation. At the current
stage of development of the WITAS project, the vision system takes
the video frames produced by a 3D simulator as input. Although
this configuration results in some amount of noise and uncertainty
in the extracted features, we are aware that a real validation of our
technique will only be possible when we have access to the real data
from an embarked camera.
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