Computing Circumscription Revisited: A Reduction
Algorithm
Patrick Doherty and Witold. Lukaszewicz and Andrzej Szalas

Abstract

In recent years, a great deal of attention has been devoted to logics of ”commonsense”
reasoning. Among the candidates proposed, circumscription has been perceived as an ele-
gant mathematical technique for modeling nonmonotonic reasoning, but difficult to apply in
practice. The major reason for this is the 2nd-order nature of circumscription axioms and
the difficulty in finding proper substitutions of predicate expressions for predicate variables.
One solution to this problem is to compile, where possible, 2nd-order formulas into equivalent
1st-order formulas. Although some progress has been made using this approach, the results
are not as strong as one might desire and they are isolated in nature. In this article, we pro-
vide a general method which can be used in an algorithmic manner to reduce circumscription
axioms to 1st-order formulas. The algorithm takes as input an arbitrary 2nd-order formula
and either returns as output an equivalent lst-order formula, or terminates with failure. The
class of 2nd-order formulas, and analogously the class of circumscriptive theories which can
be reduced, provably subsumes those covered by existing results. We demonstrate the gener-
ality of the algorithm using circumscriptive theories with mixed quantifiers (some involving
Skolemization), variable constants, non-separated formulas, and formulas with n-ary predi-
cate variables. In addition, we analyze the strength of the algorithm and compare it with
existing approaches providing formal subsumption results.

The first author has been supported in part by the Swedish Council for the Engineering
Sciences and ESPRIT Basic Research Action No. 6156 - DRUMS II. The second and
third authors have been supported in part by ESPRIT Basic Research Action No. 6156
- DRUMS II and KBN grant 3 P406 019 06.

IDA Technical Report 1994 Department of Computer
LiTH-IDA-94-42 and Information Science,
ISSN-0281-4250 Linkoping University,

S-581 83 Linkoping, Sweden

Computing Circumscription Revisited: A Reduction
Algorithm

Patrick Doherty? Witold Lukaszewiczfand Andrzej Szalas*

Abstract

In recent years, a great deal of attention has been devoted to logics of ”commonsense”
reasoning. Among the candidates proposed, circumscription has been perceived as an ele-
gant mathematical technique for modeling nonmonotonic reasoning, but difficult to apply in
practice. The major reason for this is the 2nd-order nature of circumscription axioms and
the difficulty in finding proper substitutions of predicate expressions for predicate variables.
One solution to this problem is to compile, where possible, 2nd-order formulas into equivalent
1st-order formulas. Although some progress has been made using this approach, the results
are not as strong as one might desire and they are isolated in nature. In this article, we pro-
vide a general method which can be used in an algorithmic manner to reduce circumscription
axioms to 1st-order formulas. The algorithm takes as input an arbitrary 2nd-order formula
and either returns as output an equivalent lst-order formula, or terminates with failure. The
class of 2nd-order formulas, and analogously the class of circumscriptive theories which can
be reduced, provably subsumes those covered by existing results. We demonstrate the gener-
ality of the algorithm using circumscriptive theories with mixed quantifiers (some involving
Skolemization), variable constants, non-separated formulas, and formulas with n-ary predi-
cate variables. In addition, we analyze the strength of the algorithm and compare it with
existing approaches providing formal subsumption results.

1 Introduction and Preliminaries

In recent years, a great deal of attention has been devoted to logical formalisms for ”commonsense”
reasoning. Among the candidates proposed, three in particular have been studied exhaustively
in terms of formal properties and applicability to a variety of domains such as default reasoning,
inheritance reasoning, and reasoning about action and change. The three candidates are

e Default Logic [14],
e Autoepistemic Logic [8]),
e Circumscription [11].

The popularity of each of these formalisms has varied through the years as both positive and
negative results concerning their respective expressibility and applicability to various domains
have been investigated. One problem that has plagued the general acceptance of each of these
formalisms as tools for knowledge representation is the difficulty in finding efficient methods for
computing inferences. This difficulty is understandable due to the fact that the inference relations
in question are generally nonmonotonic in nature. For instance, the popularity of circumscription
has declined recently, due to the perceived difficulty in finding proper substitutions for the second-
order circumscription axioms normally used when circumscribing predicates. Consequently, a still

*supported in part by Swedish Research Council for Engineering Sciences (TFR) grant 93-270 and ESPRIT
Basic Research Action No. 6156 - DRUMS II.

tsupported in part by KBN grant 3 P406 019 06 and ESPRIT B.R.A. No. 6156 - DRUMS II.

tsupported in part by KBN grant 3 P406 019 06 and ESPRIT B.R.A. No. 6156 - DRUMS I1.

open and important research issue is to find more efficient methods for computing inferences for
each of the formalisms.

In this article, we will concern ourselves with the search for efficient methods for computing
inferences of circumscriptive theories. Circumscription distinguishes itself from default and au-
toepistemic logic in that the nonmonotonicity is implicit in the use of circumscription rather than
an explicit property of the inference relation. This is achieved in general by appealing to the
use of a second-order formula which 1s added to a first-order theory. The purpose of the second
order formula is to constrain the models of the theory to those that minimize the extension of a
predicate or predicates in some respect.

Circumscription has previously been perceived as an elegant mathematical technique for mod-
eling nonmonotonic reasoning, but difficult to apply in practice. One commonly accepted heuristic
for using circumscription is to predict what it is one would want to conclude from the circumscribed
theory and then find the proper substitution of predicate expressions in the second-order circum-
scription axiom that together with the theory would entail the desired conclusion. This heuristic,
although reasonable for toy examples is clearly inadequate as a means of using circumscription in
practice.

In the literature, there are a number of approaches proposed for computing circumscription
that attempt to deal with this inadequacy . These approaches can be classified into three broad
groups:

1. Compiling circumscriptive theories into logic programs. A representative example of this
approach is Gelfond [5].

2. Developing specialized algorithms to compute preferential entailment. Some representative
examples of this approach are a proposal for a theorem prover for circumscription by Gins-
berg [6], and the MILO method proposed by Przymusinski [15].

3. Compiling the second-order circumscription axiom into an equivalent first-order formula and
then applying classical theorem-proving techniques to the resulting first-order theory.

Although each of the approaches has its advantages and disadvantages, the third is particularly
advantageous because the large body of results related to classical theorem-proving techniques are
directly applicable. Although some progress has been made using the third approach, the results
are somewhat isolated in nature. In addition, a general method which can be used uniformly in
an algorithmic manner to make the reductions, is lacking.

In this article, we will describe such a method in terms of an algorithm, which takes a second-
order formula as input and returns an equivalent first-order formula as output, or stops returning
failure as output. The class of second-order formulas which can be reduced subsumes those covered
by existing results. Of course, the fact that the algorithm may stop without returning a first-order
formula does not mean that there is not a first-order formula equivalent to the input. It simply
implies that their isn’t any or, the algorithm can not find one if there 1s. The algorithm is sound in
the sense that each step preserves logical equivalence. We will apply the algorithm to the domain of
circumscriptive theories and show that by fine-tuning the algorithm, an efficient reduction method
for circumscriptive theories is within reach.

1.1 Outline of the Paper

In Sections 1.2, 1.3 and 1.4 the notation used throughout the paper is introduced in addition
to a number of preliminary definitions and useful tautologies. In Section 2, existing results on
reducing second-order circumscription are reviewed. In Section 3, the major components of the
elimination algorithm are described. An in-depth presentation of the algorithm may be found
in Appendix A. In Section 4, the strengths and weaknesses of the algorithm are discussed and
subsumption results over existing reduction techniques are proven. In Section 5, complexity issues
are considered. In Section 6, the algorithm is applied in an informal manner to a number of
examples each characterized by a specific feature that illuminates certain aspects of the algorithm
and its generality. In Section 7, we conclude with a discussion and future work.

1.2 Notation

An n-ary predicate expression is any expression of the form AZ. A(Z), where T is a tuple of n
individual variables and A(%) is any formula of first- or second-order classical logic. If U is an
n-ary predicate expression of the form AZ. A(Z) and @ is a tuple of n terms, then U(@) stands
for A(@). As usual, a predicate constant P is identified with the predicate expression AZ. P(7).
Similarly, a predicate variable ® is identified with the predicate expression AZ. ®(7).

Truth values true and false are denoted by T and L, respectively.

If U and V are predicate expressions of the same arity, then U < V stands for VZ. U(Z) D V(Z).
IfU = (Uy,...,Us) and V = (Vi,...,V,) are similar tuples of predicate expressions, i.e. U; and
Vi are of the same arity, 1 < i < n, then U < V is an abbreviation for A_,[U; < V;]. We write
U=Vior (U<SV)AV LU),and U <V for (U <V)A=(V <T).

If Aisa formula, ¢ = (01,...,0,) and § = (J1,...,d,) are tuples of any expressions, then
Ale — 5) stands for the formula obtained from A by simultaneously replacing each occurrence
of o; by & (1 < ¢ < n). For any tuple & = (#1,...2,) of individual variables and any tuple
i = (t1,...t,) of terms, we write £ = ¢ to denote the formula 1 = t;A---Ax, = t,. We write
T # 1t as an abbreviation for —~(z = t).

1.3 Definitions

Definition 1.1 (Second-Order Circumscription) Let P be a tuple of distinct predicate con-
stants, S be a tuple of distinct function and/or predicate constants disjoint from P, and let
T(P,S) be asentence. The second-order circumscription of P in T(P, S) with variable S, written
Circso(T; P; S), is the sentence

T(P,5) AVS G.m [T(F, T) AT < P (1)

where ® and U are tuples of variables similar to P and S, respectively. B

Observe that (1) can be rewritten as
T(P,S) AY® W.[T(®, W) A[® < P]] D[P <P

From the point of view of the elimination of second-order quantification it is often sufficient to
consider only the second-order part of the above formula, i.e.

YO U .[T(®,) A[® < P]] D[P <P

Definition 1.2 A predicate variable ® occurs positively (resp. negatively) in a formula A if the
conjunctive normal form of A contains a subformula of the form ®(¢) (resp. =®(¢)). A formula
A is said to be positive (resp. negative) w.r.t. & iff all occurrences of ® in A are positive (resp.

negative). M

Definition 1.3 A first-order sentence T is said to be existential (universal) iff it is of the form
3z. T1 (or VZ. Ty, respectively), where T} is quantifier free. B

Definition 1.4 A formula 7' is said to be monadic iff it contains one-place predicate constants
only, and no function constants except 0-place function constants. B

Definition 1.5 Let ¢ be either a predicate constant or a predicate variable and ¢ be a tuple of
predicate constants or a tuple of predicate variables. Then

o a formula T'(¢) is said to be separated w.r.t. ¢ iff it is of the form T1(¢)ATa(¢) where T1(¢)
is positive w.r.t. ¢ and 75 is negative w.r.t. ¢, and

e asentence T is said to be separable w.r.t. ¢ iff T is equivalent to a formula of the form
\/ [Bi(@) A (T; < 9)] (2)
i=1

where B; (5) 1s a formula containing no positive occurrences of predicate constants (variables)
from ¢ and each U; is an n-tuple of predicate expressions not containing predicate constants
(variables) of ¢.1

1.4 Useful Tautologies

Let us now list some useful tautologies that are used throughout the paper.

Proposition 1.1 The following pairs of formulas are equivalent. (Here @ stands for any quantifier
and A, B, C are formulas such that ' does not contain free occurrences of the variable z. In
clauses (15), (16) and (18), ¢,%1,...,%, are n-tuples of terms and it is assumed that neither C' nor

any term from ¢,1q,...,1, contains variables from z. In clause (17), f is a function variable which
does not occur in A.)
(1) —--A and A
(2) —(AAB) and —AV-B
(3) —(AVB) and —AA-B
(4) —VaeA(x) and Jr—A(x)
(5) —JxA(x) and Ve—A(x)
(6) Fx(A(x)vB(z)) and JrA(x)vIzB(x)
(7) Va(A(x)AB(z)) and VaeA(x)AVeB(x)
() QuAENAC and Qu(A(z)AC)
©) Cra:A) md GrlChE)
(10) Qe(A@NC and Qu(A(x)vC)
(11) CvQz(A(z)) and Qu(CVA(z))
(12) QzQyA and QyQrA
(13) AA(BVC) and (AAB)V(AAC)
(14) (AVvB)AC and (AAC)V(BAC)
(15) A(%) and Vr(A(t — z)Vz # f)
(16) A(t1)V---VA(t,) and Fz(z =46V - Vi =1,) At — z))
(17) Va:EIyA() and ElfVi‘A(i‘, Y — f(i‘),)
(18) A(t1)A /\A(n) and VZ(Z £ A AT Z£)VAEL — 7). A

The equivalence (15) was found particularly useful by Ackermann (see [1],[2]). We extend the
method by adding the equivalence (16). It makes the technique work in the case of clauses contain-
ing more than one positive (or negative) occurrence of the eliminated predicate. This essentially
generalizes the Ackermann technique. The equivalence (17) is a second-order formulation of the
Skolem reduction (see [20]). Tt allows us to perform Skolemization (i.e. elimination of existen-
tial quantifiers) and unskolemization (i.e. elimination of Skolem functions) in such a way that
equivalence is preserved. We call this equivalence second-order Skolemization.

2 Known Results about Reducing Second-Order Circum-
scription

A collection of current results concerning the reduction of second-order circumscription axioms to
the first-order case may be found in the handbook article on circumscription by Lifschitz [11], in
addition to references to reduction results of other authors not covered in the handbook. In this
section, we provide the relevant results from the handbook, in addition to results by other authors
pertaining to reduction results for circumscription and second-order logic. The original notations
are slightly adjusted to agree with the notation used in this paper.

2.1 Lifschitz’ Results

In Lifschitz [9] we are presented with the following result concerning the reduction of second-order
circumscription into first-order logic.

Theorem 2.1 If T(P) is a formula of the form in Equation (2) of Definition 1.5, then Cireso (T P; ()
1s equivalent to

Theorem 2.1 is inapplicable in cases where constants, different than those being circumscribed,
are allowed to vary. This limitation can often be avoided by applying the following result (Lifschitz

[9]).
Theorem 2.2 Circso(T(P,S); P;S) is equivalent to T(P,S) A Circso(3®. T(P,®); P;()). m

Although Theorem 2.2 allows us to transform any second-order circumscription into a circum-
scription without variable constants, the transformation introduces new second-order variables.
These can often be eliminated as follows (Lifschitz [9]).

Theorem 2.3 If T(®) is equivalent to (2) of Definition 1.5, then 3®. T(®) is equivalent to
Vit Bi(U;). m

A different result concerning the reduction of second-order circumscription into first-order logic
is presented in Lifschitz [10]. The details are these.

Theorem 2.4 If all occurrences of P = (P, ..., P,) are positive, then Cireso(T; P;()) is equiv-
alent to
AIT(P) AVE. [P@) ATOT. (P(F) AT £ D))

i=1

In [11] Lifschitz also formulated the following theorem.

Theorem 2.5 If T(P) is a first-order sentence separated w.r.t. P then Circso(T(P); P;()) is
equivalent to a first-order sentence. B

2.2 Rabinov’s Result

Rabinov [16] provides the following result which subsumes the earlier results of Lifschitz (excluding
Theorem 2.5).

If U and V are predicate expressions, then U NV stands for AZ. (U(Z) AV (Z)).

Let D;(P) denote N;(P) A M;(P) such that the predicate constant P is positive in M; and
negative in N;. D;(P) is said to be p-simple if M;(P) has the form U; < P, where U; is a predicate
expression not containing P. D;(P) is said to be n-simple if N;(P) has the form P < U;, where
U; is a predicate expression not containing P.

Theorem 2.6 If T(P) is of the form

No(P) A\ Di(P)

where each D;(P) is either p-simple or n-simple and P is negative in Ny(P), then Circgo(T; P;())
1s equivalent to

T(P) A N\ Ri(P)

where R;(P) stands for =M;(PNQ;)VCireso(M;(P); P; () if D;(P) is n-simple, and for = N;(U;)V
—(U; < P) otherwise. R

2.3 Kolaitis & Papadimitriou’s result
In Kolaitis & Papadimitriou [7] the following result was presented.

Theorem 2.7 If T is a first-order existential sentence, then Circso(T; P;()) is equivalent to a
first-order sentence. W

2.4 Second-Order Monadic Logic

The following result is due to Lowenheim (see [13]).

Theorem 2.8 If T is a monadic second-order sentence, then 7' is equivalent to a first-order
sentence 77. W

2.5 The SCAN Algorithm
The SCAN algorithm was introduced by D. Gabbay and H. J. Ohlbach in [4]. Tt is formulated as

follows:

Definition 2.1 Given a second-order formula 3®;...®, A, where A is a classical first-order for-
mula perform the following steps:

1. Transform A into clause form using the equivalences given in Proposition (1.1). Ignore the
prefix with existential first- and second-order quantifiers.

2. Generate all C-resolvents and C-factors with the predicate variables @, ..., ®,, according
to the following rules:

(a) ®(s1,...,8,)VC, =®(t1,...,t0)VD F CVDVsy #HV... Vs, £ 1y
(b) ®(s1,...,80)VP(t1,...,tn)VC F B(s1,...,80)VCVsy £ 1V ... Vsy # ty.

No self-resolution is allowed. All equivalence preserving simplifications may be applied freely.

3. If the previous step terminates try to unskolemize the resulting formula. If this is successful,
the obtained formula is a first-order formula equivalent to the input second-order one.R

Observe that SCAN eliminates the second-order quantification for a large class of formulas and
can be applied in computing circumscription. On the other hand, the SCAN algorithm may not
terminate and the sets of C-resolvents and C-factors may be large.

In what follows we shall not compare SCAN with our algorithm since no syntactic character-
ization of formulas accepted by SCAN is known. Observe that some examples where SCAN was
better than the algorithm given in [18] were known. On the other hand, in the present paper
we strengthen the algorithm of [18] by adding the equivalence (16) of Proposition 1.1. After this
modification we conjecture that both approaches are successful for the same class of formulas.

However, the additional advantage of our algorithm is that it always terminates, while SCAN may
loop. For example, the formula

VO[(Va®(2) DTyP(y)AQ(2)) DV (x)]

when given as input to our algorithm does terminate, while for SCAN it does not.

3 The Elimination Algorithm

In this section we briefly discuss the elimination algorithm. Its complete formulation can be
found in the Appendix. The algorithm was originally formulated, in a weaker form, in [18] in the
context of modal logics. It is based on Ackermann’s techniques developed in connection with the
elimination problem (see [1]).

The elimination algorithm is based on the following lemma, proved by Ackermann in 1934 (see
[1]). The proof can also be found in [18].

Lemma 3.1 (Ackermann Lemma) Let & be a predicate variable and A(z), B(®) be formu-
las without second-order quantification. Let B(®) be positive w.r.t. @ and let A contain no
occurrences of @ at all. Then the following equivalences hold:

IoVz[P(Z)VA(Z, 2)]AB(® — ~P) = B(® — A(z,?)) (3)
AOVz[-®(z)VA(z, 2)]AB(®) = B(® — A(z,2)) (4)

where in the righthand formulas the arguments z of A are each time substituted by the respective
actual arguments of ® (renaming the bound variables whenever necessary). B

The following proposition together with the equivalences given in Proposition (1.1) is also used
in the algorithm.

Proposition 3.1 Let A be a formula of the form pref(A1A---AA,), where pref is a prefix of
first-order quantifiers and A,, ..., A, are disjunctions of literals. In addition, let ® be a predicate
variable occuring in A and Conj(A) those conjuncts in A where ® occurs. Assume that for any
conjunct in Conj(A), ® occurs either positively, or both positively and negatively (or analogously,
negatively, or both negatively and positively). Then

APA = pref(Ai, A AA;L) (5)

where iy, ...,i, € {1,...,q} and A;, ..., A; are all the conjuncts that do not contain occurrences
of @ (the empty conjunction is regarded to be equivalent to T).

Proof See [18]. W

3.1 Outline of the Elimination Algorithm

We are now ready to outline the elimination algorithm. The algorithm takes a formula of the form
J®. A, where A is a first-order formula, as an input and returns its first-order equivalent or reports
failure'. Of course, the algorithm can also be used for formulas of the form V®A, since the latter
formula i1s equivalent to =3®—A. Thus, by repeating the algorithm one can deal with formulas
containing many arbitrary second-order quantifiers.

The elimination algorithm consists of four phases: (1) preprocessing; (2) preparation for the
Ackermann lemma; (3) application of the Ackermann lemma; and (4) simplification. These phases
are described below. Tt is always assumed that (1) whenever the goal specific for a current phase
is reached, then the remaining steps of the phase are skipped, (2) every time the equivalence (5)
of Proposition 3.1 is applicable; it should be applied.

IThe failure of the algorithm does not mean that the second-order formula at hand cannot be reduced to its
first-order equivalent. The problem we are dealing with is not even partially decidable, for first-order definability
of the formulas we consider is not an arithmetical notion (see, for instance, [21]).

(1) Preprocessing. The purpose of this phase is to transform the formula 3®.4 into a form
that separates positive and negative occurrences of the quantified predicate variable ®. The
form we want to obtain is?

AZ3P[(A1(®)AB1(®))V - - - V(An (P)AB,L(D))], (6)

where, for each 1 < i < n, A;(®) is positive w.r.t. ® and B;(®) is negative w.r.t. ®.3 The
steps of this phase are the following. (i) Eliminate the connectives D and = using the usual
definitions. Remove redundant quantifiers. Rename individual variables until all quantified
variables are different and no variable is both bound and free. Using the usual equivalences,
move the negation connective to the right until all its occurrences immediately precede
atomic formulas. (ii) Move universal quantifiers to the right and existential quantifiers to
the left, applying as long as possible the equivalences (8) — (11) from Proposition 1.1. (iii)
In the matrix of the formula obtained so far, distribute all top-level conjunctions over the
disjunctions that occur among their conjuncts, applying the equivalences (13) — (14) from
Proposition 1.1. (iv) If the resulting formula is not in the form (6), then report the failure
of the algorithm. Otherwise replace (6) by its equivalent given by

37(AD(A1 (B)ABL ()Y - - VI (A, (B)AB, (B))). (7)

Try to find Equation (7)’s first-order equivalent by applying the next phases in the algo-
rithm to each disjunct in (7) separately. If the first-order equivalents of each disjunct are
successfully obtained then return their disjunction, preceded by the prefix 3%, as the output
of the algorithm.

(2) Preparation for the Ackermann lemma. The goal of this phase is to transform a
formula of the form 3®(A(P)AB(P)), where A(P) (resp. B(P)) is positive (resp. negative)
w.r.t. @, into one of the forms (3) or (4) given in Lemma 3.1. Both forms can always be
obtained and both transformations should be performed because none, one or both forms
may require Skolemization. Unskolemization, which occurs in the next phase, could fail in
one form, but not the other. In addition, one form may be substantially smaller than the
other. The steps of this phase are based on equivalences (13) — (17) from Proposition 1.1.

(3) Application of the Ackermann Lemma. The goal of this phase is to eliminate the
second-order quantification over ®, by applying the Ackermann lemma, and then to un-
skolemize the function variables possibly introduced. This latter step employs the equiva-
lence (17) from Proposition 1.1.

(4) Simplification. Generally, application of Ackermann’s Lemma in step (3) often involves
the use of equivalence (15) in Proposition 1.1 in the left to right direction. If so, the same
equivalence, or its generalization (18), may often be used after application of the Lemma in
the right to left direction, substantially shortening the resulting formula.
3.2 Discussion of the Algorithm
Assume we have a second-order formula A of the form

3% [(prefB)A(pref C)], (8)
where,

e pref and pref’ are sequences of first-order quantifiers,

e B and C are quantifier-free formulas in conjunctive normal forms,

21t should be emphasized that not every formula is reducible into this form.
3To increase the strength of the algorithm, it is essential to move as many existentially quantified variables as
possible into the prefix of (6).

e B is positive w.r.t. ®, and

e (' is negative w.r.t. ®.

Then, the following proposition holds.

Proposition 3.2 Let A be an input formula of the form (8). Then, as a result, the algorithm
returns a first-order formula provided that unskolemization (if necessary) succeeds. B

Observe that Skolem functions are introduced in the second step of the algorithm whenever
existential quantifiers are to be eliminated. These can appear in the input formula or may be
introduced via application of the equivalence (16) of Proposition 1.1.

In the following proposition, we formulate conditions under which no Skolem functions are
introduced and the algorithm terminates successfully.

Proposition 3.3 If one of the following conditions holds
e B is universal and each conjunct of B contains at most one occurrence of @, or
e (' is universal and each conjunct of C' contains at most one occurrence of =@,
then the algorithm always returns a first-order formula as output. B

If the input formula cannot be transformed into the form (8) then the algorithm fails.

4 On the Strength of the Algorithm

Let us first prove that the algorithm subsumes, and is even stronger than the results given in
[7, 9, 10, 16]. Recall that the formulation of those results is quoted in Section 2.

Let us start with Rabinov’s result (and thus the subsumed results of Lifschitz). In fact, the
following theorem is stronger than the result of Rabinov.

Theorem 4.1 If T(P) is of the form

No(P) A\ Di(P)

where each D;(P) is either p-simple or contains no positive occurrences of P* and No(P) is negative
w.r.t. P, then the algorithm eliminates the second-order quantifiers from Ciregso (T P; ().

Proof
The negated second-order part of Clireso(T; P; () takes the following form,

30 No(@) A \/ Di(@)A[® < PIA-[P < @],

The following steps show the respective reduction

38 No(®) AV, Di(®)A[® < PIA-[P < @]
38\, (No(®) A D; (®)A[® < PIA-[P < @)

\/; 3. No(®) A D; (D)A[® < P]A-[P < ®]

\,; 30 No(®) A Di(®)AVE.(~B(2)VP(2))ATZ.(P(2)A-D(2))
\/; 3230 No(®) A Di(®)AVE.(=D(2)VP () A=B(2)AP(Z)
\/; 32.3%.D; (®) AN (B) AV (=B(2)V P (2)) A=B(2) AP (Z).

Observe that all occurrences of ® in No(®)AVZ.(~®(2)VP(Z))A-P(Z)AP(Z) are negative. More-
over, D); either contains no positive occurrences of ® or is p-simple. In the first case, there are

no positive occurrences of ® at all and it suffices to apply equivalence (5) of Proposition 3.1. In
the second case, where D; is p-simple, it takes the form U; < @, i.e. V2.®(2)V-U;(Z) and the
Ackermann lemma can be applied directly. H

4Rabinov requires n-simplicity here

The following theorem shows that the algorithm eliminates second-order quantification in the
case of existential theories considered in [7].

Theorem 4.2 If T is a first-order existential sentence, then the algorithm eliminates second-order
quantification from Cireso(T; P; ().

Proof
The negated second-order part of Clireso(T; P; () takes the following form,

30.7()A[® < P]A-[P < ®].

By assumption 7'(®) is of the form 32.7"(Z), where T"(Z) is quantifier free.
The following steps show the respective reduction

3. 7(®)A[® < P]A-[P < @]

3®.32.71(P)A[® < PIA-[P < @]

323871 @)AYy (=P (y)VP(y))ATZ.(P(Z)A—=D(Z))
32238 T1(®)AYY(—~P(y)VP(Y)) AP (Z)A—=B(Z).

Next we transform the above formula into the disjunctive normal form (treating Vy(—~®(y)V P(¥))
as an atomic formula) and then distribute the existential quantifiers over disjunctions. Now each
disjunct is a conjunction of atomic formulas and Yg(—®(y)VP(y)). Thus, by a simple application
of equivalence (15) of proposition 1.1, each digjunct can be transformed into the form required in
the Ackermann lemma. B

Theorem 4.3 If 7' is a first-order monadic sentence, then the algorithm eliminates second-order
quantification from Cirego(T; P; S).

Proof

The reduction that works here is given in Ackermann [[2], pp. 41-46], which uses Proposition 1.1
and a weaker form of Lemma 3.1. It can easily be reformulated in terms of the phases of our
elimination algorithm.

|

4.1 Comparison of Approaches

In comparing the different approaches and results concerning the reduction of circumscriptive the-
ories, we will refer to Figure 1 below, which provides a pictorial view of the subsumption relation
between the various theorems and types of theories reduced. DLS refers to our algorithm, MIXED
refers to theories with mixed quantifiers, VC refers to theories which allow variable constants, and
MONAD refers to theories with only monadic sentences. In addition, V and 3 refer to purely uni-
versal and existential theories, respectively, while V3 refers to those theories where Skolemization
is necessary, and 3V refers to mixed theories not requiring Skolemization. The solid arrows denote
subsumption. In addition there are two broken solid arrows. The arrow pointing towards Th 2.5
is broken to signify that although the DLS algorithm in its general form does not fully subsume
Theorem 2.5, when specialized appropriately, it does. The arrow pointing towards SKOLEM is
broken to signify that the DLS algorithm works for those theories involving Skolemization when
the unskolemization step is successful and the algorithm returns a first-order formula as output.
Since, it may not be possible to unskolemize certain theories successfully, there is no complete
subsumption of this class.

4.1.1 DPositive Results

In addition to the results described in the previous section, observe that the method we propose
is also stronger in regard to the following features:

10

MIXEDs-

TTVC T
v 3 L3 v MONAD

V V V

Th 2.6[Rabinov] Th 2.7[Kol,Pap] SKOLEM

Th 4.1[DLS] Th 4.2[DLS] [DLS] [DLS] Th 4.1[DLS] Th 4.3[DLS]
| |
|
|

(P[N]-simple) ! Th 2.1-3[Lifschitz]

v (Separable)
Th 2.1[Lifschitz] Th 2.5[Lifschitz]
(Separable) (Separated)

Figure 1: Subsumption Results.

e DLS provides us with a more general approach to existential quantification due to the possi-
bility of allowing Skolemization. Thus it works for combinations of existential and universal
quantifiers. On the other hand, Kolaitis and Papadimitriou consider pure existential formu-
las, while Lifschitz and Rabinov consider pure universal theories.

e DLS does not distinguish between theories with variable constants and those without. On
the other hand both Rabinov, Kolaitis and Papadimitriou, (and Lifschitz to some extent),
restrict their theories to those without variable constants. In some cases, Lifschitz’s results
can reduce theories with variable constants if the theories are separable and no Skolemization
is involved. (See the next section for problems DLS has with separated theories).

e DLS permits as input circumscriptive theories with arbitrary numbers of minimized and
varied predicates. This is not the case for Rabinov’s result nor for Lifschitz’s result pertaining
to separated formulas.

e DLS describes how to constructively transform formulas into the required form.

4.1.2 Negative Results

Note that in the end of Section 3.2 we characterized the class of formulas for which the algorithm
fails. Let us now discuss an additional source of weaknesses of the algorithm and a possible way
of overcoming those weaknesses.

Observe that the elimination algorithm we deal with i1s independent of any particular theory.
On the other hand, it 1s well known that second-order quantifiers can sometimes be eliminated
when additional information is given.

One good illustrative example originates from the area of modal logics. Namely, McKinsey’s
axiom is not equivalent to any first-order formula. Accordingly, our algorithm fails (see [18]).
However, when one assumes that the accessibility relation is transitive, the elimination is possible,
since McKinsey together with transitivity is first-order definable (see [21]).

The same situation may occur when one computes circumscription. Consider the theorem of
Lifschitz (Theorem 2.5 above). It permits us to deal with any sequences of first-order quantifiers

11

provided that the formula is separated. The proof given by Lifschitz is based on a clever move
which applies knowledge about the first-order theory one works with. Observe that in Theorem
2.5 the sentence T'(P) is assumed to be separated, i.e. it is of the form T} (P)AT2(P), where T1(P)
is positive w.r.t. P and T5(P) is negative w.r.t. P. Thus Circgo(T1ATs; P;()) is equivalent to

Since T>(P) is negative w.r.t. P, To(P) together with & < P imply 75(®). Thus when T2(P)
1s taken into consideration, one substantially simplifies the second order circumscription into the
following second-order formula

Ty (P)AT3(P)A-3D.~ [T1(B)AD < P).

The last formula is reducible to a first-order sentence (and is, in fact, in the scope of our algorithm).

The above examples show that the general algorithm we presented can (and should be) tuned
to the particular situation it is applied to. Since circumscription is always defined over some first-
order theory, moves similar to the method used by Lifschitz above, should be incorporated into
the algorithm. If this is done for the case of separated theories, then the specialized version of our
algorithm subsumes all previous results concerning the reduction of circumscriptive theories. (see
Section 4.2 for more details).

4.2 A General Methodology for Use of the Algorithm

The elimination algorithm we present is very general in that it can be applied to any second-order
formula. However, in specific applications the algorithm can often be substantially improved. Two
such improvements have already been provided. In the first case, we suggest using Proposition 3.1
each time it is applicable. The reason for this is that the proposition allows one to immediately
eliminate a second-order variable in the formula in question. As shall be seen in section 6, the
proposition 1s not just a theoretical result — it is sometimes applicable when reducing circumscrip-
tion axioms.

Another improvement we provide is the phase of simplification. It was observed that in many
practically occuring situations the formula obtained as the result of applying the Ackermann
lemma can be substantially simplified by using Proposition 1.1 (15). Perhaps this is the case
because of the specific form of the circumscription axiom. However, it 1s obviously worth doing
while applying the elimination algorithm to circumscriptive theories.

As already stated, our algorithm subsumes almost all known results concerning the reduction
of circumscriptive theories. The only exception appears to be the result of Lifschitz, presented in
Theorem 2.5. However, when specifying our algorithm for the purpose of reducing circumscription,
this specialized result can easily be built into the preprocessing phase. Moreover, even the result
of Rabinov, which is subsumed by the elimination algorithm, could also be built in, simply to
make the algorithm more effective.

In concluding, the situation may be summarized as follows. Given the general form of our
algorithm and a domain to which it will be applied, analyze the syntactic character of theories
in the domain and integrate any useful reduction heuristic in the preprocessing or simplification
phase of the algorithm.

5 Complexity of Reduction

Observe that the elimination algorithm we consider, terminates and is easily mechanizable. Let
us now estimate 1ts complexity.
First observe that during phase (3) of the algorithm, the form of the formula to be transformed

is®

APVE[®(2)VA(Z, Z)]AB(® — —P) (9)

5The second form considered in lemma 3.1 is symmetric to the first one.

12

and then its form is
B(® — Az, 2) (10)

after application of the Ackermann lemma.

Thus, if the length of (9) is n, then the length of (10) is less than n?. Observe, however, that
this worst case occurs when ® has O(n) occurrences in (9). In practical examples, however, the
length of (10) is usually O(n) (and often less than the length of (9)).

The worst case analysis of steps (1) and (2) shows that the size of the transformed formula
can increase exponentially (due to possible transformations between disjunctive and conjunctive
normal forms). This, however, is again a rare phenomenon — see examples below, in particular
Section 6.7 concerning a Kolaitis and Papadimitriou example.

6 Applying the Algorithm to some Examples

The best way to understand how the algorithm works is to apply it to examples. In this section,
we apply the algorithm to a number of different examples, each highlighting a particular strength
of the algorithm. A number of examples are taken directly from the literature concerning the use
of circumscription in knowledge representation. We take a number of liberties in applying the
algorithm so as not to drown in details. For example, step (2) in the previous section states that
both forms of Ackermann’s Lemma should be considered. In the examples, we choose one form
and apply the algorithm. This saves considerable space. Also, the simplification phase is omitted
unless it can be applied.

6.1 Block Example
Example 6.1 (Block example) Let T'(Ab, On) be the theory
[61 # b2AB(b1)AB(b2)A-On(b1)]A[Vz.B(z)A—Ab(x) D On(z)], (11)

where B and On are abbreviations for Block and Ontable, respectively. The circumscription of

T'(Ab,On) with Ab minimized and On varied is

Cireso (T (Ab,On); Ab; On) = T'(Ab, On)AVOVI[[T(P, U)AD < Ab] D [Ab < D], (12)
where

T(®,)= [bl # b2AB(1)AB(bB2) AT (b1)]A[Vz. B(x)A=d(x) O ()] (13)

® < Ab= Va.®(x) D Ab(x) (14)

Ab < = Va Ab(z) D O(x). (15)

In the following, we will reduce

VOVUT(D, TIA[P < Ab] D [Ab < D) (16)
in (12). Negating (16), we get

APIU[T (P, V)A[P < Ab|A-[Ab < D]]. (17)
Since we will try to remove & first, we replace (17) by the equivalent

FUIG[T (P, V)A[P < Ab|A-[Ab < D]]. (18)

Preprocessing. Replacing T'(®, ¥), & < Ab and Ab < ® by their equivalent forms (13)—(15),
eliminating O and renaming individual variables, we obtain

FUIB[b1 # b2AB(B1)AB(B2) AT (b1)
Az (= B(z)VO(2) VT (2))AVy (=@ (y)VAb(y)) ATz (Ab(z) AP (2))]. (19)

13

We next move 3z to the left, obtaining
Az3W3P[b1 # b2AB(b1)AB(b2)A-T (b1)
AV (= B(z)VO(2)VT (2))AVy(—P(y)VAb(y))A(Ab(2)A-D(2))]. (20)

Preparation for the Ackermann lemma. (20) is in the form suitable for application of the
Ackermann lemma. To make this more explicit, we rewrite (20) as

Az3TIPVe[(P(x) V- B(2) VI (2)) AVYy(—P(y)VAb(y)) A= P (2)AAb(2)
AT (B1YALL # b2AB(b1)AB(b2)]. (21)
Application of the Ackermann lemma. Applying the Ackermann lemma to (21), we obtain
FAV[Vy(= B(y) V¥ (y)V Ab(y))A (= B(2) V¥ (2)) AAb(2)
AT (B1)ALL #£ b2AB(B1)AB(b2)]. (22)
We next try to remove ¥ in (22).

Preprocessing. The formula (22) is already in the form which is the goal of this phase. To see
this, we rewrite it as

F3V[-W (b1)AVy (¥ (y)V —B(y)V Ab(y))
A (2)V—B(2))AAb(2)AbL # b2AB(b1)AB(62)]. (23)

Preparation for the Ackermann lemma. Applying Proposition 1.1 (15) to =¥ (b1) in (23),
we obtain

Az3WYs[(—T(s)Vs # b1)AYy (T (y)V-B(y)V Ab(y))
AT (2)VB(2))AAb(2)AbL # b2AB(b1)AB(b2)]. (24)

Application of the Ackermann lemma. We apply the Ackermann lemma to (24), obtaining

A=Vy[(y # b1V-B(y)V Ab(y))
A(z # bIVAB(2))AAb(2)ABL # b2AB(b1)AB(b2)]. (25)

Simplification. Using Proposition 1.1 (15), we replace (25) by

Az[(-B(b1)VAb(b1))
Az #£ b1V=B(2))AAb(2)AbL # b2AB(b1)AB(62)]. (26)
Negating (26) results in
Vz[(B(b1)A=Ab(b1))V(z = bIAB(2)V-Ab(2)Vbl = b2v—B(b1)vV-B(b2)]. (27)

The first-order formula (27) is logically equivalent to the second-order formula (16). Consequently,

Cireso(T(Ab,On); Ab; On) = T(Ab, On)A (28)
Vz[(B(b1)A=Ab(b1))V(z = bIAB(2)V-Ab(2)Vbl = b2v—B(b1)vV-B(b2)]. (29)

At this stage, the algorithm terminates but we can continue simplifying relative to the original
theory. (27) together with (11) implies

Ab(b1) DYz (= Ab(2)V(z = b1AB(2))) (30)
and thus implies
Vz(Ab(z) D (# = b1IAB(z))), (31)

which states that for any object z, either it is normal (—Ab(z)) or it is a block and 1. In other
words, the only abnormal object is the block b1.

14

6.2 The Scope Example

This example is due to Etherington, Kraus and Perlis [3]. Tt contains both an existentially and a
universally quantified formula. The theory contains a counterexample axiom which asserts that
there is an exception to a default rule stating that birds normally fly. The example is considered
conceptually problematic because even though the number of exceptions to the rule is minimized,
any bird considered in the theory might be the exceptional bird. Consequently, nothing more can
be entailed about any particular birds flying capabilities other than what could be entailed using
the original axioms.

Example 6.2 (Scope Example) Let T'(Ab, F') be the theory
[Fe.B(x)A—F(2)]AVz.B(x)A—Ab(z) D F(x)], (32)

where B and F stand for Bird and Flies, respectively. The circumscription of T'(Ab, F') with Ab
minimized and F' varied is

Circso(T(Ab, F); Ab; F) = T(Ab, F)AVOYU[L(®, U)A[® < Ab] D [Ab < @]], (33)
where

[(®,¥) = [Fz.B(x)A~(x)]A[Ve.B(z)A-®(z) D ¥(z)] (34)

P < Ab= Va.®(z) D Ab(x) (35)

Ab< ® = Va. Ab(z) D ®(x). (36)

In the following, we will reduce

VOVUT(D, TIA[P < Ab] D [Ab < D) (37)
in (33). Negating (37), we obtain

APIU[T (P, V)A[P < Ab|A-[Ab < D]]. (38)
We start by removing V.

Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < ® by their equivalents given by (34)—(36),
eliminating O and renaming individual variables, we obtain

AP [Fw (B(w)A—T(w))AVe (- B(z)Ve(x)VT(z))
AVy(~®(5)V AB()) A= (AD(2)A~0(=))]. (39)

Moving Jw and 3z to the left, we obtain

JwIz3PIV[(B(w) AT (w)) AV (-~ B(x) Ve () V¥ (z))
AVy(=@ () Ab(5)) A (Ab(z) A= ()] (40)

Preparation for the Ackermann lemma. (40) is in a form suitable for application of the
Ackermann lemma. To see this, we rewrite it as

w3z [(¥(2)V-B(2)VE(2))A(-T (w)AB(w))
AVy (=@ (y)VAb(y))AAb(2) A=D(2)]. (41)

Application of the Ackermann lemma. Applying the Ackermann lemma to (41), we get
332 30((~B(w)V@(w))AB(w) AYy(~B(y)V Ab(y)) A Ab(z) A-(2)] (42)
which is equivalent to
FwIz3P[D(w)AB(w)AVy (=P (y)VAb(y)) AAb(2)A=D(2)]. (43)

We now remove & in (43).

15

Preprocessing.(43) is in the form which is the goal of this phase.

Preparation for the Ackermann lemma. We apply Proposition 1.1 (15) to ®(w) in (43)
obtaining

JwIz3P[Vs(P(s)Vs # w)AB(w)AVYy(= P (y)V Ab(y))A=P(2)AAb(2)]. (44)
Application of the Ackermann lemma. Applying the Ackermann lemma to (44), we get

SuBVyl(y # VA AB(w)As £ wAAb(:)] (45)
Simplification. Using Proposition 1.1 (15), we replace (45) by

JwIz[Ab(w)AB(w)Az # wAAb(2)]. (46)
We then take the negation of (46), obtaining

VuVz[-Ab(w)V-B(w)Vz = wV-Ab(z)] (47)
which is equivalent to

VwVz[Ab(w)AB(w) D (Ab(2) Dz = w)]. (48)
The first-order formula (48) is logically equivalent to the second-order formula (37). Consequently,

Cireso(T(Ab, F); Ab; F) = T(Ab, F)AVwVz[Ab(w)AAb(z) D (B(w) D z = w)]. (49)

(48) asserts that there is at most one abnormal object that is a bird. Together with the theory
(32), we can infer that there is one and only one abnormal bird object, the unspecified bird that
doesn’t fly. Suppose the additional assertion that Fred is a bird, B(Fred), is added to the theory.
As stated previously, nothing can be asserted about the flying capabilities of Fred.

It 1s interesting to note the direct relation the first-order equivalent of the circumscription axiom
has to the theory. It is easily observed for example that adding the unique names assumption to
the theory would result in

YuVz[w # zAAb(w)AB(w) D —Ab(2)]. (50)

So, for any two different birds, one or the other is abnormal. Of course, we do not know which
one.

Another of the advantages of the algorithmic approach to reducing circumscription axioms
i1s the ease with which both a theory and its reduction proof can be modified. For example,
Etherington et. al. [3] continue discussing the example by adding the assertion

B(Fred)AB(Opus)NAb(Opus) (51)

along with a unique names assumption. The reduction proof for the modified theory is similar to
the current reduction proof with the distinction that the first conjunct in (44), ®(s)Vs # w, is
replaced with

B(s)V(s # wAs # Opus) (52)
and the steps which follow are modified accordingly. The final reduction formula would then be

Vw. Ab(w)AB(w) D w = Opus. (53)
It would then follow that F'(Fred).

16

6.3 The Birthday Example

Example 6.3 (Birthday Example) This example contains both existentially quantified and
universal formulas. In addition, it contains both unary and binary predicates. It is analogous to
the scoping example in the previous section, but uses binary predicates.

Let T(Ab, G) be the theory
[Fz3y(By)AF (z, y) A=G(z, y)INVaVy(B(y)AF (2, y)A~Ab(x, y) D Gz, y))], (54)

where B, F' and (G are abbreviations for Birthday, Friend and Gives — Gift, respectively. Here
Ab(z, y) has the following intuitive interpretation: “z behaves abnormally w.r.t. y in the situation
when y has a birthday and « is a friend of y”. The circumscription of T'(Ab,) with Ab minimized
and G varied is

Cireso(T(Ab, G); Ab; G) = T'(Ab, G)AVOVI[T(P, T)A[D < Ab] D [Ab < B]], (55)
where

(@, W) = [FzTy(B(y)AF (2, y) AV (x, y) INVaVy(By)AF (z, y) A=®(z,y) D ¥(z, y))](56)
< Ab= VaVy[®(x,y) D Ab(z,y)] (
Ab < D = VaVy[Ab(z,y) D O(z,y)]. (58)

ot
=
=

In the following, we will reduce

VOVUT(D, TIA[P < Ab] D [Ab < D) (59)
in (55). Negating (59), we obtain

APIU[T (P, V)A[P < Ab|A-[Ab < D]]. (60)
We remove V¥ first.

Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < ® by their equivalents given by (56)—(58),
eliminating D, renaming individual variables and moving existential quantifiers over individual
variables to the left, we obtain

o IyqIr3SIV[B(Y)AF (2, y) A= (2,)
AYuYz(mB(2)V-F (u, 2)V®(u, 2) V¥ (u, z))
AVsVE(=®(s, 1)V Ab(s, 1)) AAb(q, r)A=D(q, 7)]. (61)

Preparation for the Ackermann lemma. (61) is in the form suitable for application of the
Ackermann lemma. To see this, we rewrite it as

o FyqIr3PIVVUV[(T(u, 2)VB(2)V-F (u, 2) VO (u, 2)) AT (2, y)
AB(Y)AF (z, y) A\VsVE (=D (s, 1)V Ab(s, 1)) ANAb(q, r)A—D(q, 7)]. (62)
Application of the Ackermann lemma. Applying the Ackermann lemma to (62), we obtain
Jr3yFqIr3R[(—B(y)V-F (2, y)Ve(z, y)) AB(y)AF (2, y)
AYsYE(—P(s, t)VAb(s, 1)) AAb(q, r)A=D(q, 7)]. (63)
We now remove & in (63).
Preprocessing. (63) is in the form which is the goal of this phase.
Preparation for the Ackermann lemma. Using Proposition 1.1 (15), we replace (63) by

FoFygIrIOVoVw[(®(v, w)Ve # 2V # yV-B(y)V-F (2, y))
AYsYE(—P(s, 1)V Ab(s,))A-D(q, r) AB(Y)AF (2, y) AAb(g, 7)]. (64)

17

Application of the Ackermann lemma. Applying the Ackermann lemma to (64), we obtain

e IyqIrVsVi[(s # Vvt # yVB(y)V-F (x, y)VAb(s, 1))
Ng # aVr # yVoBy)VaF (2, y)) AB(y)AF (z, y) NAb(q, 7)]. (65)

Simplification. We replace (65) by

FeIyqIr[(-B(y)V-F (z, y)VAb(z, y))
A # zvr # yv=B(y)V=F (2, y)) AB(y)ALF (z, y)AAb(q, 7)]. (66)

Negating (66), we obtain

VaVyVeVr[(B(y)AF (2, y)A—Ab(z, y))
V(g = aAr = yAB(y)AF (2, y))V-B(y)V—F (x, y)V-Ab(q, 7)]. (67)

(67) is logically equivalent to

VaVyVVr[~(B(y)AF (z, y) V((By)AF (2, y)) AN(—Ab(z, y)V (g = zAr = y)))
V=Ab(q, r)], (68)

which is equivalent to
VaVyVgVr[—(B(y)AF (z, y))V-Ab(z, y)V (¢ = zAr = y)V-Ab(q, r)]. (69)
The first-order formula (69) is logically equivalent to the second-order formula (59). Consequently,

Cireso(T(Ab, G); Ab; G) = T(Ab, G)A
VaVyVgVr[—(B(y)AF (z, y))V-Ab(z, y)V (¢ = zAr = y)V-Ab(q, r)]. (70)

A more informative sentence, equivalent to (69), is
Va¥ytgvr{Ab(z, y)AAblg, AB(AF (2,5) D (g = 2Ar = y)). (1)

(71), together with the theory T'(Ab, G), states that there is exactly one pair of individuals, and
y, such that y has a birthday, z is a friend of y and = does not give a gift to y.

6.4 The Hospital Example
Example 6.4 (Hospital Example) Let T be the theory
[Vo3y(Ab(z,y) D H(x,y))|A[VaTy(—Ab(z, y) D H(z,y))]. (72)

Here H(x,y) and Ab(z,y) are to be intuitively interpreted as “z is in a hospital in a situation
y” and “x behaves abnormally in a situation y”, respectively. The circumscription of I', with Ab
minimized and H varied is

Cireso(T; Ab; H) = TAVOYE[T (D, T)A[D < Ab] D [Ab < D], (73)
where

[(®,0)= VYaeIy[®(x,y) D ¥(z,y)]A Vady[-P(z,y) D ¥(z,y)] (74)

S < Ab= VaVy[P(z,y) D Ab(z,y)] (75)

Ab < ® = VaVy[Ad(z,y) D ®(z,y)]. (76)

In the following, we will reduce

VOVUT(D, TIA[P < Ab] D [Ab < D) (77)
in (73). Negating (77), we obtain

APIU[T (P, V)A[P < Ab|A-[Ab < D]]. (78)

18

Since we will try to remove & first, we replace (78) by its equivalent given by
FUIG[T (P, V)A[P < Ab|A-[Ab < D]]. (79)
Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < ® by their equivalents given by (74)—(76),
eliminating O and renaming individual variables, we obtain
UGV Iy(—P(x, y) V¥ (z, y))AVqIr(D(q, r)VT(q, 7))
AYuYv (=D (u, v)VAb(u, v))ATsTt(Ab(s,) AP (s, 1))]. (80)
Moving 3s3¢ to the left and rearranging the resulting formula, we obtain
AsFIVIS[VeIr(P(q, 1) V¥ (g, 7)) AV2 Ty (- @ (2, y) VI (2, y))
AYuYv (=D (u, v)VAb(u, v))AAb(s, t)A-D(s,1)]. (81)
Preparation for the Ackermann lemma. Using Proposition 1.1 (15), we replace ®(g¢,r) in
(81) by VaYw(®(z, w)Vz # ¢Vw # r). This results in
AsFIVIS[VqIr(VaVw(P(z, w)Vz # gV # r)V¥(g,))AV2Iy(—®(z, y) VI (2, y))
AYuYv (=P (u, v)VAb(u, v))AAb(s, 1)A=D(s,1)] (82)
which is equivalent to
AsFIAVIO[VqIrVVw(P(z, w)Vz # qVw # vV (q, r))AVey(—P(z, y) VT (z, y))
AYuYv (=D (u, v)VAb(u, v))AAb(s,)A=D(s,1)]. (83)
We next eliminate 3r by Skolemization and move Vg to the right and VzVw to the left. The
resulting formula is (below f is the introduced function variable)
FsHIVI fARY2Vw[(D(z, w)VVq(z # gV # F(@)VE(g, f(9)))AVeTy(— (2, y) VI (2, y))
AYuYv (=D (u, v)VAb(u, v))AAb(s, t)A=D(s,1)]. (84)
Application of the Ackermann lemma. Applying the Ackermann lemma to (84), we obtain

FsFHIFIVNV2Iy(Ve(y # qVy £ Fl9)V¥(q, F(9))VE(z,y))
AVuo(Yg(u # gVo £ f(a)V¥(q, [(q)))VAb(u, v))
NAb(s,)\Vq(s # gVt # f(a)VE(q, [(q)))] (85)

which is equivalent to

s fIVV2IYVeVuvo[(y £ ¢Vy £ f(9)VE(q, f(q))VE(2,y))
Nu # qvo # f(g)V¥(g, f(q))VAb(u,v))
AAb(s,)\ (s # gVt # f(q)V¥(q, f(2)))]- (86)

Since all occurrences of ¥ in each conjunct in (86) are positive, all the conjuncts including ¥,
together with AW, can be removed by Proposition 3.1. This yields

s fIVVeIyVeYuVo. Ab(s, 1) (87)
which reduces to
Js3t. Ab(s, t). (88)

Since we negated the original formula before applying the algorithm, we now negate the result,
obtaining

VsVt.mAb(s, t). (89)
The first-order formula (89) is logically equivalent to the second-order formula (77). Consequently,
Cireso(T; Ab; H) = TAVsVE. 2 Ab(s, t). (90)

which implies

VaedyH (x,y). (91)

19

6.5 The Vancouver Example

This is a variant of an example from Reiter [17]. Rather than using the function céty as Reiter
does, we will use a relation C'(z,y) with suitable axioms.

Example 6.5 (Vancouver Example) We begin by defining the binary relation C' with the in-
tention that C'(z,y) holds iff the city of # is y. In our axiomatization, Reiter’s axiom,

Va.mAb(z) D city(x) = city(wife(z)) (92)
1s replaced with

VaVyVz. ~Ab(2)AC (2, y) AC (wife(x),z) Dy = 2. (93)
In addition, we add the following axiom guaranteeing that C' represents a function:

VaVyVz.C(x, y)ANC(x,2) Dy = . (94)
We do not require that all people live in cities, i.e. we reject the axiom

Vady.C(z,y). (95)

So, the distinction is that our representation of the city function is partial, whereas Reiter’s is
total. Intuitively, our choice seems to make more sense.

Let T(Ab, C) be the theory
[VaVyVz.mAb(2) AC (2, y) NC(wife(x), z) D y = z]A[VaVyVz.Cx, y)AC(x,2)) Dy = z]. (96)

The circumscription of T'(Ab, City) with Ab minimized and C varied is

Cireso(T(Ab, C); Ab; C) = T(Ab, CYAVOVI[T(D, U)A[D < Ab] D [4b < P, (97)
where

[(®,0)= [VaVyVz.—@(2)AV (2, y) AT (wife(x),z) Dy = z]A

[VaeVyVz U (2, y) AT (2, z) Dy = z]. (98)

< Ab= Va.®(x) D Ab(x) (99)

Ab< ® = V. Ab(z) D ®(x). (100)
In the following, we will reduce

YOYU[T(®, U)A[@ < Ab] D [4b < B]] (101)
in (97). Negating (101), we obtain

JOIU[D(®, W)A[® < ABJA-[Ab < &]]. (102)

We start by removing V.
Preprocessing. Replacing T'(®, ¥), & < Ab and Ab < & by their equivalents given by (98)-(100),

eliminating O and renaming individual variables, we obtain
AP [VaVyVz (D(2) V¥ (2, y) V¥ (wife(x), z)Vy = 2)A

VuVoVw (=T (u, v) VU (u, w)Vo = w))AVs (@ (s)V Ab(s))ATt(Ab(t)A—=D(1))]. (103)
Note that ¥ can be removed directly using Proposition 3.1, since all instances of ¥ occurring in
(103) are negative. To prepare the latter formula into the form suitable for the application of
Proposition 3.1, we move all quantifiers ranging over individual variables to the left. This results
n

APIUVaVyVVuVoVwVsTt[(P(z) V- (z, y) V- (wife(x), z)Vy = 2)A

(=0 (u, v) VU (u, w)Vo = WA (=P (s)VAL(s))AAB(E)A-D(1)]. (104)

20

Applying Proposition 3.1 to (104), we obtain

APYaVyV 2V uVoVwVs3t[(P (s)VAL(s))AAb(L)A-D(1)] (105)
which reduces to

APYsH[(—P(s)VAb(s))AAb()A-D(2). (106)

We next try to remove ®. Again, this can be done directly using Proposition 3.1, since all instances
of ® in (106) are negative. This results in

Vs3t. Ab(1) (107)
which is equivalent to

Jt.Ab(t). (108)
Taking the negation of (108) results in

Vi.mAb(t). (109)

The first-order formula (109) is logically equivalent to the second-order formula (101). Conse-
quently,

Cireso(T; Ab; C) = TAYE-Ab(T). (110)

6.6 A Preprocessing Example

In the previous examples, the preprocessing phase was very simple. In this example, which appears
to be a relatively trivial theory, the preprocessing stage is much more complex.

Example 6.6 (Preprocessing Example) Let T' be the theory
P(a) D P(b). (111)

The circumscription of I', with P minimized is

Cireso(T; P; () = TAVO[T(®)[A® < P] D [P < 9], (112)
where

@)= @)D o), (113)

&< Ab= Vo.®(z) D P(w), (114)

Ab<®= Vz.P(z)D B(x). (115)

In the following, we will reduce

VO[T (P)A[D < Ab] D [Ab < D] (116)
in (112). Negating (116), we obtain

AP[T(P)A[P < Ab]A—[Ab < D). (117)

Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < & by their equivalents given by (113)-
(115), eliminating D and renaming individual variables, we obtain

3O[(~0() V(D) AV (~(2)V P () ATy(P(y) A~ ()] (118)
Moving Jy to the left, we obtain
FyIAP[(—~P(a) VP (b)) AV (=P (x)V P (2))AP(y)A=D(y)]. (119)

21

Since positive and negative occurrences of @ are not properly separated, we distribute the con-
junction Va(=®(2)V P(x))AP(y)A—D(y) over =P (a)VP(b). This leads to

FYAD[(~® () AV (~B(2)V P () AP (1) A~ (1))
V(®(b)AVz (=D (2)VP(2))AP(y)A—D(y))]. (120)

Applying Proposition 1.1(6) to (120), we obtain

yFB[~D () AV (~P(2)V P ())AP () A= (y)]
VIYB[B (b)) AV (=B (2)V P (2)) AP () A~D(y)]. (121)

The preprocessing phase is successfully completed. We now process the disjuncts from (121) as
separate problems. Let us begin with the first disjunct. Note that ® can be removed from it
directly, using Proposition 3.1. To this end, we replace the disjunct with its equivalent given by

FyAOVa [P (a) A(—~P () VP (2))AP (y) A—~P(y)]. (122)
Applying Proposition 3.1 to (122), we obtain

JyVe.P(y) (123)
which reduces to

Jy.P(y). (124)

We have succeeded in reducing the first disjunct in (121) to a first-order formula. We now try to
do the same for the second one, i.e.

Fy3P[D(b) AV (=P (2) VP (2))AP(y) A= (y)]. (125)
Preparation for the Ackermann lemma. Using Proposition 1.1 (15), we replace (125) by

FyAOVz[(P(2)Vz # b)AVe (=D (2)VP(2))AP(y)A=D(y)]. (126)
Application of the Ackermann lemma. Applying the Ackermann lemma to (126), we obtain

Ayve[(x # bV P(x))Ay # bAP(y)]. (127)

We have now succeeded in reducing the second disjunct of (121). The original second-order formula
(121) has now been reduced to the equivalent first-order formula

By P)VBu¥el(e £ WV P()Ay £ AP (128)
Applying the simplification step to (128) using Proposition 1.1 (15), we obtain
By P(y)IV[Fy[P(b) Ay # bAP (y)]]. (129)

Finally, we negate (129), obtaining
[Vy=P(y)]AVy[~P(b)Vy = bV=P(y)]. (130)

The first-order formula (130) is logically equivalent to the second-order formula (116). Conse-
quently,

Cireso(T; P; () = TA[Yy=P(y)AVy[— P (b) vy = bv=P(y)]. (131)
(130) can be simplified using some standard equivalences:

[Vy=P(y)]AVY[=P(b)Vy = bv=P(y)] = Vy.=P(y). (132)

22

6.7 An Existential Example

Kolaitis and Papadimitriou [7] show that the circumscription of any existential first-order formula
is equivalent to a first-order formula. We have already shown that the algorithm we propose
here generalizes Kolaitis and Papadimitriou’s results. It is interesting to compare these reduction
techniques in terms of complexity. Kolaitis and Papadimitriou [7] state

We notice that computing a first-order sentence equivalent to the circumscription
of P in an existential first-order formula ¢(P) seems to increase the size of ¥(P)
exponentially, a phenomenon not observed in the other known cases of first-order
circumscription studied in [Lif85]. Tt would be interesting to determine whether this
is inherent to existential first-order formula, or a particular creation of our proof.

Example 6.7 (Existential Example) We now take the example used by Kolaitis and Papadim-
itriou and compare the resulting first-order formula with that generated by our algorithm. Kolaitis
and Papadimitriou apply their reduction technique to the theory

E'l‘lal‘z[R(l‘l,l‘z)/\P(l‘l)/\P(l‘z)] (133)
and circumscribe P without varying predicates. The first-order equivalent they obtain is

Jz1 (R(z1, 21) AP(z)A(Vy(P(y) =y = 71))
\/[E'l‘lal‘z(R(l‘l,l‘z)/\P(l‘l)/\P(l‘z)/\(l‘l ;é 1‘2)/\
(Vy(P(y) = (y = 21Vy = 22)))AR(x1, 1) A= R(22, 22))]. (134)

We apply our reduction algorithm to the same theory and compare the results.
Let T'(P) be the theory

E'l‘lal‘z[R(l‘l,l‘z)/\P(l‘l)/\P(l‘z)]. (135)

The circumscription of T'(P) with P minimized without variable predicates is

Cireso(I(P); P; () = D(P)AYR[L(@)A[® < P] O [P < @], (136)
where
F(q)) = E'l‘lal‘z[R(l‘l,l‘z)/\q)(l‘l)/\q)(l‘z)] (137)
b<P= V.®(x) O P(z) (138)
P<d= Vo P(z) O (x). (139)

In the following, we will reduce

VO[T(P)A[® < P] D[P < D] (140)
in (136). Negating (140), we obtain

AP[T(P)A[P < P]A-[P < @]]. (141)

Preprocessing. Replacing I'(®), ® < P and P < ® by their equivalents given by (137)-(139),
eliminating O and renaming individual variables, we obtain

AP[Fx 1 Fza(R(wy, 22) AP (21) AP (22))A
Vy(=®(y) VL (y))AFz(P(2) A2 (2))]. (142)

We next move Jz13w23z to the left, obtaining

1329 32AP[R(21, 22) AD (21) AD(22)A
Vy(=®(y) VP (y)) AP (2)A=P(2)]. (143)

23

Preparation for the Ackermann lemma. Applying Proposition 1.1 (15) and some standard
equivalences, we replace (143) by

1322 323PY[(P(q) V(g # x1Aq # 22))A(R(21, 2)A
Vy(=®(y)V P (y)) AP (2)A=D(z)]. (144)

Application of the Ackermann lemma. The Ackermann lemma can now be applied to (144)
resulting in

Juy3weTz[R(w1, 22) AVy((y # 1Ay # 22)VP(y))A
P(z)Nz # 1Mz # 2a). (145)

Simplification. Applying Proposition 1.1(18) to (144) results in

Jxy13weTz[R(w1, 22) AP (21)AP(22)AP(2)A\2 # 1A% # 23] (146)
Negating (146), we obtain

Vi Voo ¥Vz[-R(xy, 22)VP(2) Vo P(22)V-P(2)Vz = 21Vz = za). (147)

The first-order formula (147) is logically equivalent to the second-order formula (140). Conse-
quently,
Cireso(T; P) =T (P)A
Vi Voo ¥Vz[-R(xy, 22)VP(2) Vo P(22)V-P(2)Vz = 21Vz = za). (148)

Comparing (148) with (134), it is easily observed that there is a substantial difference in the
size of the formulas.

6.8 Interpreting the Results

There are a number of interesting observations that can be made on the basis of the above exam-
ples.

1. In all the examples, the first-order equivalent of the circumscription axiom is shorter than
the axiom itself.

2. In some examples, the first-order equivalent of the circumscription axiom may seem a little
strange when considered in isolation. However, it always makes perfect sense when the theory
at hand is taken into account. Reconsider, for instance, the example 6.2. The first-order
equivalent of the circumscription axiom is

VwVz[Ab(w)AB(w)D(Ab(2) Dz = w)] (149)

which states that there is at most one abnormal object that is a bird. The conjunction of
(149) and the sentence being circumscribed result in a formula stating that there is exactly
one abnormal bird object that does not fly.

3. Note that for certain examples, such as the hospital example, the first-order formula returned
is of such a nature that without the algorithm, finding a substitution for the circumscription
axiom would be highly unlikely.

7 Conclusion
In this paper, we have presented a general algorithm which transforms second-order formulas into

logically equivalent first-order formulas for a large class of second-order formulas. The algorithm
has been shown to have a number of attractive properties, including a potentially wide area

24

for practical application. To support this claim, we have provided a detailed description of the
algorithms application to the reduction of circumscription axioms. In addition, we have shown
that the algorithm, in its general form, provably subsumes nearly all existing results concerning
the reduction of circumscription axioms. In the cases not subsumed, we have shown, via the
general methodology for use of the algorithm, how a slight specialization of the algorithm provides
a remedy, not only for these particular cases, but for other potential exceptions. In contrast to
previous results, the algorithm i1s more constructive in the sense that it provides a step-by-step
method for transforming a formula and it also terminates.

In the future, we plan on investigating specializations of the algorithm where the general
methodology proposed may be used in combination with information about the structure of par-
ticular domains of interest, such as the domain of action and change, to generate specific heuristics
which can be integrated with the preprocessing stage. In addition, we feel that the use of circum-
scription as a knowledge representation tool deserves reevaluation in light of the results described
here. The common view of circumscription as an elegant formalism for conceptual analysis, but
one that is difficult to apply practically due to its second-order nature, requires modification if
the algorithm can be applied practically, as we believe it can.

References

[1] Ackermann, W. (1935) Untersuchungen tber das Eliminationsproblem der mathematischen
Logik, Mathematische Annalen, 110, 390-413.

[2] Ackermann, W. (1954) Solvable Cases of the Decision Problem, North-Holland, Amsterdam.

[3] Etherington, D., Kraus, S., Perlis, D. (1991) Nonmonotonicity and the Scope of Reasoning,
in: Artificial Intelligence 52(3), 221-262.

[4] Gabbay, D., Ohlbach, H. J. (1992) Quantifier Elimination in Second-Order Predicate Logic,
Report of the Max-Planck Institut fur Informatik, MPI-1-92-231, Saarbriicken, Germany.

[5] Gelfond, M., Lifschitz, V. (1989) Compiling Circumseriptive Theories into Logic Programs,
in: Proc. 2nd Int’l Workshop on Non-Monotonic Reasoning, Lecture Notes in Artificial Intel-
ligence, 346, Springer-Verlag, Berlin, 74-99.

[6] Ginsberg, M. L. (1989) A Circumscriptive Theorem Prover, in: Artificial Intelligence, 39,
209-230.

[7] Kolaitis, P., Papadimitriou, C. (1988) Some Computational Aspects of Circumseription, in:
Proc. AAAI-88, St Paul, MN, 465-469.

[8] Konolige, V. (1994) Autoepistemic Logic, in: Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 3 (D.M. Gabbay, C.J. Hogger & J.A. Robinson, eds.), Clarendon
Press, Oxford.

[9] Lifschitz, V. (1985) Computing Circumscription, in: Proc. 9th IJCAI, Los Angeles, CA, 121-
127.

[10] Lifschitz, V. (1988) Pointwise Circumsecription, in: Readings in Non-Monotonic Reasoning,
M. Ginsberg (ed.), Morgan Kaufmann Publishers, Palo Alto, CA, 179-193.

[11] Lifschitz, V. (1994) Circumseription, in: Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 3 (D.M. Gabbay, C.J. Hogger & J.A. Robinson, eds.), Clarendon
Press, Oxford, 297-352.

[12] Lukaszewicz, W. (1990) Non-monotonic Reasoning. Formalization of Commonsense Reason-
ing, Ellis Horwood Ltd.

25

[13] Lowenheim, L. (1915) Uber Méglichkeiten im Relativekalkil, Mathematische Annalen, 137-
148.

[14] Poole, D. (1994) Default Logic, in: Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 3 (D.M. Gabbay, C.J. Hogger & J.A. Robinson, eds.), Clarendon Press,
Oxford.

[15] Przymusinski, T. (1991) An Algorithm to Compute Circumseription, in: Artificial Intelligence
38, 49-73.

[16] Rabinov, A. (1989) A Generalization of Collapsible Cases of Circumscription (Research Note),
Artificial Intelligence 38, 111-117.

[17] Reiter, R. (1980) A Logic for Default Reasoning, Artificial Intelligence 13, 81-131.

[18] Szatas, A. (1993) On the Correspondence Between Modal and Classical Logic: an Automated
Approach; Journal of Logic and Computation, 3, 605-620.

[19] Szatas, A. (1994) On an Automated Translation of Modal Proof Rules into Formulas of the
Classical Logic, Journal of Applied Non-classical Logics, 4, 119-128.

[20] Van Benthem, J. (1983) Modal Logic and Classical Logic, Bibliopolis, Napoli.

[21] Van Benthem, J. (1984): Correspondence Theory, in: Handbook of Philosophical Logic, Vol.
2 (D. Gabbay and F. Guenthner, eds.), D. Reidel Pub. Co., 167-247.

A The Algorithm

The algorithm takes a formula of the form 3®. A, where A is a first-order formula, as an input and
returns its first-order equivalent or reports failure®. Of course, the algorithm can also be used for
formulas of the form V®.A, since the latter formula is equivalent to =3®.—A. Thus, by repeating
the algorithm one can deal with formulas containing arbitrarily many second-order quantifiers.

The algorithm consists of three basic phases: (1) preprocessing; (2) preparation for the Acker-
mann lemma; (3) application of the Ackermann lemma. These phases are described below. Tt is
always assumed that whenever the goal specific for a current phase is reached, then the remaining
steps of of the phase are skipped.

A.1 Preprocessing

The purpose of this phase is to transform the formula 3®.A into a form that separates positive
and negative occurrences of the quantified predicate variable ®. The form we want to obtain is”

323B[(A1(B)ABL(®)V - -V (An (B)AB, (B))], (150)

where, for each 1 < i < n, A;(®) is positive w.r.t. ® and B;(®) is negative w.r.t. ®.%
To achieve the goal of this phase, apply the steps below in the following order.

1. Eliminate the connectives D and = using the usual definitions. Remove redundant quanti-
fiers. Rename individual variables until all quantified variables are different and no variable
is both bound and free. Using the usual equivalences, move the negation connective to the
right until all its occurrences immediately proceed atomic formulas.

6The failure of the algorithm does not mean that the second-order formula at hand cannot be reduced to its
first-order equivalent. The problem we are dealing with is not even partially decidable, for first-order definability
of the formulas we consider is not an arithmetical notion (se, for instance, [21]).

71t should be emphasized that not every formula is reducible into this form.

8To increase the strength of the algorithm, it is essential to move as many existentially quantified variables as
possible into the prefix of (150).

26

. Move universal quantifiers to the right and existential quantifiers to the left applying as long

as possible the following equivalences (below @ € {V,3}, o € {V,A} and B contains no
occurrences of variables z):

o Qi(A(Z)oB) = (QzA(Z))o B
e QE(Bo A(z)) = BoQrA(T).

Move to the right the existential quantifiers that are in the scope of universal quantifiers
using the equivalences of step 2.

. Repeat (2) and (3) as long as no new existentially quantified variable can be moved into the

prefix.

In the matrix of the formula obtained so far, distribute all top-level conjunctions over the
disjunctions that occur among their conjuncts. For this purpose, apply the following equiv-
alences:

o AN(BVC) = (AAB)V(AAC)

e (AVB)AC = (AAC)V(BAC)

If the resulting formula is not in the form (150), then report the failure of the algorithm.
Otherwise replace (150) by its equivalent given by

37(AD(A1 (B)ABL ()Y - - VI (A, (B)AB, (B))). (151)

For each disjunct 3®(A; (P)AB;(P)) of (151) try to find its first-order equivalent by perform-
ing the next phases to the formula 3®(A;(P)AB; (P)). If all the equivalents are obtained,
return their disjunction, preceded by the prefix 3z, as the output of the algorithm.

The following example illustrates the described phase.

Example A.1 Consider the formula 3®[VaIy(P(y)vIL(D(t)VP(2)VR(z,1)))ATzP®(2) AJu—D(u)].

The following lines show the subsequent transformations.

S0[Ya3y(P(y) V(DY P(a)V R(s, 1)) ATo0(:)ATunb(w)] = ()
330723y P(y)V I(B(0)V P (2)V R (i, 1)) AD()A~D ()] = (v ®)
3030[a (ByP(y) V3V Pe)V Rl 1)) AD()A~(u)] = (v ?)
3030((3y P (y) Va3V Pa)V Rl 1)) AB()A(u)] = (v 2)
3wy 3](P(y) Va3V P (@) (i, 1)))AB(:)Ab(u)] = by 5)
FzuyIO[(P(y)AP(2) AP (u))V (VeI (P () VP(2)VR(2z, 1)) AP (2)A—-D(w))] W

A.2 Preparation for the Ackermann Lemma

The goal of this phase is to transform a formula of the form 3®(A(P)AB(P)), where A(P) (resp.
B(®)) is positive (resp. negative) w.r.t. @, into one of the forms (3) or (4) given in Lemma
3.1. Both forms can always be obtained. However, Skolemization is sometimes necessary and
unskolemization, which is to be performed in the next phase, may fail. Accordingly, the algorithm
performs both transformations. Due to the symmetry of the Ackermann lemma, the steps stated
below describe only one of those transformations, namely that leading to the form (3).

1.

Transform A(®) into the form
prefl((t11)V - - VO(tin,)VCI)A - - A(P(tx1)V - - - V®(tin,) VCR)AD],
where pref is a prefix of first-order quantifiers and @ does not occur in C1, ..., Ck, D. This

step 1s always possible by applying the usual technique of obtaining the conjunctive normal
form.

27

2. Transform each conjunct (®(¢;1)V - - -V®(tin,)VC;), where n; > 1, into its equivalent
Ele(Vy(()\/l‘Z 75 yVC) (l‘l =tV VL = fm,\/(]i)
and move all existential quantifiers into the prefix pref.?

3. Transform each conjunct (®(¢;1VC;) into its equivalent Vy(®(y)Vy # 111V)

4. Remove all existential quantifiers from the prefix pref using the equivalence of Skolem given

by

Vedy Alz,y,...) = 3fVe Az, y — f(7),...), (152)
where f is a new function variable. After this transformation the input formula takes the
form

f30pref [Vy(®(y) Ve # yVC)A - - - AVY(P(y)VEL # yVCi)IAE], (153)

where f is the tuple of the introduced Skolem functions and pref’ only contains universal
quantifiers.

5. Transform (153) into its equivalent given by

3fIDVY[(y)Vpref (21 # yVCI)A - A@k # yVCi))Apref'E. (154)

Example A.1 [continued] There are two formulas to be considered in this phase, namely
AP(P(y)AD(2)A=P(u)) and FOVeIt(P(1)VP(2))AP(2)A—P(u). We apply phase 2 to the former

of the above formulas.

AP(P(y)AD(2)A=D(u)) = (by 2)
AQ(P(y)AVr(D(r)Vz # r)A—P(u))

Applying phase 2 to the second formula proceeds as follows.
APV (P (t) VP (2)VR(z, 1)) AD(2)A—=D(u)
APV ItVr(®(r)Vr £ tVP(x)VR(x,) AVr(®(r)Vz # r)A-P(u)
x

FABELYe(D(r)Vr # F(2)VP()VR(x, f(2))AVr(S(r)Vz # 1) A~(u)
3FAVD()V (Ve (r £ f(2)VP(@)VR(, f(2)))Az # r]A-D(u)

—_—
oo o
< < o<
Ol W
NN

—
~—

A.3 Application of the Ackermann Lemma

The goal of this phase is to eliminate the second-order quantification over ®, applying the Acker-
mann lemma, and then to unskolemize the introduced function variables. The phase consists of
the following two steps.

1. Apply the Ackermann lemma to the formula (154). The resulting formula is of the form

f[prefE(=® — pref((21 # yVCI)A - - - A(Zr # yVCi)))]

2. Try to remove all existential quantifiers over function variables using the equivalence (152).
If this is impossible and both transformations mentioned in the beginning of section A.2
failed, report failure of the algorithm; otherwise try the remaining possibility.

9 This step is justified by equivalence (16) of Proposition 1.1.

28

Example A.1 [continued] We apply phase 3 for the pair of formulas obtained as the result of
phase 2.

AP(P(Y)AYr(®(r)Vz £ r)A-P(u)) = (by 1)
P(y)Az # u.

3f3<1>V7°[(M) (Ve (r # [(2)VP(2)VR(2, [(2)))Az # r)]A=D(u)
AfVe(u # f(2)VP(2)VR(z, f(2)))Az # u
Vadt(u £ tVP(x)V (a:,t))/\z # u.

A.4 Simplification

The formula obtained as the result of the previous phase can often be substantially simplified using
Proposition 1.1 (15), or its generalization (18). The simplification phase consists of one step. In
the formula obtained after successfully performing phase 3,

1. replace each subformula of the form VZ(A(f «— z)vz #) by A({), and
2. replace each subformula of the form VZ(Z # t1A - - AT # 1,)VA({L — 2)) by AF)A - AA(E,).

Example A.1 [continued] Since the simplification phase is inapplicable to the formulas obtained
in phase 3, the first-order equivalent of the input formula we finally obtain is

AzFuTy(P(y)Az £ uAVaeIt(u # tVP(2)VR(x, 1)) Az # u).

A.5 Remarks about the Algorithm

e The algorithm always terminates and is sound, i.e. the output first-order formula, if obtained,
is equivalent to the input second-order formula.

e Although the algorithm may seem a bit complex, the calculations it describes may be per-
formed without any computer support.

e For the sake of clarity the algorithm is not presented in its most efficient form. The possible
directions for its optimization follow from the examples presented throughout the paper.

e Observe that one usually deals with the elimination problem over a first-order definable class
of models. In such cases 1t 1s sometimes possible to considerably simplify the input formula
before running the algorithm (see Section 4.1.2). Such a possibility can be considered as an
additional heuristics in the preprocessing phase.

29

