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� Introduction and Preliminaries

In recent years
 a great deal of attention has been devoted to logical formalisms for 
commonsense

reasoning� Among the candidates proposed
 three in particular have been studied exhaustively
in terms of formal properties and applicability to a variety of domains such as default reasoning

inheritance reasoning
 and reasoning about action and change� The three candidates are

� Default Logic ����


� Autoepistemic Logic ����


� Circumscription �����

The popularity of each of these formalisms has varied through the years as both positive and
negative results concerning their respective expressibility and applicability to various domains
have been investigated� One problem that has plagued the general acceptance of each of these
formalisms as tools for knowledge representation is the di�culty in �nding e�cient methods for
computing inferences� This di�culty is understandable due to the fact that the inference relations
in question are generally nonmonotonic in nature� For instance
 the popularity of circumscription
has declined recently
 due to the perceived di�culty in �nding proper substitutions for the second�
order circumscription axioms normally used when circumscribing predicates� Consequently
 a still
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open and important research issue is to �nd more e�cient methods for computing inferences for
each of the formalisms�
In this article
 we will concern ourselves with the search for e�cient methods for computing

inferences of circumscriptive theories� Circumscription distinguishes itself from default and au�
toepistemic logic in that the nonmonotonicity is implicit in the use of circumscription rather than
an explicit property of the inference relation� This is achieved in general by appealing to the
use of a second�order formula which is added to a �rst�order theory� The purpose of the second
order formula is to constrain the models of the theory to those that minimize the extension of a
predicate or predicates in some respect�
Circumscription has previously been perceived as an elegant mathematical technique for mod�

eling nonmonotonic reasoning
 but di�cult to apply in practice� One commonly accepted heuristic
for using circumscription is to predict what it is one would want to conclude from the circumscribed
theory and then �nd the proper substitution of predicate expressions in the second�order circum�
scription axiom that together with the theory would entail the desired conclusion� This heuristic

although reasonable for toy examples is clearly inadequate as a means of using circumscription in
practice�
In the literature
 there are a number of approaches proposed for computing circumscription

that attempt to deal with this inadequacy � These approaches can be classi�ed into three broad
groups�

�� Compiling circumscriptive theories into logic programs� A representative example of this
approach is Gelfond �	��

�� Developing specialized algorithms to compute preferential entailment� Some representative
examples of this approach are a proposal for a theorem prover for circumscription by Gins�
berg ���
 and the MILO method proposed by Przymusinski ��	��

�� Compiling the second�order circumscription axiom into an equivalent �rst�order formula and
then applying classical theorem�proving techniques to the resulting �rst�order theory�

Although each of the approaches has its advantages and disadvantages
 the third is particularly
advantageous because the large body of results related to classical theorem�proving techniques are
directly applicable� Although some progress has been made using the third approach
 the results
are somewhat isolated in nature� In addition
 a general method which can be used uniformly in
an algorithmic manner to make the reductions
 is lacking�
In this article
 we will describe such a method in terms of an algorithm
 which takes a second�

order formula as input and returns an equivalent �rst�order formula as output
 or stops returning
failure as output� The class of second�order formulas which can be reduced subsumes those covered
by existing results� Of course
 the fact that the algorithmmay stop without returning a �rst�order
formula does not mean that there is not a �rst�order formula equivalent to the input� It simply
implies that their isn�t any or
 the algorithm can not �nd one if there is� The algorithm is sound in
the sense that each step preserves logical equivalence� We will apply the algorithm to the domain of
circumscriptive theories and show that by �ne�tuning the algorithm
 an e�cient reduction method
for circumscriptive theories is within reach�

��� Outline of the Paper

In Sections ���
 ��� and ��� the notation used throughout the paper is introduced in addition
to a number of preliminary de�nitions and useful tautologies� In Section �
 existing results on
reducing second�order circumscription are reviewed� In Section �
 the major components of the
elimination algorithm are described� An in�depth presentation of the algorithm may be found
in Appendix A� In Section �
 the strengths and weaknesses of the algorithm are discussed and
subsumption results over existing reduction techniques are proven� In Section 	
 complexity issues
are considered� In Section �
 the algorithm is applied in an informal manner to a number of
examples each characterized by a speci�c feature that illuminates certain aspects of the algorithm
and its generality� In Section �
 we conclude with a discussion and future work�
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��� Notation

An n�ary predicate expression is any expression of the form �x� A�x�
 where x is a tuple of n
individual variables and A�x� is any formula of �rst� or second�order classical logic� If U is an
n�ary predicate expression of the form �x� A�x� and � is a tuple of n terms
 then U ��� stands
for A���� As usual
 a predicate constant P is identi�ed with the predicate expression �x� P �x��
Similarly
 a predicate variable � is identi�ed with the predicate expression �x� ��x��
Truth values true and false are denoted by � and �
 respectively�
If U and V are predicate expressions of the same arity
 then U � V stands for �x� U �x� � V �x��

If U � �U�� � � � � Un� and V � �V�� � � � � Vn� are similar tuples of predicate expressions
 i�e� Ui and
V i are of the same arity
 � � i � n
 then U � V is an abbreviation for

Vn

i���Ui � Vi�� We write
U � V for �U � V � � �V � U �
 and U � V for �U � V � � ��V � U ��
If A is a formula
 �� � ���� � � � � �n� and �� � ���� � � � � �n� are tuples of any expressions
 then

A��� 	 ��� stands for the formula obtained from A by simultaneously replacing each occurrence
of �i by �i �� � i � n�� For any tuple �x � �x�� � � �xn� of individual variables and any tuple
�t � �t�� � � � tn� of terms
 we write �x � �t to denote the formula x� � t��
 
 
�xn � tn� We write
�x �� �t as an abbreviation for ���x � �t��

��� De�nitions

De�nition ��� �Second�Order Circumscription� Let P be a tuple of distinct predicate con�
stants
 S be a tuple of distinct function and�or predicate constants disjoint from P 
 and let
T �P � S� be a sentence� The second�order circumscription of P in T �P� S� with variable S
 written
CircSO�T �P �S�
 is the sentence

T �P� S� � �� ��� �T ����� �� � P � ���

where � and � are tuples of variables similar to P and S
 respectively�

Observe that ��� can be rewritten as

T �P� S� � �� ���T ����� � �� � P �� � �P � ����

From the point of view of the elimination of second�order quanti�cation it is often su�cient to
consider only the second�order part of the above formula
 i�e�

�� ���T ����� � �� � P �� � �P � ����

De�nition ��� A predicate variable � occurs positively �resp� negatively� in a formula A if the
conjunctive normal form of A contains a subformula of the form ���t� �resp� ����t��� A formula
A is said to be positive �resp� negative� w�r�t� � i� all occurrences of � in A are positive �resp�
negative��

De�nition ��	 A �rst�order sentence T is said to be existential �universal� i� it is of the form
�x� T� �or �x� T�
 respectively�
 where T� is quanti�er free�

De�nition ��
 A formula T is said to be monadic i� it contains one�place predicate constants
only
 and no function constants except ��place function constants�

De�nition ��� Let � be either a predicate constant or a predicate variable and � be a tuple of
predicate constants or a tuple of predicate variables� Then

� a formula T ��� is said to be separated w�r�t� � i� it is of the form T�����T���� where T����
is positive w�r�t� � and T� is negative w�r�t� �
 and
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� a sentence T is said to be separable w�r�t� � i� T is equivalent to a formula of the form

m�

i��

�Bi��� � �U i � ��� ���

where Bi��� is a formula containing no positive occurrences of predicate constants �variables�
from � and each U i is an n�tuple of predicate expressions not containing predicate constants
�variables� of ��

��� Useful Tautologies

Let us now list some useful tautologies that are used throughout the paper�

Proposition ��� The following pairs of formulas are equivalent� �Here Q stands for any quanti�er
and A
 B
 C are formulas such that C does not contain free occurrences of the variable x� In
clauses ��	�
 ���� and ����
 �t� �t�� � � � � �tn are n�tuples of terms and it is assumed that neither C nor
any term from �t� �t�� � � � � �tn contains variables from �x� In clause ����
 f is a function variable which
does not occur in A��

��� ��A and A

��� ��A�B� and �A
�B
��� ��A
B� and �A��B
��� ��xA�x� and �x�A�x�
�	� ��xA�x� and �x�A�x�
��� �x�A�x�
B�x�� and �xA�x�
�xB�x�
��� �x�A�x��B�x�� and �xA�x���xB�x�
��� Qx�A�x���C and Qx�A�x��C�
��� C�Qx�A�x�� and Qx�C�A�x��
���� Qx�A�x��
C and Qx�A�x�
C�
���� C
Qx�A�x�� and Qx�C
A�x��
���� QxQyA and QyQxA

���� A��B
C� and �A�B�
�A�C�
���� �A
B��C and �A�C�
�B�C�
��	� A��t� and ��x�A��t	 �x�
�x �� �t�
���� A��t��

 
 

A��tn� and ��x��x � �t�
 
 
 

�x � �tn��A��t� 	 �x��
���� ��x�yA��x � � �� and �f��xA��x� y 	 f��x�� � � ��
���� A��t���
 
 
�A��tn� and ��x��x �� �t�� 
 
 
��x �� �tn�
A��t� 	 �x���

The equivalence ��	� was found particularly useful by Ackermann �see ���
����� We extend the
method by adding the equivalence ����� It makes the technique work in the case of clauses contain�
ing more than one positive �or negative� occurrence of the eliminated predicate� This essentially
generalizes the Ackermann technique� The equivalence ���� is a second�order formulation of the
Skolem reduction �see ������ It allows us to perform Skolemization �i�e� elimination of existen�
tial quanti�ers� and unskolemization �i�e� elimination of Skolem functions� in such a way that
equivalence is preserved� We call this equivalence second�order Skolemization�

� Known Results about Reducing Second�Order Circum�

scription

A collection of current results concerning the reduction of second�order circumscription axioms to
the �rst�order case may be found in the handbook article on circumscription by Lifschitz ����
 in
addition to references to reduction results of other authors not covered in the handbook� In this
section
 we provide the relevant results from the handbook
 in addition to results by other authors
pertaining to reduction results for circumscription and second�order logic� The original notations
are slightly adjusted to agree with the notation used in this paper�
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��� Lifschitz� Results

In Lifschitz ��� we are presented with the following result concerning the reduction of second�order
circumscription into �rst�order logic�

Theorem ��� If T �P � is a formula of the form in Equation ��� of De�nition ��	
 then CircSO�T �P � ���
is equivalent to

m�

i��

�Ci � �U i � P ��

where Ci is

Bi�U i� �
�

j ��i

� �Bj�U j� � �U j � U i���

Theorem ��� is inapplicable in cases where constants
 di�erent than those being circumscribed

are allowed to vary� This limitation can often be avoided by applying the following result �Lifschitz
�����

Theorem ��� CircSO�T �P � S��P �S� is equivalent to T �P � S� � CircSO���� T �P����P � ����

Although Theorem ��� allows us to transform any second�order circumscription into a circum�
scription without variable constants
 the transformation introduces new second�order variables�
These can often be eliminated as follows �Lifschitz �����

Theorem ��	 If T ��� is equivalent to ��� of De�nition ��	
 then ��� T ��� is equivalent toWm

i��Bi�U i��

A di�erent result concerning the reduction of second�order circumscription into �rst�order logic
is presented in Lifschitz ����� The details are these�

Theorem ��
 If all occurrences of P � �P�� � � � � Pn� are positive
 then CircSO�T �P � ��� is equiv�
alent to

n�

i��

�T �Pi� � �x� � �Pi�x� � T ��y� �P �y� � y �� x����

In ���� Lifschitz also formulated the following theorem�

Theorem ��� If T �P � is a �rst�order sentence separated w�r�t� P then CircSO�T �P ��P � ��� is
equivalent to a �rst�order sentence�

��� Rabinov�s Result

Rabinov ���� provides the following result which subsumes the earlier results of Lifschitz �excluding
Theorem ��	��
If U and V are predicate expressions
 then U � V stands for �x� �U �x� � V �x���
Let Di�P � denote Ni�P � �Mi�P � such that the predicate constant P is positive in Mi and

negative in Ni� Di�P � is said to be p�simple ifMi�P � has the form Ui � P 
 where Ui is a predicate
expression not containing P � Di�P � is said to be n�simple if Ni�P � has the form P � Ui
 where
Ui is a predicate expression not containing P �

	



Theorem ��� If T �P � is of the form

N��P � �
�

i

Di�P �

where each Di�P � is either p�simple or n�simple and P is negative in N��P �
 then CircSO�T �P � ���
is equivalent to

T �P � �
�

i

Ri�P �

where Ri�P � stands for �Mi�P�Qi�
CircSO�Mi�P ��P � ��� ifDi�P � is n�simple
 and for �Ni�Ui�

��Ui � P � otherwise�

��� Kolaitis � Papadimitriou�s result

In Kolaitis  Papadimitriou ��� the following result was presented�

Theorem ��
 If T is a �rst�order existential sentence
 then CircSO�T �P � ��� is equivalent to a
�rst�order sentence�

��� Second	Order Monadic Logic

The following result is due to L�owenheim �see ������

Theorem ��� If T is a monadic second�order sentence
 then T is equivalent to a �rst�order
sentence T ��

��
 The SCAN Algorithm

The SCAN algorithm was introduced by D� Gabbay and H� J� Ohlbach in ���� It is formulated as
follows�

De�nition ��� Given a second�order formula ��� � � ��nA
 where A is a classical �rst�order for�
mula perform the following steps�

�� Transform A into clause form using the equivalences given in Proposition ������ Ignore the
pre�x with existential �rst� and second�order quanti�ers�

�� Generate all C�resolvents and C�factors with the predicate variables ��� � � � ��n according
to the following rules�

�a� ��s�� � � � � sn�
C� ���t�� � � � � tn�
D � C
D
s� �� t�
 � � �
sn �� tn

�b� ��s�� � � � � sn�
��t�� � � � � tn�
C � ��s�� � � � � sn�
C
s� �� t�
 � � �
sn �� tn�

No self�resolution is allowed� All equivalence preserving simpli�cationsmay be applied freely�

�� If the previous step terminates try to unskolemize the resulting formula� If this is successful

the obtained formula is a �rst�order formula equivalent to the input second�order one�

Observe that SCAN eliminates the second�order quanti�cation for a large class of formulas and
can be applied in computing circumscription� On the other hand
 the SCAN algorithm may not
terminate and the sets of C�resolvents and C�factors may be large�
In what follows we shall not compare SCAN with our algorithm since no syntactic character�

ization of formulas accepted by SCAN is known� Observe that some examples where SCAN was
better than the algorithm given in ���� were known� On the other hand
 in the present paper
we strengthen the algorithm of ���� by adding the equivalence ���� of Proposition ���� After this
modi�cation we conjecture that both approaches are successful for the same class of formulas�
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However
 the additional advantage of our algorithm is that it always terminates
 while SCAN may
loop� For example
 the formula

�����x��x���y��y��Q�x����x���x��

when given as input to our algorithm does terminate
 while for SCAN it does not�

� The Elimination Algorithm

In this section we brie!y discuss the elimination algorithm� Its complete formulation can be
found in the Appendix� The algorithm was originally formulated
 in a weaker form
 in ���� in the
context of modal logics� It is based on Ackermann�s techniques developed in connection with the
elimination problem �see �����
The elimination algorithm is based on the following lemma
 proved by Ackermann in ���� �see

����� The proof can also be found in �����

Lemma 	�� �Ackermann Lemma� Let � be a predicate variable and A��x�
 B��� be formu�
las without second�order quanti�cation� Let B��� be positive w�r�t� � and let A contain no
occurrences of � at all� Then the following equivalences hold�

����x����x�
A��x� �z���B��	 ��� � B��	 A��x� �z�� ���

����x�����x�
A��x� �z���B��� � B��	 A��x� �z�� ���

where in the righthand formulas the arguments �x of A are each time substituted by the respective
actual arguments of � �renaming the bound variables whenever necessary��

The following proposition together with the equivalences given in Proposition ����� is also used
in the algorithm�

Proposition 	�� Let A be a formula of the form pref�A�� 
 
 
�Aq�
 where pref is a pre�x of
�rst�order quanti�ers and A�� � � � � Aq are disjunctions of literals� In addition
 let � be a predicate
variable occuring in A and Conj�A� those conjuncts in A where � occurs� Assume that for any
conjunct in Conj�A�
 � occurs either positively
 or both positively and negatively �or analogously

negatively
 or both negatively and positively�� Then

��A � pref�Ai�� 
 
 
�Air� �	�

where i�� � � � � ir � f�� � � � � qg and Ai� � � � � � Air are all the conjuncts that do not contain occurrences
of � �the empty conjunction is regarded to be equivalent to ���

Proof See �����

��� Outline of the Elimination Algorithm

We are now ready to outline the elimination algorithm� The algorithm takes a formula of the form
���A
 where A is a �rst�order formula
 as an input and returns its �rst�order equivalent or reports
failure�� Of course
 the algorithm can also be used for formulas of the form ��A
 since the latter
formula is equivalent to ����A� Thus
 by repeating the algorithm one can deal with formulas
containing many arbitrary second�order quanti�ers�
The elimination algorithm consists of four phases� ��� preprocessing� ��� preparation for the

Ackermann lemma� ��� application of the Ackermann lemma� and ��� simpli�cation� These phases
are described below� It is always assumed that ��� whenever the goal speci�c for a current phase
is reached
 then the remaining steps of the phase are skipped
 ��� every time the equivalence �	�
of Proposition ��� is applicable
 it should be applied�

�The failure of the algorithm does not mean that the second�order formula at hand cannot be reduced to its
�rst�order equivalent
 The problem we are dealing with is not even partially decidable� for �rst�order de�nability
of the formulas we consider is not an arithmetical notion �see� for instance� �����
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��� Preprocessing� The purpose of this phase is to transform the formula ���A into a form
that separates positive and negative occurrences of the quanti�ed predicate variable �� The
form we want to obtain is�

��x����A�����B�����
 
 
 

�An����Bn������ ���

where
 for each � � i � n
 Ai��� is positive w�r�t� � and Bi��� is negative w�r�t� ��� The
steps of this phase are the following� �i� Eliminate the connectives � and � using the usual
de�nitions� Remove redundant quanti�ers� Rename individual variables until all quanti�ed
variables are di�erent and no variable is both bound and free� Using the usual equivalences

move the negation connective to the right until all its occurrences immediately precede
atomic formulas� �ii� Move universal quanti�ers to the right and existential quanti�ers to
the left
 applying as long as possible the equivalences ��� " ���� from Proposition ���� �iii�
In the matrix of the formula obtained so far
 distribute all top�level conjunctions over the
disjunctions that occur among their conjuncts
 applying the equivalences ���� " ���� from
Proposition ���� �iv� If the resulting formula is not in the form ���
 then report the failure
of the algorithm� Otherwise replace ��� by its equivalent given by

��x����A�����B�����
 
 
 

����An����Bn������ ���

Try to �nd Equation ����s �rst�order equivalent by applying the next phases in the algo�
rithm to each disjunct in ��� separately� If the �rst�order equivalents of each disjunct are
successfully obtained then return their disjunction
 preceded by the pre�x ��x
 as the output
of the algorithm�

��� Preparation for the Ackermann lemma� The goal of this phase is to transform a
formula of the form ���A����B����
 where A��� �resp� B���� is positive �resp� negative�
w�r�t� �
 into one of the forms ��� or ��� given in Lemma ���� Both forms can always be
obtained and both transformations should be performed because none
 one or both forms
may require Skolemization� Unskolemization
 which occurs in the next phase
 could fail in
one form
 but not the other� In addition
 one form may be substantially smaller than the
other� The steps of this phase are based on equivalences ���� " ���� from Proposition ����

��� Application of the Ackermann Lemma� The goal of this phase is to eliminate the
second�order quanti�cation over �
 by applying the Ackermann lemma
 and then to un�
skolemize the function variables possibly introduced� This latter step employs the equiva�
lence ���� from Proposition ����

��� Simpli�cation� Generally
 application of Ackermann�s Lemma in step ��� often involves
the use of equivalence ��	� in Proposition ��� in the left to right direction� If so
 the same
equivalence
 or its generalization ����
 may often be used after application of the Lemma in
the right to left direction
 substantially shortening the resulting formula�

��� Discussion of the Algorithm

Assume we have a second�order formula A of the form

�����prefB���pref �C��� ���

where


� pref and pref � are sequences of �rst�order quanti�ers


� B and C are quanti�er�free formulas in conjunctive normal forms


�It should be emphasized that not every formula is reducible into this form

�To increase the strength of the algorithm� it is essential to move as many existentially quanti�ed variables as

possible into the pre�x of ���


�



� B is positive w�r�t� �
 and

� C is negative w�r�t� ��

Then
 the following proposition holds�

Proposition 	�� Let A be an input formula of the form ���� Then
 as a result
 the algorithm
returns a �rst�order formula provided that unskolemization �if necessary� succeeds�

Observe that Skolem functions are introduced in the second step of the algorithm whenever
existential quanti�ers are to be eliminated� These can appear in the input formula or may be
introduced via application of the equivalence ���� of Proposition ����
In the following proposition
 we formulate conditions under which no Skolem functions are

introduced and the algorithm terminates successfully�

Proposition 	�	 If one of the following conditions holds

� B is universal and each conjunct of B contains at most one occurrence of �
 or

� C is universal and each conjunct of C contains at most one occurrence of ��


then the algorithm always returns a �rst�order formula as output�

If the input formula cannot be transformed into the form ��� then the algorithm fails�

� On the Strength of the Algorithm

Let us �rst prove that the algorithm subsumes
 and is even stronger than the results given in
��
 �
 ��
 ���� Recall that the formulation of those results is quoted in Section ��
Let us start with Rabinov�s result �and thus the subsumed results of Lifschitz�� In fact
 the

following theorem is stronger than the result of Rabinov�

Theorem 
�� If T �P � is of the form

N��P � �
�

i

Di�P �

where eachDi�P � is either p�simple or contains no positive occurrences of P � and N��P � is negative
w�r�t� P 
 then the algorithm eliminates the second�order quanti�ers from CircSO�T �P � ����

Proof
The negated second�order part of CircSO�T �P � ��� takes the following form


���N���� �
�

i

Di������ � P ����P � ���

The following steps show the respective reduction

���N���� �
W
iDi������ � P ����P � �� �

���
W
i�N���� �Di������ � P ����P � ��� �W

i ���N���� �Di������ � P ����P � �� �W
i ���N���� �Di������x������x�
P ��x�����z��P ��z������z�� �W
i ��z����N���� �Di������x������x�
P ��x�������z��P ��z� �W
i ��z����Di����N�������x������x�
P ��x�������z��P ��z��

Observe that all occurrences of � in N�������x������x�
P ��x�������z��P ��z� are negative� More�
over
 Di either contains no positive occurrences of � or is p�simple� In the �rst case
 there are
no positive occurrences of � at all and it su�ces to apply equivalence �	� of Proposition ���� In
the second case
 where Di is p�simple
 it takes the form Ui � �
 i�e� ��x����x�
�Ui��x� and the
Ackermann lemma can be applied directly�

�Rabinov requires n�simplicity here

�



The following theorem shows that the algorithm eliminates second�order quanti�cation in the
case of existential theories considered in ����

Theorem 
�� If T is a �rst�order existential sentence
 then the algorithm eliminates second�order
quanti�cation from CircSO�T �P � ����

Proof
The negated second�order part of CircSO�T �P � ��� takes the following form


���T ������ � P ����P � ���

By assumption T ��� is of the form ��x�T ���x�
 where T ���x� is quanti�er free�
The following steps show the respective reduction

���T ������ � P ����P � �� �
�����x�T ������� � P ����P � �� �
��x���T �������y�����y�
P ��y�����z��P ��z������z�� �
��x�z���T �������y�����y�
P ��y���P ��z������z��

Next we transform the above formula into the disjunctive normal form �treating ��y����y�
P ��y��
as an atomic formula� and then distribute the existential quanti�ers over disjunctions� Now each
disjunct is a conjunction of atomic formulas and ��y����y�
P ��y��� Thus
 by a simple application
of equivalence ��	� of proposition ���
 each disjunct can be transformed into the form required in
the Ackermann lemma�

Theorem 
�	 If T is a �rst�order monadic sentence
 then the algorithm eliminates second�order
quanti�cation from CircSO�T �P �S��

Proof
The reduction that works here is given in Ackermann ����
 pp� ������
 which uses Proposition ���

and a weaker form of Lemma ���� It can easily be reformulated in terms of the phases of our
elimination algorithm�

��� Comparison of Approaches

In comparing the di�erent approaches and results concerning the reduction of circumscriptive the�
ories
 we will refer to Figure � below
 which provides a pictorial view of the subsumption relation
between the various theorems and types of theories reduced� DLS refers to our algorithm
 MIXED
refers to theories with mixed quanti�ers
 VC refers to theories which allow variable constants
 and
MONAD refers to theories with only monadic sentences� In addition
 � and � refer to purely uni�
versal and existential theories
 respectively
 while �� refers to those theories where Skolemization
is necessary
 and �� refers to mixed theories not requiring Skolemization� The solid arrows denote
subsumption� In addition there are two broken solid arrows� The arrow pointing towards Th ��	
is broken to signify that although the DLS algorithm in its general form does not fully subsume
Theorem ��	
 when specialized appropriately
 it does� The arrow pointing towards SKOLEM is
broken to signify that the DLS algorithm works for those theories involving Skolemization when
the unskolemization step is successful and the algorithm returns a �rst�order formula as output�
Since
 it may not be possible to unskolemize certain theories successfully
 there is no complete
subsumption of this class�


���� Positive Results

In addition to the results described in the previous section
 observe that the method we propose
is also stronger in regard to the following features�

��



�����

VC

SKOLEM

�P�N��simple�

�Separable�

MIXED

�DLS�

�

�Separated�

�Separable�

�DLS�Th ����DLS� Th ����DLS� Th ����DLS�

Th ����Lifschitz�

Th ����Rabinov� Th ����Kol
Pap�

Th ��	�Lifschitz�

Th ������Lifschitz�

MONAD

Th ����DLS�

Figure �� Subsumption Results�

� DLS provides us with a more general approach to existential quanti�cation due to the possi�
bility of allowing Skolemization� Thus it works for combinations of existential and universal
quanti�ers� On the other hand
 Kolaitis and Papadimitriou consider pure existential formu�
las
 while Lifschitz and Rabinov consider pure universal theories�

� DLS does not distinguish between theories with variable constants and those without� On
the other hand both Rabinov
 Kolaitis and Papadimitriou
 �and Lifschitz to some extent�

restrict their theories to those without variable constants� In some cases
 Lifschitz�s results
can reduce theories with variable constants if the theories are separable and no Skolemization
is involved� �See the next section for problems DLS has with separated theories��

� DLS permits as input circumscriptive theories with arbitrary numbers of minimized and
varied predicates� This is not the case for Rabinov�s result nor for Lifschitz�s result pertaining
to separated formulas�

� DLS describes how to constructively transform formulas into the required form�


���� Negative Results

Note that in the end of Section ��� we characterized the class of formulas for which the algorithm
fails� Let us now discuss an additional source of weaknesses of the algorithm and a possible way
of overcoming those weaknesses�
Observe that the elimination algorithm we deal with is independent of any particular theory�

On the other hand
 it is well known that second�order quanti�ers can sometimes be eliminated
when additional information is given�
One good illustrative example originates from the area of modal logics� Namely
 McKinsey�s

axiom is not equivalent to any �rst�order formula� Accordingly
 our algorithm fails �see ������
However
 when one assumes that the accessibility relation is transitive
 the elimination is possible

since McKinsey together with transitivity is �rst�order de�nable �see ������
The same situation may occur when one computes circumscription� Consider the theorem of

Lifschitz �Theorem ��	 above�� It permits us to deal with any sequences of �rst�order quanti�ers

��



provided that the formula is separated� The proof given by Lifschitz is based on a clever move
which applies knowledge about the �rst�order theory one works with� Observe that in Theorem
��	 the sentence T �P � is assumed to be separated
 i�e� it is of the form T��P ��T��P �
 where T��P �
is positive w�r�t� P and T��P � is negative w�r�t� P � Thus CircSO�T��T��P � ��� is equivalent to

T��P ��T��P ������� �T�����T������ � P ��

Since T��P � is negative w�r�t� P 
 T��P � together with � � P imply T����� Thus when T��P �
is taken into consideration
 one substantially simpli�es the second order circumscription into the
following second�order formula

T��P ��T��P ������� �T������ � P ��

The last formula is reducible to a �rst�order sentence �and is
 in fact
 in the scope of our algorithm��
The above examples show that the general algorithm we presented can �and should be� tuned

to the particular situation it is applied to� Since circumscription is always de�ned over some �rst�
order theory
 moves similar to the method used by Lifschitz above
 should be incorporated into
the algorithm� If this is done for the case of separated theories
 then the specialized version of our
algorithm subsumes all previous results concerning the reduction of circumscriptive theories� �see
Section ��� for more details��

��� A General Methodology for Use of the Algorithm

The elimination algorithm we present is very general in that it can be applied to any second�order
formula� However
 in speci�c applications the algorithm can often be substantially improved� Two
such improvements have already been provided� In the �rst case
 we suggest using Proposition ���
each time it is applicable� The reason for this is that the proposition allows one to immediately
eliminate a second�order variable in the formula in question� As shall be seen in section �
 the
proposition is not just a theoretical result " it is sometimes applicable when reducing circumscrip�
tion axioms�
Another improvement we provide is the phase of simpli�cation� It was observed that in many

practically occuring situations the formula obtained as the result of applying the Ackermann
lemma can be substantially simpli�ed by using Proposition ��� ��	�� Perhaps this is the case
because of the speci�c form of the circumscription axiom� However
 it is obviously worth doing
while applying the elimination algorithm to circumscriptive theories�
As already stated
 our algorithm subsumes almost all known results concerning the reduction

of circumscriptive theories� The only exception appears to be the result of Lifschitz
 presented in
Theorem ��	� However
 when specifying our algorithm for the purpose of reducing circumscription

this specialized result can easily be built into the preprocessing phase� Moreover
 even the result
of Rabinov
 which is subsumed by the elimination algorithm
 could also be built in
 simply to
make the algorithm more e�ective�
In concluding
 the situation may be summarized as follows� Given the general form of our

algorithm and a domain to which it will be applied
 analyze the syntactic character of theories
in the domain and integrate any useful reduction heuristic in the preprocessing or simpli�cation
phase of the algorithm�

� Complexity of Reduction

Observe that the elimination algorithm we consider
 terminates and is easily mechanizable� Let
us now estimate its complexity�
First observe that during phase ��� of the algorithm
 the form of the formula to be transformed

is�

����x����x�
A��x� �z���B��	 ��� ���

�The second form considered in lemma �
� is symmetric to the �rst one


��



and then its form is

B��	 A��x� �z�� ����

after application of the Ackermann lemma�
Thus
 if the length of ��� is n
 then the length of ���� is less than n�� Observe
 however
 that

this worst case occurs when � has O�n� occurrences in ���� In practical examples
 however
 the
length of ���� is usually O�n� �and often less than the length of �����
The worst case analysis of steps ��� and ��� shows that the size of the transformed formula

can increase exponentially �due to possible transformations between disjunctive and conjunctive
normal forms�� This
 however
 is again a rare phenomenon " see examples below
 in particular
Section ��� concerning a Kolaitis and Papadimitriou example�

	 Applying the Algorithm to some Examples

The best way to understand how the algorithm works is to apply it to examples� In this section

we apply the algorithm to a number of di�erent examples
 each highlighting a particular strength
of the algorithm� A number of examples are taken directly from the literature concerning the use
of circumscription in knowledge representation� We take a number of liberties in applying the
algorithm so as not to drown in details� For example
 step ��� in the previous section states that
both forms of Ackermann�s Lemma should be considered� In the examples
 we choose one form
and apply the algorithm� This saves considerable space� Also
 the simpli�cation phase is omitted
unless it can be applied�

��� Block Example

Example ��� �Block example� Let #�Ab�On� be the theory

�b� �� b��B�b���B�b����On�b������x�B�x���Ab�x� � On�x��� ����

where B and On are abbreviations for Block and Ontable
 respectively� The circumscription of
#�Ab�On� with Ab minimized and On varied is

CircSO�#�Ab�On��Ab�On� � #�Ab�On��������#������� � Ab� � �Ab � ���� ����

where

#����� � �b� �� b��B�b���B�b������b������x�B�x�����x� � ��x�� ����

� � Ab � �x���x� � Ab�x� ����

Ab � � � �x�Ab�x� � ��x�� ��	�

In the following
 we will reduce

�����#�������� � Ab� � �Ab � ��� ����

in ����� Negating ����
 we get

�����#�������� � Ab����Ab � ���� ����

Since we will try to remove � �rst
 we replace ���� by the equivalent

�����#�������� � Ab����Ab � ���� ����

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalent forms ����"��	�

eliminating � and renaming individual variables
 we obtain

�����b� �� b��B�b���B�b������b��

��x��B�x�
��x�
��x����y����y�
Ab�y����z�Ab�z�����z���� ����

��



We next move �z to the left
 obtaining

�z�����b� �� b��B�b���B�b������b��

��x��B�x�
��x�
��x����y����y�
Ab�y����Ab�z�����z���� ����

Preparation for the Ackermann lemma� ���� is in the form suitable for application of the
Ackermann lemma� To make this more explicit
 we rewrite ���� as

�z�����x����x�
�B�x�
��x����y����y�
Ab�y������z��Ab�z�

����b���b� �� b��B�b���B�b���� ����

Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we obtain

�z����y��B�y�
��y�
Ab�y�����B�z�
��z���Ab�z�

����b���b� �� b��B�b���B�b���� ����

We next try to remove � in �����

Preprocessing� The formula ���� is already in the form which is the goal of this phase� To see
this
 we rewrite it as

�z������b����y���y�
�B�y�
Ab�y��

����z�
�B�z���Ab�z��b� �� b��B�b���B�b���� ����

Preparation for the Ackermann lemma� Applying Proposition ��� ��	� to ���b�� in ����

we obtain

�z���s�����s�
s �� b����y���y�
�B�y�
Ab�y��

����z�
�B�z���Ab�z��b� �� b��B�b���B�b���� ����

Application of the Ackermann lemma� We apply the Ackermann lemma to ����
 obtaining

�z�y��y �� b�
�B�y�
Ab�y��

��z �� b�
�B�z���Ab�z��b� �� b��B�b���B�b���� ��	�

Simpli�cation� Using Proposition ��� ��	�
 we replace ��	� by

�z���B�b��
Ab�b���

��z �� b�
�B�z���Ab�z��b� �� b��B�b���B�b���� ����

Negating ���� results in

�z��B�b����Ab�b���
�z � b��B�z�
�Ab�z�
b� � b�
�B�b��
�B�b���� ����

The �rst�order formula ���� is logically equivalent to the second�order formula ����� Consequently


CircSO�#�Ab�On��Ab�On� � #�Ab�On�� ����

�z��B�b����Ab�b���
�z � b��B�z�
�Ab�z�
b� � b�
�B�b��
�B�b���� ����

At this stage
 the algorithm terminates but we can continue simplifying relative to the original
theory� ���� together with ���� implies

Ab�b����z��Ab�z�
�z � b��B�z��� ����

and thus implies

�z�Ab�z� � �z � b��B�z���� ����

which states that for any object z
 either it is normal ��Ab�z�� or it is a block and b�� In other
words
 the only abnormal object is the block b��

��



��� The Scope Example

This example is due to Etherington
 Kraus and Perlis ���� It contains both an existentially and a
universally quanti�ed formula� The theory contains a counterexample axiom which asserts that
there is an exception to a default rule stating that birds normally !y� The example is considered
conceptually problematic because even though the number of exceptions to the rule is minimized

any bird considered in the theory might be the exceptional bird� Consequently
 nothing more can
be entailed about any particular birds !ying capabilities other than what could be entailed using
the original axioms�

Example ��� � Scope Example� Let #�Ab� F � be the theory

��x�B�x���F �x�����x�B�x���Ab�x� � F �x��� ����

where B and F stand for Bird and F lies
 respectively� The circumscription of #�Ab� F � with Ab
minimized and F varied is

CircSO�#�Ab� F ��Ab�F �� #�Ab� F �������#�������� � Ab� � �Ab � ���� ����

where

#����� � ��x�B�x�����x�����x�B�x�����x� � ��x�� ����

� � Ab � �x���x� � Ab�x� ��	�

Ab � � � �x�Ab�x� � ��x�� ����

In the following
 we will reduce

�����#�������� � Ab� � �Ab � ��� ����

in ����� Negating ����
 we obtain

�����#�������� � Ab����Ab � ���� ����

We start by removing ��

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalents given by ����"����

eliminating � and renaming individual variables
 we obtain

������w�B�w�����w����x��B�x�
��x�
��x��

��y����y�
Ab�y����z�Ab�z�����z���� ����

Moving �w and �z to the left
 we obtain

�w�z������B�w�����w����x��B�x�
��x�
��x��

��y����y�
Ab�y����Ab�z�����z���� ����

Preparation for the Ackermann lemma� ���� is in a form suitable for application of the
Ackermann lemma� To see this
 we rewrite it as

�w�z�����x����x�
�B�x�
��x�������w��B�w��

��y����y�
Ab�y���Ab�z�����z��� ����

Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we get

�w�z������B�w�
��w���B�w����y����y�
Ab�y���Ab�z�����z�� ����

which is equivalent to

�w�z�����w��B�w���y����y�
Ab�y���Ab�z�����z��� ����

We now remove � in �����

�	



Preprocessing����� is in the form which is the goal of this phase�

Preparation for the Ackermann lemma� We apply Proposition ��� ��	� to ��w� in ����
obtaining

�w�z����s���s�
s �� w��B�w���y����y�
Ab�y������z��Ab�z��� ����

Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we get

�w�z�y��y �� w
Ab�y���B�w��z �� w�Ab�z�� ��	�

Simpli�cation� Using Proposition ��� ��	�
 we replace ��	� by

�w�z�Ab�w��B�w��z �� w�Ab�z��� ����

We then take the negation of ����
 obtaining

�w�z��Ab�w�
�B�w�
z � w
�Ab�z�� ����

which is equivalent to

�w�z�Ab�w��B�w���Ab�z��z � w��� ����

The �rst�order formula ���� is logically equivalent to the second�order formula ����� Consequently


CircSO�#�Ab� F ��Ab�F �� #�Ab� F ���w�z�Ab�w��Ab�z� � �B�w� � z � w��� ����

���� asserts that there is at most one abnormal object that is a bird� Together with the theory
����
 we can infer that there is one and only one abnormal bird object
 the unspeci�ed bird that
doesn�t !y� Suppose the additional assertion that Fred is a bird
 B�Fred�
 is added to the theory�
As stated previously
 nothing can be asserted about the !ying capabilities of Fred�
It is interesting to note the direct relation the �rst�order equivalent of the circumscription axiom

has to the theory� It is easily observed for example that adding the unique names assumption to
the theory would result in

�w�z�w �� z�Ab�w��B�w� � �Ab�z��� �	��

So
 for any two di�erent birds
 one or the other is abnormal� Of course
 we do not know which
one�
Another of the advantages of the algorithmic approach to reducing circumscription axioms

is the ease with which both a theory and its reduction proof can be modi�ed� For example

Etherington et� al� ��� continue discussing the example by adding the assertion

B�Fred��B�Opus��Ab�Opus� �	��

along with a unique names assumption� The reduction proof for the modi�ed theory is similar to
the current reduction proof with the distinction that the �rst conjunct in ����
 ��s�
s �� w
 is
replaced with

��s�
�s �� w�s �� Opus� �	��

and the steps which follow are modi�ed accordingly� The �nal reduction formula would then be

�w�Ab�w��B�w� � w � Opus� �	��

It would then follow that F �Fred��

��



��� The Birthday Example

Example ��	 �Birthday Example� This example contains both existentially quanti�ed and
universal formulas� In addition
 it contains both unary and binary predicates� It is analogous to
the scoping example in the previous section
 but uses binary predicates�
Let #�Ab�G� be the theory

��x�y�B�y��F �x� y���G�x� y������x�y�B�y��F �x� y���Ab�x� y� � G�x� y���� �	��

where B
 F and G are abbreviations for Birthday
 Friend and Gives � Gift
 respectively� Here
Ab�x� y� has the following intuitive interpretation� $x behaves abnormally w�r�t� y in the situation
when y has a birthday and x is a friend of y
� The circumscription of #�Ab�G� with Ab minimized
and G varied is

CircSO�#�Ab�G��Ab�G�� #�Ab�G�������#�������� � Ab� � �Ab � ���� �		�

where

#����� � ��x�y�B�y��F �x� y�����x� y������x�y�B�y��F �x� y�����x� y� � ��x� y����	��

� � Ab � �x�y���x� y� � Ab�x� y�� �	��

Ab � � � �x�y�Ab�x� y� � ��x� y��� �	��

In the following
 we will reduce

�����#�������� � Ab� � �Ab � ��� �	��

in �		�� Negating �	��
 we obtain

�����#�������� � Ab����Ab � ���� ����

We remove � �rst�

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalents given by �	��"�	��

eliminating �
 renaming individual variables and moving existential quanti�ers over individual
variables to the left
 we obtain

�x�y�q�r�����B�y��F �x� y�����x� y�

��u�z��B�z�
�F �u� z�
��u� z�
��u� z��

��s�t����s� t�
Ab�s� t���Ab�q� r�����q� r��� ����

Preparation for the Ackermann lemma� ���� is in the form suitable for application of the
Ackermann lemma� To see this
 we rewrite it as

�x�y�q�r�����u�z����u� z�
�B�z�
�F �u� z�
��u� z������x� y�

�B�y��F �x� y���s�t����s� t�
Ab�s� t���Ab�q� r�����q� r��� ����

Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we obtain

�x�y�q�r�����B�y�
�F �x� y�
��x� y���B�y��F �x� y�

��s�t����s� t�
Ab�s� t���Ab�q� r�����q� r��� ����

We now remove � in �����

Preprocessing� ���� is in the form which is the goal of this phase�

Preparation for the Ackermann lemma� Using Proposition ��� ��	�
 we replace ���� by

�x�y�q�r���v�w����v� w�
v �� x
w �� y
�B�y�
�F �x� y��

��s�t����s� t�
Ab�s� t������q� r��B�y��F �x� y��Ab�q� r��� ����

��



Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we obtain

�x�y�q�r�s�t��s �� x
t �� y
�B�y�
�F �x� y�
Ab�s� t��

��q �� x
r �� y
�B�y�
�F �x� y���B�y��F �x� y��Ab�q� r��� ��	�

Simpli�cation� We replace ��	� by

�x�y�q�r���B�y�
�F �x� y�
Ab�x� y��

��q �� x
r �� y
�B�y�
�F �x� y���B�y��F �x� y��Ab�q� r��� ����

Negating ����
 we obtain

�x�y�q�r��B�y��F �x� y���Ab�x� y��


�q � x�r � y�B�y��F �x� y��
�B�y�
�F �x� y�
�Ab�q� r��� ����

���� is logically equivalent to

�x�y�q�r���B�y��F �x� y��
��B�y��F �x� y�����Ab�x� y�
�q � x�r � y���


�Ab�q� r��� ����

which is equivalent to

�x�y�q�r���B�y��F �x� y��
�Ab�x� y�
�q � x�r � y�
�Ab�q� r��� ����

The �rst�order formula ���� is logically equivalent to the second�order formula �	��� Consequently


CircSO�#�Ab�G��Ab�G� � #�Ab�G��

�x�y�q�r���B�y��F �x� y��
�Ab�x� y�
�q � x�r � y�
�Ab�q� r��� ����

A more informative sentence
 equivalent to ����
 is

�x�y�q�r�Ab�x� y��Ab�q� r��B�y��F �x� y� � �q � x�r � y��� ����

����
 together with the theory #�Ab�G�
 states that there is exactly one pair of individuals
 x and
y
 such that y has a birthday
 x is a friend of y and x does not give a gift to y�

��� The Hospital Example

Example ��
 �Hospital Example� Let # be the theory

��x�y�Ab�x� y� � H�x� y������x�y��Ab�x� y� � H�x� y���� ����

Here H�x� y� and Ab�x� y� are to be intuitively interpreted as $x is in a hospital in a situation
y
 and $x behaves abnormally in a situation y

 respectively� The circumscription of #
 with Ab
minimized and H varied is

CircSO�#�Ab�H� � #������#�������� � Ab� � �Ab � ���� ����

where

#����� � �x�y���x� y� � ��x� y��� �x�y����x� y� � ��x� y�� ����

� � Ab � �x�y���x� y� � Ab�x� y�� ��	�

Ab � � � �x�y�Ab�x� y� � ��x� y��� ����

In the following
 we will reduce

�����#�������� � Ab� � �Ab � ��� ����

in ����� Negating ����
 we obtain

�����#�������� � Ab����Ab � ���� ����

��



Since we will try to remove � �rst
 we replace ���� by its equivalent given by

�����#�������� � Ab����Ab � ���� ����

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalents given by ����"����

eliminating � and renaming individual variables
 we obtain

������x�y����x� y�
��x� y����q�r���q� r�
��q� r��

��u�v����u� v�
Ab�u� v����s�t�Ab�s� t�����s� t���� ����

Moving �s�t to the left and rearranging the resulting formula
 we obtain

�s�t������q�r���q� r�
��q� r����x�y����x� y�
��x� y��

��u�v����u� v�
Ab�u� v���Ab�s� t�����s� t��� ����

Preparation for the Ackermann lemma� Using Proposition ��� ��	�
 we replace ��q� r� in
���� by �z�w���z� w�
z �� q
w �� r�� This results in

�s�t������q�r��z�w���z� w�
z �� q
w �� r�
��q� r����x�y����x� y�
��x� y��

��u�v����u� v�
Ab�u� v���Ab�s� t�����s� t�� ����

which is equivalent to

�s�t������q�r�z�w���z� w�
z �� q
w �� r
��q� r����x�y����x� y�
��x� y��

��u�v����u� v�
Ab�u� v���Ab�s� t�����s� t��� ����

We next eliminate �r by Skolemization and move �q to the right and �z�w to the left� The
resulting formula is �below f is the introduced function variable�

�s�t���f���z�w����z� w�
�q�z �� q
w �� f�q�
��q� f�q������x�y����x� y�
��x� y��

��u�v����u� v�
Ab�u� v���Ab�s� t�����s� t��� ����

Application of the Ackermann lemma� Applying the Ackermann lemma to ����
 we obtain

�s�t�f����x�y��q�y �� q
y �� f�q�
��q� f�q���
��x� y��

��u�v��q�u �� q
v �� f�q�
��q� f�q���
Ab�u� v��

�Ab�s� t���q�s �� q
t �� f�q�
��q� f�q���� ��	�

which is equivalent to

�s�t�f���x�y�q�u�v��y �� q
y �� f�q�
��q� f�q��
��x� y��

��u �� q
v �� f�q�
��q� f�q��
Ab�u� v��

�Ab�s� t���s �� q
t �� f�q�
��q� f�q����� ����

Since all occurrences of � in each conjunct in ���� are positive
 all the conjuncts including �

together with ��
 can be removed by Proposition ���� This yields

�s�t�f���x�y�q�u�v�Ab�s� t� ����

which reduces to

�s�t�Ab�s� t�� ����

Since we negated the original formula before applying the algorithm
 we now negate the result

obtaining

�s�t��Ab�s� t�� ����

The �rst�order formula ���� is logically equivalent to the second�order formula ����� Consequently


CircSO�#�Ab�H� � #��s�t��Ab�s� t�� ����

which implies

�x�yH�x� y�� ����

��



��
 The Vancouver Example

This is a variant of an example from Reiter ����� Rather than using the function city as Reiter
does
 we will use a relation C�x� y� with suitable axioms�

Example ��� �Vancouver Example� We begin by de�ning the binary relation C with the in�
tention that C�x� y� holds i� the city of x is y� In our axiomatization
 Reiter�s axiom


�x��Ab�x� � city�x� � city�wife�x�� ����

is replaced with

�x�y�z��Ab�x��C�x� y��C�wife�x�� z� � y � z� ����

In addition
 we add the following axiom guaranteeing that C represents a function�

�x�y�z�C�x� y��C�x� z� � y � z� ����

We do not require that all people live in cities
 i�e� we reject the axiom

�x�y�C�x� y�� ��	�

So
 the distinction is that our representation of the city function is partial
 whereas Reiter�s is
total� Intuitively
 our choice seems to make more sense�
Let #�Ab�C� be the theory

��x�y�z��Ab�x��C�x� y��C�wife�x�� z� � y � z����x�y�z�C�x� y��C�x� z�� � y � z�� ����

The circumscription of #�Ab�City� with Ab minimized and C varied is

CircSO�#�Ab�C��Ab�C�� #�Ab�C�������#�������� � Ab� � �Ab � ��� ����

where

#����� � ��x�y�z����x����x� y����wife�x�� z� � y � z��

��x�y�z���x� y����x� z� � y � z�� ����

� � Ab � �x���x� � Ab�x� ����

Ab � � � �x�Ab�x� � ��x�� �����

In the following
 we will reduce

�����#�������� � Ab� � �Ab � ��� �����

in ����� Negating �����
 we obtain

�����#�������� � Ab����Ab � ���� �����

We start by removing ��

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalents given by ����"�����

eliminating � and renaming individual variables
 we obtain

������x�y�z���x�
���x� y�
���wife�x�� z�
y � z��

�u�v�w����u� v�
���u�w�
v � w����s����s�
Ab�s����t�Ab�t�����t���� �����

Note that � can be removed directly using Proposition ���
 since all instances of � occurring in
����� are negative� To prepare the latter formula into the form suitable for the application of
Proposition ���
 we move all quanti�ers ranging over individual variables to the left� This results
in

�����x�y�z�u�v�w�s�t����x�
���x� y�
���wife�x�� z�
y � z��

����u� v�
���u�w�
v � w������s�
Ab�s���Ab�t�����t��� �����

��



Applying Proposition ��� to �����
 we obtain

���x�y�z�u�v�w�s�t�����s�
Ab�s���Ab�t�����t�� ���	�

which reduces to

���s�t�����s�
Ab�s���Ab�t�����t�� �����

We next try to remove �� Again
 this can be done directly using Proposition ���
 since all instances
of � in ����� are negative� This results in

�s�t�Ab�t� �����

which is equivalent to

�t�Ab�t�� �����

Taking the negation of ����� results in

�t��Ab�t�� �����

The �rst�order formula ����� is logically equivalent to the second�order formula ������ Conse�
quently


CircSO�#�Ab�C� � #��t�Ab�t�� �����

��� A Preprocessing Example

In the previous examples
 the preprocessing phase was very simple� In this example
 which appears
to be a relatively trivial theory
 the preprocessing stage is much more complex�

Example ��� �Preprocessing Example� Let # be the theory

P �a� � P �b�� �����

The circumscription of #
 with P minimized is

CircSO�#�P � ��� � #����#������ � P � � �P � ���� �����

where

#��� � ��a� � ��b�� �����

� � Ab � �x���x� � P �x�� �����

Ab � � � �x�P �x� � ��x�� ���	�

In the following
 we will reduce

���#������ � Ab� � �Ab � ��� �����

in ������ Negating �����
 we obtain

���#������ � Ab����Ab � ���� �����

Preprocessing� Replacing #�����
 � � Ab and Ab � � by their equivalents given by �����"
���	�
 eliminating � and renaming individual variables
 we obtain

�������a�
��b����x����x�
P �x����y�P �y�����y���� �����

Moving �y to the left
 we obtain

�y�������a�
��b����x����x�
P �x���P �y�����y��� �����

��



Since positive and negative occurrences of � are not properly separated
 we distribute the con�
junction �x����x�
P �x���P �y�����y� over ���a�
��b�� This leads to

�y�������a���x����x�
P �x���P �y�����y��


���b���x����x�
P �x���P �y�����y���� �����

Applying Proposition ������ to �����
 we obtain

�y������a���x����x�
P �x���P �y�����y��


�y�����b���x����x�
P �x���P �y�����y��� �����

The preprocessing phase is successfully completed� We now process the disjuncts from ����� as
separate problems� Let us begin with the �rst disjunct� Note that � can be removed from it
directly
 using Proposition ���� To this end
 we replace the disjunct with its equivalent given by

�y���x����a������x�
P �x���P �y�����y��� �����

Applying Proposition ��� to �����
 we obtain

�y�x�P �y� �����

which reduces to

�y�P �y�� �����

We have succeeded in reducing the �rst disjunct in ����� to a �rst�order formula� We now try to
do the same for the second one
 i�e�

�y�����b���x����x�
P �x���P �y�����y��� ���	�

Preparation for the Ackermann lemma� Using Proposition ��� ��	�
 we replace ���	� by

�y���z����z�
z �� b���x����x�
P �x���P �y�����y��� �����

Application of the Ackermann lemma� Applying the Ackermann lemma to �����
 we obtain

�y�x��x �� b
P �x���y �� b�P �y��� �����

We have now succeeded in reducing the second disjunct of ������ The original second�order formula
����� has now been reduced to the equivalent �rst�order formula

��y�P �y��
��y�x��x �� b
P �x���y �� b�P �y���� �����

Applying the simpli�cation step to ����� using Proposition ��� ��	�
 we obtain

��y�P �y��
��y�P �b��y �� b�P �y���� �����

Finally
 we negate �����
 obtaining

��y�P �y����y��P �b�
y � b
�P �y��� �����

The �rst�order formula ����� is logically equivalent to the second�order formula ������ Conse�
quently


CircSO�#�P � ��� � #���y�P �y����y��P �b�
y � b
�P �y��� �����

����� can be simpli�ed using some standard equivalences�

��y�P �y����y��P �b�
y � b
�P �y�� � �y��P �y�� �����

��



��� An Existential Example

Kolaitis and Papadimitriou ��� show that the circumscription of any existential �rst�order formula
is equivalent to a �rst�order formula� We have already shown that the algorithm we propose
here generalizes Kolaitis and Papadimitriou�s results� It is interesting to compare these reduction
techniques in terms of complexity� Kolaitis and Papadimitriou ��� state

We notice that computing a �rst�order sentence equivalent to the circumscription
of P in an existential �rst�order formula 	�P � seems to increase the size of 	�P �
exponentially
 a phenomenon not observed in the other known cases of �rst�order
circumscription studied in �Lif�	�� It would be interesting to determine whether this
is inherent to existential �rst�order formula
 or a particular creation of our proof�

Example ��
 �Existential Example� We now take the example used by Kolaitis and Papadim�
itriou and compare the resulting �rst�order formula with that generated by our algorithm� Kolaitis
and Papadimitriou apply their reduction technique to the theory

�x��x��R�x�� x���P �x���P �x��� �����

and circumscribe P without varying predicates� The �rst�order equivalent they obtain is

�x��R�x�� x���P �x�����y�P �y� � y � x���


��x��x��R�x�� x���P �x���P �x����x� �� x���

��y�P �y� � �y � x�
y � x������R�x�� x����R�x�� x����� �����

We apply our reduction algorithm to the same theory and compare the results�
Let #�P � be the theory

�x��x��R�x�� x���P �x���P �x���� ���	�

The circumscription of #�P � with P minimized without variable predicates is

CircSO�#�P ��P � ��� � #�P �����#������ � P � � �P � ���� �����

where

#��� � �x��x��R�x�� x�����x�����x��� �����

� � P � �x���x� � P �x� �����

P � � � �x�P �x� � ��x�� �����

In the following
 we will reduce

���#������ � P � � �P � ��� �����

in ������ Negating �����
 we obtain

���#������ � P ����P � ���� �����

Preprocessing� Replacing #���
 � � P and P � � by their equivalents given by �����"�����

eliminating � and renaming individual variables
 we obtain

����x��x��R�x�� x�����x�����x����

�y����y�
P �y����z�P �z�����z���� �����

We next move �x��x��z to the left
 obtaining

�x��x��z���R�x�� x�����x�����x���

�y����y�
P �y���P �z�����z��� �����

��



Preparation for the Ackermann lemma� Applying Proposition ��� ��	� and some standard
equivalences
 we replace ����� by

�x��x��z���q����q�
�q �� x��q �� x�����R�x�� x���

�y����y�
P �y���P �z�����z��� �����

Application of the Ackermann lemma� The Ackermann lemma can now be applied to �����
resulting in

�x��x��z�R�x�� x����y��y �� x��y �� x��
P �y���

P �z��z �� x��z �� x��� ���	�

Simpli�cation� Applying Proposition ������� to ����� results in

�x��x��z�R�x�� x���P �x���P �x���P �z��z �� x��z �� x��� �����

Negating �����
 we obtain

�x��x��z��R�x�� x��
�P �x��
�P �x��
�P �z�
z � x�
z � x��� �����

The �rst�order formula ����� is logically equivalent to the second�order formula ������ Conse�
quently


CircSO�#�P � � #�P ��

�x��x��z��R�x�� x��
�P �x��
�P �x��
�P �z�
z � x�
z � x��� �����

Comparing ����� with �����
 it is easily observed that there is a substantial di�erence in the
size of the formulas�

��
 Interpreting the Results

There are a number of interesting observations that can be made on the basis of the above exam�
ples�

�� In all the examples
 the �rst�order equivalent of the circumscription axiom is shorter than
the axiom itself�

�� In some examples
 the �rst�order equivalent of the circumscription axiom may seem a little
strange when considered in isolation� However
 it alwaysmakes perfect sense when the theory
at hand is taken into account� Reconsider
 for instance
 the example ���� The �rst�order
equivalent of the circumscription axiom is

�w�z�Ab�w��B�w���Ab�z��z � w�� �����

which states that there is at most one abnormal object that is a bird� The conjunction of
����� and the sentence being circumscribed result in a formula stating that there is exactly
one abnormal bird object that does not !y�

�� Note that for certain examples
 such as the hospital example
 the �rst�order formula returned
is of such a nature that without the algorithm
 �nding a substitution for the circumscription
axiom would be highly unlikely�


 Conclusion

In this paper
 we have presented a general algorithm which transforms second�order formulas into
logically equivalent �rst�order formulas for a large class of second�order formulas� The algorithm
has been shown to have a number of attractive properties
 including a potentially wide area

��



for practical application� To support this claim
 we have provided a detailed description of the
algorithms application to the reduction of circumscription axioms� In addition
 we have shown
that the algorithm
 in its general form
 provably subsumes nearly all existing results concerning
the reduction of circumscription axioms� In the cases not subsumed
 we have shown
 via the
general methodology for use of the algorithm
 how a slight specialization of the algorithm provides
a remedy
 not only for these particular cases
 but for other potential exceptions� In contrast to
previous results
 the algorithm is more constructive in the sense that it provides a step�by�step
method for transforming a formula and it also terminates�
In the future
 we plan on investigating specializations of the algorithm where the general

methodology proposed may be used in combination with information about the structure of par�
ticular domains of interest
 such as the domain of action and change
 to generate speci�c heuristics
which can be integrated with the preprocessing stage� In addition
 we feel that the use of circum�
scription as a knowledge representation tool deserves reevaluation in light of the results described
here� The common view of circumscription as an elegant formalism for conceptual analysis
 but
one that is di�cult to apply practically due to its second�order nature
 requires modi�cation if
the algorithm can be applied practically
 as we believe it can�
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A The Algorithm

The algorithm takes a formula of the form ���A
 where A is a �rst�order formula
 as an input and
returns its �rst�order equivalent or reports failure�� Of course
 the algorithm can also be used for
formulas of the form ���A
 since the latter formula is equivalent to �����A� Thus
 by repeating
the algorithm one can deal with formulas containing arbitrarily many second�order quanti�ers�
The algorithm consists of three basic phases� ��� preprocessing� ��� preparation for the Acker�

mann lemma� ��� application of the Ackermann lemma� These phases are described below� It is
always assumed that whenever the goal speci�c for a current phase is reached
 then the remaining
steps of of the phase are skipped�

A�� Preprocessing

The purpose of this phase is to transform the formula ���A into a form that separates positive
and negative occurrences of the quanti�ed predicate variable �� The form we want to obtain is	

��x����A�����B�����
 
 
 

�An����Bn������ ��	��

where
 for each � � i � n
 Ai��� is positive w�r�t� � and Bi��� is negative w�r�t� ��


To achieve the goal of this phase
 apply the steps below in the following order�

�� Eliminate the connectives � and � using the usual de�nitions� Remove redundant quanti�
�ers� Rename individual variables until all quanti�ed variables are di�erent and no variable
is both bound and free� Using the usual equivalences
 move the negation connective to the
right until all its occurrences immediately proceed atomic formulas�

�The failure of the algorithm does not mean that the second�order formula at hand cannot be reduced to its
�rst�order equivalent
 The problem we are dealing with is not even partially decidable� for �rst�order de�nability
of the formulas we consider is not an arithmetical notion �se� for instance� �����


�It should be emphasized that not every formula is reducible into this form

�To increase the strength of the algorithm� it is essential to move as many existentially quanti�ed variables as

possible into the pre�x of ��
	�


��



�� Move universal quanti�ers to the right and existential quanti�ers to the left applying as long
as possible the following equivalences �below Q � f�� �g� � � f
��g and B contains no
occurrences of variables �x��

� Q�x�A��x� �B� � �Q�xA��x�� �B

� Q�x�B �A��x�� � B �Q�xA��x��

�� Move to the right the existential quanti�ers that are in the scope of universal quanti�ers
using the equivalences of step ��

�� Repeat ��� and ��� as long as no new existentially quanti�ed variable can be moved into the
pre�x�

	� In the matrix of the formula obtained so far
 distribute all top�level conjunctions over the
disjunctions that occur among their conjuncts� For this purpose
 apply the following equiv�
alences�

� A��B
C� � �A�B�
�A�C�

� �A
B��C � �A�C�
�B�C�

If the resulting formula is not in the form ��	��
 then report the failure of the algorithm�
Otherwise replace ��	�� by its equivalent given by

��x����A�����B�����
 
 
 

����An����Bn������ ��	��

For each disjunct ���Ai����Bi���� of ��	�� try to �nd its �rst�order equivalent by perform�
ing the next phases to the formula ���Ai����Bi����� If all the equivalents are obtained

return their disjunction
 preceded by the pre�x ��x
 as the output of the algorithm�

The following example illustrates the described phase�

Example A�� Consider the formula ����x�y�P �y�
�t���t�
P �x�
R�x� t�����z��z���u���u���
The following lines show the subsequent transformations�

����x�y�P �y�
�t���t�
P �x�
R�x� t�����z��z���u���u�� � �by ��
�zu����x�y�P �y�
�t���t�
P �x�
R�x� t������z�����u�� � �by ��
�zu����x��yP �y�
�t���t�
P �x�
R�x� t������z�����u�� � �by ��
�zu�����yP �y�
�x�t���t�
P �x�
R�x� t������z�����u�� � �by ��
�zuy����P �y�
�x�t���t�
P �x�
R�x� t������z�����u�� � �by 	�
�zuy����P �y����z�����u��
��x�t���t�
P �x�
R�x� t�����z�����u���

A�� Preparation for the Ackermann Lemma

The goal of this phase is to transform a formula of the form ���A����B����
 where A��� �resp�
B���� is positive �resp� negative� w�r�t� �
 into one of the forms ��� or ��� given in Lemma
���� Both forms can always be obtained� However
 Skolemization is sometimes necessary and
unskolemization
 which is to be performed in the next phase
 may fail� Accordingly
 the algorithm
performs both transformations� Due to the symmetry of the Ackermann lemma
 the steps stated
below describe only one of those transformations
 namely that leading to the form ����

�� Transform A��� into the form

pref �����t���
 
 
 

���t�n��
C���
 
 
�����tk��

 
 

���tknk�
Ck��D��

where pref is a pre�x of �rst�order quanti�ers and � does not occur in C�� � � � � Ck� D� This
step is always possible by applying the usual technique of obtaining the conjunctive normal
form�

��



�� Transform each conjunct ����ti��
 
 
 

���tini�
Ci�
 where ni 
 �
 into its equivalent

��xi���y����y�
�xi �� �y
Ci����xi � �ti�
 
 
 

�xi � �tini
Ci�

and move all existential quanti�ers into the pre�x pref ��

�� Transform each conjunct ����ti�
Ci� into its equivalent ��y����y�
�y �� �ti�
Ci�

�� Remove all existential quanti�ers from the pre�x pref using the equivalence of Skolem given
by

��x��y�A��x� y� � � �� � �f���x�A��x� y 	 f��x�� � � ��� ��	��

where f is a new function variable� After this transformation the input formula takes the
form

� �f��pref ����y����y�
�x� �� �y
C��� 
 
 
���y����y�
�xk �� �y
Ck��E�� ��	��

where �f is the tuple of the introduced Skolem functions and pref � only contains universal
quanti�ers�

	� Transform ��	�� into its equivalent given by

� �f����y����y�
pref ����x� �� �y
C��� 
 
 
���xk �� �y
Ck���pref
�E� ��	��

Example A�� �continued� There are two formulas to be considered in this phase
 namely
���P �y����z�����u�� and ���x�t���t�
P �x�����z�����u�� We apply phase � to the former
of the above formulas�

���P �y����z�����u�� � �by ��
���P �y���r���r�
z �� r�����u��

Applying phase � to the second formula proceeds as follows�

���x�t���t�
P �x�
R�x� t�����z�����u� � �by ��
���x�t�r���r�
r �� t
P �x�
R�x� t����r���r�
z �� r�����u� � �by ��
�f���x�r���r�
r �� f�x�
P �x�
R�x� f�x�����r���r�
z �� r�����u� � �by 	�
�f���r���r�
��x�r �� f�x�
P �x�
R�x� f�x����z �� r������u�

A�� Application of the Ackermann Lemma

The goal of this phase is to eliminate the second�order quanti�cation over �
 applying the Acker�
mann lemma
 and then to unskolemize the introduced function variables� The phase consists of
the following two steps�

�� Apply the Ackermann lemma to the formula ��	��� The resulting formula is of the form

� �f �prefE���	 pref���x� �� �y
C��� 
 
 
���xk �� �y
Ck����

�� Try to remove all existential quanti�ers over function variables using the equivalence ��	���
If this is impossible and both transformations mentioned in the beginning of section A��
failed
 report failure of the algorithm� otherwise try the remaining possibility�

	This step is justi�ed by equivalence ���� of Proposition �
�


��



Example A�� �continued� We apply phase � for the pair of formulas obtained as the result of
phase ��

���P �y���r���r�
z �� r�����u�� � �by ��
P �y��z �� u�

�f���r���r�
��x�r �� f�x�
P �x�
R�x� f�x����z �� r������u� � �by ��
�f�x�u �� f�x�
P �x�
R�x� f�x����z �� u � �by ��
�x�t�u �� t
P �x�
R�x� t���z �� u�

A�� Simpli�cation

The formula obtained as the result of the previous phase can often be substantially simpli�ed using
Proposition ��� ��	�
 or its generalization ����� The simpli�cation phase consists of one step� In
the formula obtained after successfully performing phase �


�� replace each subformula of the form ��x�A��t	 �x�
�x �� �t� by A��t�
 and

�� replace each subformula of the form ��x��x �� �t��
 
 
��x �� �tn�
A��t� 	 �x�� byA��t��� 
 
 
�A��tn��

Example A�� �continued� Since the simpli�cation phase is inapplicable to the formulas obtained
in phase �
 the �rst�order equivalent of the input formula we �nally obtain is

�z�u�y�P �y��z �� u��x�t�u �� t
P �x�
R�x� t���z �� u��

A�
 Remarks about the Algorithm

� The algorithmalways terminates and is sound
 i�e� the output �rst�order formula
 if obtained

is equivalent to the input second�order formula�

� Although the algorithm may seem a bit complex
 the calculations it describes may be per�
formed without any computer support�

� For the sake of clarity the algorithm is not presented in its most e�cient form� The possible
directions for its optimization follow from the examples presented throughout the paper�

� Observe that one usually deals with the elimination problem over a �rst�order de�nable class
of models� In such cases it is sometimes possible to considerably simplify the input formula
before running the algorithm �see Section ������� Such a possibility can be considered as an
additional heuristics in the preprocessing phase�

��


