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Abstract— When unmanned aerial vehicles (UAVs) are used to
survey distant targets, it is important to transmit sensor informa-
tion back to a base station. As this communication often requires
high uninterrupted bandwidth, the surveying UAV often needs a
free line-of-sight to the base station, which can be problematic in
urban or mountainous areas. Communication ranges may also be
limited, especially for smaller UAVs. Though both problems can
be solved through the use of relay chains consisting of one or more
intermediate relay UAVs, this leads to a new problem: Where
should relays be placed for optimum performance? We present
two new algorithms capable of generating such relay chains, one
being a dual ascent algorithm and the other a modification of the
Bellman-Ford algorithm. As the priorities between the number
of steps in the relay chain and the cost of the chain may vary, we
calculate chains of different lengths and costs and let the ground
operator choose between them. Several different formulations
for edge costs are presented. In our test cases, both algorithms
are substantially faster than an optimized version of the original
Bellman-Ford algorithm, which is used for comparison.

I. INTRODUCTION

A wide variety of applications for unmanned aerial vehicles
(UAVs) include the need for surveillance of distant targets,
including search and rescue operations, traffic surveillance
and forest fire monitoring as well as military applications.
In most cases the information gathered must be transmitted
continuously from a survey UAV to a base station where the
current operation is being coordinated. As this information
may include urgent high-volume sensor data such as live video,
one often requires considerable uninterrupted communications
bandwidth. To minimize quality degradation, UAV applica-
tions therefore tend to require line-of-sight (LOS) communi-
cations, which is problematic in urban or mountainous areas.
The maximum communication range is typically also limited,
especially when smaller and lower-cost UAVs are used as
relays.

Though the problem of achieving line-of-sight can be
ameliorated by increasing altitude, this would require greater
communication ranges and is not always permitted by aviation
regulations. UAVs may also be unable to fly at sufficient
altitude to avoid detection in the case of military or police
surveillance, preferring instead to hide behind obstacles. In-
stead, both intervening obstacles and limited range can be
handled using a chain of one or more intermediate relay UAVs
[15] passing on information to the base station (Figure 1).

Fig. 1. UAVs at x1, x2 and x3 are acting as relays, connecting the base
station at x0 with the survey UAV at x4, which is surveying the target at xt.
This is a relay chain of length 4.

Rather than limiting ourselves to the use of a single re-
lay UAV, we are interested in the general relay positioning
problem for an arbitrary number of relays. A solution to
this problem should be sufficiently scalable to enable the use
of a large number of comparatively inexpensive miniature
UAVs with highly limited communication range. While the
number of relays used is an obvious quality measure of a
relay chain, one can also benefit greatly from taking other
scenario-dependent measures into consideration, even at the
cost of using additional UAVs. For example, position flexibility
and safety margins may be important in case of wind drift or
moving targets, and in some cases one may want to minimize
the risk of detection by others. As the desired trade-off may
vary from case to case and can be difficult to formalize,
we prefer to generate multiple relay chains using different
numbers of UAVs and leave the final choice of solution to
a ground operator.

In this paper we show how the UAV relay positioning prob-
lem can be discretized and modeled as an all hops optimal path
graph search problem [7]. In our approach nodes correspond to
physical locations where relays may be placed, edges connect
nodes between which communication is possible, and edge



costs are used to model quality measures related to UAV
placement and communication paths. The objective of this
problem is to find not only the globally cheapest path but
a set of cheapest paths, one for each possible number of
hops (relays). We then present two distinct algorithms for
solving the all hops optimal path problem considerably more
efficiently than previous algorithms, the first being a dual
ascent algorithm and the second being a modification of the
Bellman-Ford [6] algorithm. Though examples in this article
focus on the use of UAVs, both algorithms can equally well
be used for relay placement for unmanned ground vehicles
(UGVs)

II. PREVIOUS WORK

Control behavior for teams of unmanned ground vehicles
involving line-of-sight was investigated in Sweeney et al. [17].
In an indoor setting, a lead UGV advances from the base
station towards the goal position and incrementally determines
where to place relay UGVs along the way in order to maintain
communication with the base station. Various strategies are
evaluated in terms of time and energy usage. A small survey
of positioning algorithms for UGVs is available in Nguyen et
al. [13]. The algorithms presented in these articles have several
commonalities. No quality or cost measure is used and it is
not certain that the goal position will be reached, as no a priori
calculation or evaluation of paths is performed.

Arkin and Diaz [2] used a behavior-based architecture to
allow teams of ground robots with line-of-sight communica-
tion to explore buildings and to find stationary objects, using
only limited knowledge about the area in which those objects
may be placed. This problem differs significantly from ours,
where the goal position is known in advance.

An algorithm for maintaining LOS between groups of
planetary rovers exploring an area is presented by Anderson
et al. [1]. The algorithm is based on several heuristics and
although testing indicates that the algorithm performs well, it
does not guarantee a solution even if one exists. Similarly, no
quality measure exists.

The concept of using a UAV as a communication relay,
including intended platforms and communications equipment,
is discussed in Pinkney et al. [15], but no algorithms are
presented. In limited cases, where a single relay UAV is
sufficient, the survey UAV could plan and fly a trajectory to the
goal while the relay UAV continuously attempts to maintain
line-of-sight to both the survey UAV and the base station
[16]. The benefit of using a single relay UAV in an urban
environment has also been simulated [5]. Here the UAV works
as a relay between two entities on the ground. The focus of
the work is to determine the percentage of an urban area with
acceptable coverage for UAVs positioned at different heights.
Only a single relay is used and no algorithm for determining
the positioning of the UAV is provided.

Problems that are superficially very similar to the multiple
relay positioning problem are encountered in ad-hoc networks,
where messages are to be delivered in a network where there
is no control of the network topology. Routing algorithms for

such networks must be able to handle addition and removal of
nodes at runtime [10, 12]. Using a swarm of UAVs to improve
the range and reliability of an ad-hoc network has also been
investigated [14]. Good results are achieved, mainly through
significantly increasing the range using the same transmission
power, compared to using a direct ground link. However,
significant differences exist between the problem investigated
here and ad-hoc networks in that we have full control over
node (UAV) positioning and in that we are only interested in
transferring information between the survey UAV and the base
station.

III. PROBLEM FORMULATION

We formally define the relay positioning problem as follows.
Let L ≥ 1 UAVs with identical communication capabilities

be available, one of which is the survey UAV.
Assume as given the free space X ⊆ R3 where relay and

survey UAVs may safely be placed, together with the position
x0 ∈ R3 \X of a base station and the position xt ∈ R3 \X
of a survey target.

Assume also as given a boolean communication reachability
function g(x, x′) that holds iff communication is possible
between points x, x′ ∈ R3 and a communication cost function
f(x, x′) denoting the non-negative cost of establishing such
a communication link. Finally, assume as given a survey
reachability function s(x, x′) that holds iff a survey UAV at
x ∈ X is able to survey a target at x′ ∈ R3 \X , and a survey
cost function t(x, x′) denoting the non-negative cost of such
a survey.

A relay chain of length l between x0 and xt is a tuple of
free UAV positions 〈x1, . . . , xl〉, where {x1, . . . , xl} ⊆ X ,
such that ∀i, 0 ≤ i < l→ g(xi, xi+1) and s(xl, xt). The cost
of a relay chain 〈x1, . . . , xl〉, denoted by cost(〈x1, . . . , xl〉),
is defined as (

∑l−1
i=0 f(xi, xi+1)) + t(xl, xt).

A relay chain c of length l between x0 and xt is relevant
iff there exists no relay chain c′ of length l′ < l between x0

and xt such that cost(c′) ≤ cost(c). This reflects the fact that
one would not use c if there is an alternative chain that uses
fewer relays and is not more expensive.

The relay positioning problem consists of finding, for each
1 ≤ l ≤ L, a relevant minimum-cost relay chain of length l
between x0 and xt, or determining that no such chain exists.

A. Reachability Functions

The communication reachability function g determines
whether communication should be considered feasible be-
tween two points, regardless of the quality of the resulting link.
For our purposes, g is usually defined by a limited radius r and
a requirement of free line-of-sight between positions. More
formally, let O ⊆ R3 be the set of coordinates that are free
from obstacles. Note that this may differ from the positions
in X , where it should also be possible to place UAVs safely
and minimum distances to obstacles may have to be taken
into account. Then, g(xi, xj) holds iff ‖xj − xi‖ ≤ r and
[xi, xj ] = {x ∈ R3 : αxi + (1 − α)xj , α ∈ [0, 1]} ⊆ O.



Fig. 2. Example of a node with UAV communication radius r. The obstructed
volume is the sum of the black obstacles and the shaded area representing
the non-visible volume inside the sphere.

However, the algorithms to be defined below work equally
well with other definitions of g, with or without free LOS.

The survey reachability function s is usually defined in
a similar manner, though often with a different maximum
distance between the survey UAV and its target.

Note that reachability functions may be asymmetric. For
example, a UAV may only be able to survey targets below it.

B. Cost Functions

In the definition of communication and survey cost func-
tions, the term “cost” is used in a very general sense, where
both functions can be used to model arbitrary position-related
quality measures determining the overall quality of a relay
chain. For example, a high survey cost t(x, x′) may be used to
indicate that surveying a target at x′ from a UAV positioned
at x would yield information of comparatively low quality.
Similarly, given a suitable model of the environment and the
communications hardware being used, distance- or position-
dependent transmission power requirements as well as many
forms of communication performance degradation can be
modeled as communication costs and taken into account by
positioning algorithms. Finally, communication costs can be
used to model arbitrary penalties for specific relay positions.

We will now provide two specific examples of communica-
tion cost functions f(x, x′) related to the existence of obstacles
that may hinder line-of-sight communications. Note that one
can easily use a weighted sum of such measures together with
costs related to continuous communication degradation such
as path loss. Survey cost functions can be defined analogously.

Obstructed volume. Given a maximum communication
range r, a UAV positioned at x ∈ X can communicate with
other UAVs in a sphere of volume 4πr3/3. Given line of
sight requirements, parts of this volume may be obstructed
by obstacles such as buildings or hills. Though we normally
operate in three dimensions, a 2D example is shown in
Figure 2 for simplicity. The greater the obstructed volume
is, the less flexible the given position is in terms of future
UAV movements. Thus, one can directly define f(x, x′) as
the obstructed volume within a sphere of radius r centered
at x′.

Fig. 3. Minimum free angle used as edge cost.

Minimum free angle. While the obstructed volume measure
is useful if one anticipates attempting to maintain communica-
tion during future movements to entirely new UAV positions,
other measures are more relevant for maintaining flexibility
around current relay positions. This can be important for
several reasons, such as the need to minimize susceptibility to
disturbances and be robust against temporary wind drift. One
such measure of flexibility is the minimum free angle between
two successive positions xi and xj in a relay chain. Figure 3
shows a two-dimensional example, where the UAV at xi must
not move outside the angle originating in xj and vice versa.
The cost associated with this edge might then be inversely
correlated to the minimum of these angles. One might also
use the inverse of the square root or logarithm of the angle,
which increases the relative penalty of including small-angle
edges in a path.

For both of these cost functions, terrains with higher and
more variable obstacle densities will be more likely to give
rise to a spectrum of alternative relevant relay chains. In this
situation, the shortest chains (in terms of the number of edges)
are close to obstacles and consequently quite expensive, while
the cheapest chains take long detours in order to maintain a
greater distance from the obstacles. Conversely, terrains with
lower and less diverse obstacle densities will be more likely to
give rise to only a few relevant relay chains, as longer chains
are also likely to be more expensive.

IV. SOLVING THE RELAY POSITIONING PROBLEM

The relay positioning problem is a multi-extremal problem
where the feasible set is typically disjoint, and in many cases
the number of disjoint feasible subsets is large, which makes
the continuous problem intractable. We therefore suggest to
discretize the environment, in order to decrease the computa-
tional burden. The solution is thus divided into two distinct
steps: First, generate a discrete visibility graph, and second,
use this graph to solve the all hops optimal path problem.

A. Discretization and Visibility Graph Generation

The first step of discretizing an instance of the continuous
relay positioning problem consists of selecting a finite set of
positions X ′ ⊆ X among the free coordinates. These are the
positions that will be considered for relay and survey UAV



placement in the discretized version of the problem. Once this
selection has been made, a discrete visibility graph can be
created as follows.

Associate each position x ∈ X ′ ∪ {x0, xt} with a unique
node, where n0 denotes the base station node associated with
x0 and nt denotes the survey target node associated with xt,
and let N be the set of all nodes.

For each x ∈ X ′ corresponding to n ∈ N and satisfying
g(x0, x), create an edge e = (n0, n) of cost f(x0, x) rep-
resenting the possibility of communication between the base
station and position x. For each x, x′ ∈ X ′ corresponding to
n, n′ ∈ N and satisfying g(x, x′), create an edge e = (n, n′)
of cost f(x, x′) representing the possibility of communication
between positions x and x′. Finally, for each x ∈ X ′

corresponding to n ∈ N and satisfying s(x, xt), create an
edge e = (n, nt) of cost t(x, xt) representing the fact that a
survey UAV at x would be able to survey the target at xt. Let
E be the set of all edges.

Then, G(N,E) is a directed graph corresponding to the
original continuous problem instance. Note in particular that
the survey target node has no outgoing edges and that all
its incoming edges satisfy the survey reachability function,
ensuring that its predecessor in any path from the base station
to the survey target must be suitable for a survey UAV.
Note also that most parts of this graph only depend on the
environment and not on the position of the base station or
survey target, and can be precalculated.

A number of different alternatives are possible when de-
termining which free positions to include in the graph. One
approach consists of placing a regular three-dimensional grid
over the terrain and constructing a graph from the unobstructed
grid cells, where the size of the grid cells would depend on
the maximum obstacle density. Regular grids are quite suitable
for the type of urban and mountainous terrain we are inter-
ested in, where we are unlikely to find pathological obstacle
distributions that only permit communication if relays are
positioned exactly in the right place. Alternative approaches
may distribute and place nodes depending on local obstacle
density, for example by using structures with variable cell size
or by using techniques such as bridge sampling [9] to increase
the density of nodes in narrow passages.

B. The All Hops Optimal Path Problem

Given a discrete graph representation, a number of associ-
ated problems can be solved using well-known algorithms. For
example, Dijkstra’s algorithm or A* can be used to find the
cheapest relay chain (path), the relay chain with the smallest
number of steps, or the cheapest relay chain from those having
the smallest number of steps1 [6, 8].

However, these algorithms only generate a single relay
chain, whereas we are interested in generating a spectrum of
relevant relay chains ranging from the shortest in terms of
hops to the cheapest, allowing the ground operator to choose

1The latter can be calculated using compound path costs of the form 〈l, c〉,
where l is the length of the path, c is its cost, and 〈l1, c1〉 < 〈l2, c2〉 iff
(l1 < l2) or (l1 = l2 and c1 < c2).

whichever chain best fits the current resource constraints and
the requirements on the current mission. This corresponds
directly to the all hops optimal path (AHOP) problem, which
has previously been applied to network routing [7].

Given the use of additive path costs, the best known
algorithm for this problem is currently the standard Bellman-
Ford algorithm, which at its kth iteration finds all cheapest
paths using k hops from a given source [7]. However, although
this algorithm is capable of solving the problem, it uses a
considerable amount of time and is not practically useful for
larger problem instances involving large maps, fine-grained
grids, or long communication ranges. This is especially true
in mixed-initiative settings where a ground operator initiating
a survey mission should be given a prompt response.

We have therefore developed two distinct algorithms for
solving the all hops optimal path problem more efficiently
than the standard Bellman-Ford algorithm. Both algorithms
are complete and optimal under the discretization provided in
Section IV-A. Thus the set of relevant relay chains between
n0 and nt will be found, provided that at least one such chain
exists.

The following terminology and variables are common to
both algorithms: n0 is the start node corresponding to the base
station, nt is the target node, and given a node n, n− is its
set of predecessor nodes and n+ is its set of successor nodes.
The cost associated with an edge between nodes n and n′ is
denoted by cn,n′ .

We use the term cheapest path tree for a tree rooted in n0,
storing the least-cost path to each node in N given compound
path costs of the form 〈c, l〉, where c is the cost of the path,
l is its length, and 〈c1, l1〉 < 〈c2, l2〉 iff (c1 < c2) or (c1 = c2

and l1 < l2). This is in a sense the inverse of the previously
discussed compound path cost, in that it prefers the shortest
path among those that have the lowest cost. The cheapest path
tree can be calculated by any shortest path tree algorithm, for
example, Dijkstra’s algorithm.

C. Dual Ascent

Our first algorithm (Figure 4) is a dual ascent algorithm that
repeatedly calculates the cheapest path p from n0 to nt using
modified edge costs c′n,n′ = cn,n′ + α, where α is increased
in every iteration. This is also assumed to yield, for each node
n, its depth qn (the number of hops along the path from the
root to n) and its optimal path cost yn given the current value
of α.
Let l be initialized to the maximum number of acceptable hops,
that is, one more than the number of available UAVs, where
the last hop is between the survey UAV and the target. Give α
the initial value α0. In most cases we use α0 = 0, causing the
algorithm to begin by generating the cheapest path possible
using original edge costs. Higher values of α0 can be used to
discourage longer paths, with the effect that the algorithm no
longer generates the longest relevant relay chains.

If the generated path uses at most l UAVs, it is feasible
and uses fewer relays than any path found so far. In this case,
the path corresponds directly to a relevant relay chain and can



1 l← L + 1
2 α← α0

3 Calculate cheapest path tree from n0

using costs c′n,n′ = cn,n′ + α.
From the tree, obtain p and yn, qn for all n

4 if length(p) ≤ l then
5 Yield p // Feasible and shorter than previous solutions
6 l← length(p)− 1
7 F ← {(n, n′) ∈ E : qn′ ≥ qn + 2}
8 if F = ∅ then
9 return // Path can not be shortened

10 Calculate εn,n′ ←
c′

n,n′+yn−yn′

qn′−qn−1 ∀(n, n′) ∈ F

11 ε← min εn,n′

12 α← α + ε
13 Goto 3

Fig. 4. Dual Ascent Algorithm

be yielded as partial output of the algorithm. Also, l can be
updated to reflect that we are now only interested in paths
strictly shorter than the one we just found.

It is clear that increasing α by ε will increase the cost of
a path containing k edges by kε, thus penalizing paths in
proportion to hop counts. The algorithm therefore calculates
such an ε in a way that guarantees that some paths are
shortened but no relevant paths between n0 and nt are missed.
This calculation considers all edges (n, n′) in the original
graph where reaching n′ from n0 in the current cheapest path
tree requires at least two steps more than reaching n. The
current path to n′ could then be shortened by replacing it with
the current path to n and the edge between n and n′. Since
this has not already been done, we know that we currently
have yn + c′n,n′ > y′n, that is, going through n is currently
more expensive. Making the path through n equally expensive2

entails increasing the cost of the longer path by yn+c′n,n′−yn′ .
(To be more exact, the cost of the longer path must be
increased that much more than the cost of the shorter path.)
This additional cost has to be split by q′n−(qn+1) = q′n−qn−1
nodes (the length of the old path to n′, minus the length of the
potential new path through n), yielding the expression for εn,n′

found in the algorithm above. Finally, to ensure no solutions
are missed, we increase α by the minimum of all such εn,n′

and iterate. The formal proof that increasing α in this manner
yields exactly the intended answer is somewhat lengthy and
for details we refer the reader to Burdakov et al. [4].

When no path can be shortened, the algorithm terminates.
It should be noted that this algorithm can be used in an

anytime manner, initially generating the cheapest path and then
generating incrementally shorter but more expensive paths.

2Recall that the cost function for the cheapest path tree will prefer the
shorter of two equally expensive paths. Thus, making the path through n
strictly less expensive is not necessary.

k (path length) gk (cost) pk (predecessor)
4 18 n20

6 12 n10

7 10 n11

TABLE I
INFORMATION STORED IN EACH NODE AFTER EXECUTION OF THE

MODIFIED BELLMAN-FORD ALGORITHM.

D. Modified Bellman-Ford

Our second algorithm (Figure 5) is a modification of the
original Bellman-Ford algorithm, or to be precise, a modifica-
tion of its AHOP version [11]. Just like in the original version,
one or more paths are calculated to each node in the graph.
The output of the algorithm consists of the variables gk(n)
and pk(n), which can also be represented as one table for
each node n as shown in Table I. In this table, each row is a
reachability record 〈k, gk, pk〉 denoting the fact that n can be
reached from the base station n0 in k steps at a cheapest cost
of gk using the predecessor pk. A complete path from n0 to n
can always be reconstructed (in reverse order) by considering
the reachability record of the predecessor pk for k − 1 steps
and continuing recursively until n0 is reached.

The fact that a target node nt is associated with a reachabil-
ity record 〈k, gk, pk〉 corresponds to the existence of a relevant
relay chain between n0 and nt of length k − 1 and cost gk.
In other words, nt can be reached from the base station using
k−1 intermediate UAVs, one of which is the survey UAV. For
example, Figure 1 shows a path of length k = 5 corresponding
to a relay chain of length k − 1 = 4, which can be extracted
using the reachability record for k = 5 for the target node.

The algorithm requires a preprocessing step consisting of
calculating the cheapest path tree with n0 as root. We then
retrieve the height k∗max of this tree. Clearly, no relay chain
consisting of more than k∗max nodes can be relevant, since all
longer paths must also be at least as expensive. This limits the
number of relay positions ever required for this graph as well
as the depth to which the graph needs to be searched.

N is partitioned into sets N∗
k of nodes occurring at depth k

in the cheapest path tree, where 0 ≤ k ≤ k∗max. Clearly, any
relay chain using more than k steps to reach a node n ∈ N∗

k

cannot be relevant, as it would be possible to shorten the chain
(by reaching n in exactly k steps) without increasing its cost
(since only k steps were required in the cheapest path). In
addition to using this fact in the main algorithm as described
below, we also use it to create an initial reachability record
corresponding to the cheapest relevant relay chain for each
node. In Table I, this corresponds to the row where k = 7.

In the main algorithm, g(n) denotes the cost of the cheapest
path from n0 to node n found so far, calculated using standard
additive edge costs. Initially, g(n) = ∞ for all nodes. The
algorithm will construct and use a sequence of sets Vk, each
of which is characterized by the fact that any relevant relay



1 for each n ∈ N do g(n)← +∞
2 g(n0)← 0
3 for each n ∈ n0− do // Incoming edges. . .
4 E ← E \ {(n, n0)} // . . . are removed
5 V1 ← {n0}
6 for k = 1, . . . ,min(L + 1, k∗max − 1) do
7 for each n′ ∈ N∗

k do
8 for each n ∈ n′− do // Incoming edges. . .
9 E ← E \ {(n, n′)} // . . . are removed
10 Vk+1 ← N∗

k

11 for each n ∈ Vk do
12 for each n′ ∈ n+ do
13 c← gk−1(n) + cn,n′ // To n′ through n in k hops
14 if c < g(n′) then
15 g(n′)← c // Lowest cost so far
16 gk(n′)← c // Lowest cost in k hops
17 pk(n′)← n // Predecessor for k hops
18 Vk+1 ← Vk+1 ∪ {n′}

Fig. 5. Modified Bellman-Ford Algorithm

chain of length k must consist of a path to a node n ∈ Vk in
k − 1 steps followed by a single outgoing edge from n.

Lines 2–5 take care of the initial node n0. No reachability
record needs to be created for this node, but g(n0) must be
updated to indicate that it can be reached with cost 0 (line 2).
Clearly no relevant relay chain ending in n0 can pass through
n0, so all incoming edges to n0 can be removed (lines 3–4).
Finally, line 5 prepares for the first iteration by setting V1 =
{n0}, indicating that any relevant relay chain of length 1 must
consist of a path to n0 in 0 steps (the empty path) followed
by a single outgoing edge. This handles all paths of length 0.

In lines 6–18, each iteration considers paths of length k ≥ 1,
up to a maximum of min(L + 1, k∗max − 1). This reflects the
fact that (i) we allow at most L UAVs, which yields a total
path length of up to L+1 when edges to the base station and
target are included, (ii) no paths of length greater than k∗max

can be relevant, since k∗max reflects the depth of the cheapest
path tree, and (iii) any relevant path of length exactly k∗max

was already generated during preprocessing. Setting L = ∞
ensures that the algorithm finds relevant relay chains of all
possible lengths.

Recall that any node n′ ∈ N∗
k occurs at depth k in the

cheapest path tree. Reachability records for strictly shorter
paths to n′ were already created in earlier iterations, and a
record for a path of length k was created during preprocessing.
Records for paths of length strictly greater than k cannot be
created, as this would correspond to finding a path which is
longer but strictly cheaper than the one of length k, which was
by definition a cheapest path. Thus, no new paths ending in
any such n′ can be relevant, and we can remove all incoming
edges to n′ without affecting correctness or optimality (lines
7–9). However, we do need to consider longer paths going
through these nodes (line 10, explained further below).

In lines 11–18, we consider all potentially relevant relay

chains of length k. Recall that any such chain must consist
of a path to a node n ∈ Vk followed by a single outgoing
edge from n. We consider each such path in turn, determining
its destination n′ and calculating its cost c (lines 11–13). If
the path is cheaper than the cheapest path found previously
(with a cost of g(n′)) we create a new reachability record
with gk(n′) set to the new path cost and pk(n′) set to the
new predecessor n (lines 14–17). Note that though reachability
records are sparse, we know that any node in Vk does have a
reachability record for k − 1 due to the construction of Vk.

What remains is to prepare for the next iteration by con-
structing Vk+1 according to its definition. That is, we should
construct Vk+1 in such a way that any relevant given relay
chain of length k + 1 necessarily consists of a path of length
k to a node n ∈ Vk+1 followed by a single outgoing edge
from n. It is clear that no relevant relay chain would use k
steps to reach a node n if it could be reached in k − 1 steps
without incurring additional costs. Thus, it is only necessary to
consider nodes whose costs were decreased by allowing paths
of length k or that could not be reached at all with paths of
length k−1. This is achieved in line 10, for nodes in N∗

k where
we found a cheapest path of length k during preprocessing,
and in line 18, for nodes where we found a cheaper path of
length k in this iteration.

This algorithm calculates the path with the fewest steps, as
well as the cheapest path regardless of the number of steps and
all relevant paths in between. Like the Dual Ascent algorithm,
this algorithm can be used in an anytime manner, though in the
reverse direction, where the main algorithm generates chains
in order of increasing length and decreasing cost.

When the algorithm terminates, a table similar to the one in
Table I exists for each node. This table contains all the infor-
mation necessary to trace a path back to the start node. The
first row corresponds to using the minimal number of UAVs
and the following rows correspond to using an increasingly
larger number of UAVs, giving a path with progressively lower
cost, until the least-cost path with the largest number of UAVs,
which is found on the last row. For path lengths lower than the
smallest k in the table, no path can be found. For example, no
path of length k = 3 could be found for the node represented
by Table I regardless of cost. Other “missing” values of k
indicate that even if a path of length k could be found, it
would be at least as expensive as some shorter path in the
table. For example, the fact that Table I contains no record
for k = 5 means that a path of length 5 to the given node
would have a cost of at least 18, the cost of the closest record
for a smaller value of k, and that using such a path would be
pointless.

When the operator makes a decision about how many UAVs
to allocate to the mission, he chooses whether to allocate the
minimum number of UAVs required, or any other number
greater than this. This requires more UAVs but yields a better
solution in terms of whatever quality measure was provided
to the algorithm.

See Burdakov et al. [3] for additional details and proofs.



E. Multiple Survey Targets

The graph creation procedure discussed in Section IV-A
can easily be altered to generate separate relay chains to an
arbitrary number of survey targets. Instead of generating a
single target node, one node ti is created for every position xi

in a set T ⊆ R3 of survey target positions. Similarly, instead
of creating incoming edges to a single target node, incoming
edges are created for every x ∈ X ′, t ∈ T satisfying s(x, t).

This provides support for a preprocessing phase where a
single call to either of the new algorithms generates relay
chains to hundreds or thousands of potential target positions.
Relay chains can then quickly be extracted from the given
graphs. Especially for the modified Bellman-Ford algorithm,
this would take only marginally more time than generating
relay chains to a single target position, given that the number
of additional nodes and edges is small compared to the number
of nodes and edges used for free positions where relays and
survey UAVs may be located.

Though this is not a solution to the multiple target surveil-
lance problem, since no attempt will be made to minimize the
total number of relays used for a given set of targets, it can
still be highly useful in the case where the position of the
survey target is not known in advance.

V. TEST RESULTS

The AHOP version of the original Bellman-Ford algorithm
has a time complexity of O(|N ||E|) ⊆ O(|N |3). Applying the
widely used optimization of terminating as soon as no node
cost has been decreased during iteration k, this bound can be
tightened to O(k∗max|E|) ⊆ O(|N ||E|) ⊆ O(|N |3).

Though the worst case complexity of the modified Bellman-
Ford algorithm is identical, using Dijkstra’s algorithm for
preprocessing and partitioning ensures that one almost always
considers far fewer than |E| edges in each iteration. Using
Dijkstra in this manner is possible due to the use of non-
negative edge costs, and sensible because we want to generate
multiple alternative paths, possibly to multiple targets, as
opposed to a unique cheapest path to a single target, where
Dijkstra alone would have sufficed.

Dual Ascent performs at most |N |2 iterations, each time
calling Dijkstra. Thus, its worst case complexity is in
O(|N |2(|E| + |N | log |N |)) ⊆ O(|N |4). However, only
extremely specific graph structures and cost functions re-
quire |N |2 iterations, and the algorithm can still outperform
Bellman-Ford in practice.

In our test cases, the obstructed volume was used for both
communication cost and survey cost. We used line-of-sight
requirements with varying maximum range for communication
reachability and survey reachability. The environment graph
was constructed using a three-dimensional grid and the grid
cell size was varied between 10 and 40 meters, though it
was constant within each problem instance. The test cases
were taken from both rural and urban environments and the
positions of base stations and targets were chosen with the
intention to create challenging test cases. The lengths of
relevant relay chains varied, using between 3 and 19 UAVs.

All test results were obtained from a C++ implementation
on a PC running Windows Vista with an Intel Core 2 Duo
2.4 GHz CPU and 2 GB RAM. Only one core was used
in testing. For comparison, we also implemented an AHOP
version of the standard Bellman-Ford algorithm using the
common optimization discussed above. Dijkstra’s algorithm
was used to calculate the cheapest path tree for both the dual
ascent algorithm and the pre-processing phase of the modified
Bellman-Ford algorithm. To ensure that all solutions were
found, we used L =∞ and α0 = 0.

Table II shows empirical test results for all three algorithms,
averaged from 1000 executions.

The first three columns show the number of nodes and edges
of each discretized graph together with the height k∗max of the
associated cheapest path tree rooted in the base station node.

Opt. BF shows the time requirements for our optimized
implementation of the standard Bellman-Ford algorithm.

As the modified Bellman-Ford algorithm requires the calcu-
lation of the cheapest path tree as well as the determination of
the N∗

k sets, the times for this algorithm are displayed in four
separate columns. The column labelled CPT contains the times
for calculating the cheapest path tree and the column labelled
N∗

k shows the times for determining the N∗
k sets. The time

used by the main algorithm are shown in the column marked
Mod. BF. The time used by the complete algorithm including
preprocessing is the sum of the three previous columns and is
shown in the column marked Total. The times might not add
up due to rounding.

The final column shows the complete time requirements for
the Dual Ascent algorithm.

In the smaller cases tested here, the modified Bellman-
Ford appears to offer the best performance, while the dual
ascent algorithm is somewhat faster for the larger test cases.
In all cases, both of the new algorithms are considerably faster
than the standard Bellman-Ford algorithm, even when using
the optimization mentioned above. Thus, the new algorithms
enable us to solve considerably larger problem instances than
before within reasonable time limits and permit the use of
larger maps as well as finer-grained discretizations.

VI. FUTURE WORK

For simplicity, in this paper all UAVs had the same commu-
nication range. In the future we plan to extend the algorithms
to handle UAVs with different communication ranges.

We also intend to use the algorithms and formulations used
here as a basis for solving the relay problem for a moving
target. One of the suggested formulations for edge cost was to
use the obstructed volume within a certain radius. In general
this will place the UAVs at positions with high visibility. If
the target starts to move, it is beneficial to be located at such
positions as it is more likely that the UAVs can stay in the
same place and maintain communication to the other UAVs,
as compared to being placed at positions with lower visibility.

VII. CONCLUSION

The use of relay chains is essential to a large variety of UAV
and UGV applications where communication range is limited,



Timing in milliseconds
Modified Bellman-Ford

|N | |E| k∗
max Opt. BF CPT N∗

k Mod. BF Total Dual Ascent
1395 14322 35 34.6 0.018 0.001 0.014 0.033 2.4
1654 33340 27 68.6 1.75 0.000 6.75 8.5 16.5
1993 10272 33 45.6 0.036 0.002 0.027 0.065 3.7
3411 122246 19 175 2.3 0.005 15.1 17.4 51.0
5294 1134634 14 1079 17.1 0.013 12.2 29.4 28.1
5824 624386 19 823 10.1 0.024 6.7 16.8 16.1
7117 1625726 15 1680 25.0 0.050 18.1 43.1 40.5
9226 5190976 10 3923 79.7 0.000 221.4 301.5 139.0
9226 23086152 5 12344 324.6 0.083 435.0 759.7 574.3

15105 6311322 14 6422 97.3 1.28 81.1 179.7 156.0
18801 13225274 13 12529 194.0 2.17 163.3 359.5 323.7
38542 28327214 17 36382 429.2 6.53 379.3 815.1 729.6

TABLE II
TEST RESULTS. ALL TIMES ARE IN MILLISECONDS AND ARE AVERAGES OF 1000 EXECUTIONS.

including but not limited to surveillance tasks. We have
presented two algorithms for the relay positioning problem that
are efficient both in terms of the number of relays used and in
terms of the amount of time required to generate a solution.
These algorithms build on a discretization of the continuous
problem, but differ in the methods used for solving the all
hops optimal path problem in the resulting directed graph:
While the first algorithm uses a dual ascent technique, the
second builds on the Bellman-Ford algorithm. An extension
to efficiently generate independent paths to multiple survey
targets was also presented. Both algorithms were shown to be
significantly faster than the standard Bellman-Ford algorithm
on a variety of problems of different sizes, generating solutions
in a small fraction of the time previously required.
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