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Abstract. The relation of similarity is essential in understanding and developing
frameworks for reasoning with vague and approximate concepts. There is a wide
spectrum of choice as to what properties we associate with similarity and such
choices determine the nature of vague and approximate concepts defined in terms
of these relations. Additionally, robotic systems naturally have to deal with vague
and approximate concepts due to the limitations in reasoning and sensor capabil-
ities. Halpern [1] introduces the use of subjective and objective states in a modal
logic formalizing vagueness and distinctions in transitivity when an agent rea-
sons in the context of sensory and other limitations. He also relates these ideas to
a solution to the Sorities and other paradoxes. In this paper, we generalize and ap-
ply the idea of similarity and tolerance spaces [2,3,4,5], a means of constructing
approximate and vague concepts from such spaces and an explicit way to distin-
guish between an agent’s objective and subjective states. We also show how some
of the intuitions from Halpern can be used with similarity spaces to formalize the
above-mentioned Sorities and other paradoxes.

1 Introduction and Preliminaries

1.1 Introduction

In a recent paper, Halpern [1] points out the tight correlation between similarity notions
on individuals and their relation to vague predicates. He also considers a distinction
between the subjective and objective realities of agent systems and how standard prop-
erties of similarity such as transitivity do not necessarily make sense when taking into
account epistemic and subjective states of agent systems. Objectively, viewing similar-
ity as an equivalence relation may make sense, but when taking into account capabilities
of agents to discern, or their subjective psychological states, it may not make sense to
view similarity as a transitive relation. One can also find other examples where intran-
sitivity may hold at the objective level, but not at the subjective level.

When viewing similarity and vagueness in this respect, it turns out that a number of
interesting reasoning paradoxes such as the Sorities Paradox, can be explained in a mat-
ter both satisfactory in the formal sense and also in the pragmatic sense, where agents
would have to represent and reason about such concepts as heaps. In attacking these
problems, [1] proposes a modal logic which semantically represents both the subjective
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and objective states accessible by an agent and also allows for the ability to distinguish
between perception reports and what an agent may definitely know about its objective
state. This is done by introducing two modal operators.

Rather than going the modal route, we introduce a general method for modeling
similarity relations, approximate sets, and vague predicates. We show how this formal
framework can be used to model scenarios associated with an agent, its objective and
subjective realities, similarity relations contributing to the definition of vague or ap-
proximate predicates, and the sensory limitations essentially defining what it formally
means for an agent to have a subjective view of reality as observed through its sensory
filters. The basis for this representational capability are similarity spaces, neighbor-
hoods of individuals derived from such spaces and approximate or vague predicates
defined using such neighborhoods. We also show that when restricted to finite domains
in a relational database framework, inference associated with the approach is tractable.

Before providing the formal framework, we describe an intuitive scenario from [1].
Relative predicates associated with the sensing modalities are often difficult to represent
and define due to the subjective nature of the concepts involved. For example, given
samples of beverages and the task of stating which one is sweeter than which, it is
difficult to characterize a comparative component of the definition while keeping it
consistent with the objective sensor data from which it is grounded.

On the one hand, similarity of sweetness is transitive relative to the number of grains
of sugar in beverages, but at a more subjective level, transitivity breaks down. We often
experience such comparative situations where beverage A’s sweetness is indistinguish-
able from beverage B, and B’s sweetness is indistinguishable from beverage C, but A’s
sweetness is in fact quite distinguishable from C. Distinguishability at this level is qual-
itatively different from that at the granular level where a beverage with n grains of sugar
is indistinguishable from that with n+1 grains of sugar and so on and so forth.

It is obvious to see how the Sorities Paradox is related to this issue. At an objective
level, heaps are simply piles of sand with a certain number of grains in them. At the
subjective level they are based on subjective perception reports which do not necessarily
reflect transitive nature of the sensor data, but should still remain consistent with it.

The literature on similarity is vast and it is often the case that different properties
of the associated relation are played off against the other, such as transitivity versus
intransitivity, symmetry versus anti-symmetry, etc. One can relax the requirement of
a tradeoff in many ways. Some such relaxations are introduced in Section 1.3 and used
throughout the paper. In summary, our main goal is to introduce a general framework for
representing similarity structures, which permits the definition of vague sets/relations
in a meaningful and intuitive way. This will be partly verified by modeling some of the
interesting scenarios presented in [1]. The starting point for the approach we propose
was initiated by [6], but substantially generalized and applied in [2,3,4,5].

1.2 Paper Structure

In the remainder of this section, we provide some preliminary definitions. In Section 2,
we consider the objective and subjective levels of an agent system interfacing with
sensors to an external environment. We then relate these levels to vague concepts. In
Section 3, we introduce similarity spaces which are the formal vehicle for making
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distinctions between objective and subjective perceptual descriptions and formalizing
vagueness using approximate sets constructed from similarity-based neighborhoods. In
Section 5, we formalize a number of examples including those already mentioned. In
Section 6, we state some results on the complexity of the approach. In Section 7, we
refer to some of the related literature and conclude the paper.

1.3 Preliminaries

Below we assume that [0, 1] is the closed interval of all real numbers between 0 and
1, ordered by the standard ordering on reals ≤. We shall also use value Υ , meaning
“unknown”, which is not in [0, 1] and is incomparable wrt ≤ with any number of [0, 1].
Let U be a set, σ : U × U −→ [0, 1]∪ {Υ} be a binary function on U and p ∈ [0, 1] be
a given real number. Then, σ is called

– p-serial iff for any x ∈ U there is y ∈ U such that σ(x, y) ≥ p
– p-reflexive iff for any x ∈ U , σ(x, x) ≥ p (note: p-reflexivity implies p-seriality)
– p-symmetric iff for any x, y ∈ U , σ(x, y) ≥ p implies σ(y, x) ≥ p
– p-transitive iff for any x, y, z ∈ U , σ(x, y)≥p and σ(y, z)≥p implies σ(x, z)≥p

One can also relax transitivity, as is often done in the fuzzy set area (cf. [7]).

2 Objectiveness, Subjectiveness and Vagueness

It is often the case that an intelligent system interfaces to external environment through
the use of real sensors as in the robotics domain or through virtual sensors as in the
software agent domain. Already, at this sensor interface level, there is a gap between
what the world is actually like and what the robot or software agent is capable of per-
ceiving given a particular sensor suite. For example, a red car may often be perceived
by a robot to be brown in color due to special lighting conditions. There is an additional
gap between raw sensor data and additional qualitative structures derived via the raw
data and additional data fusion and knowledge construction processes. For example,
a vehicle which is objectively on a road may be perceived by sensors to be both on and
off the road due to sensor noise and inaccuracies, but at a qualitative level, a normative
decision has been made to view the vehicle as being completely on the road.

In order to make these distinctions clear, we assume the existence of an objective
reality independent of any agent’s particular perceptive capabilities and the existence
of a subjective reality specific to an agent. Each agent may or may not have different
subjective realities and one agent may in fact have several subjective realities based on
its particular configuration and context. Assuming the distinction between objective and
subjective realities of an agent, we can refer to an agent’s objective state in addition to
its subjective states. This distinction is central to Halpern’s approach [1] and we will
show how our framework can clearly model this distinction in a highly flexible manner.
We also use the term subjective perception to refer to perceptual activity which results in
the generation of perception reports associated with the subjective state(s) of an agent.

In addition to perception reports regarding properties and relations between ob-
jects, perception reports about objects themselves and their similarity or lack thereof
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is equally important as input to reasoning processes. Subjective perception often can-
not distinguish objects which are different at the objective level. In some situations this
leads to borderline cases, where the observer cannot classify objects relative to a given
concept. For example, we may not be able to state unequivocally that a vehicle is too
close to another or that it is moving too fast relative to a specified speed limit.

According to the literature (see, e.g., [8]), a concept is vague when it has borderline
cases, i.e., some objects cannot be classified to the concept or to its complement with
certainty. In this paper vagueness is modelled by introducing similarity-based approxi-
mations of concepts. More specifically, the lower approximation of a concept consists
of objects that are known to belong to the concept and the upper approximation of the
concept consists of objects that might belong to the concept.

Observe that even the properties of similarity notion might be substantially different
at the objective and subjective level, as illustrated by the following examples.

Example 2.1. Consider a robot equipped with a camera. Assume that the camera’s field
of view does not allow the robot to fully observe itself, which is a very strong perceptual
limitation. In this case the similarity relation on the objective level is reflexive, while
on the robot’s subjective level it does not have to be reflexive, since the robot cannot
observe itself (but might be p-reflexive and/or p-serial, for some p). �

Example 2.2. Assume that in a given application one considers a similarity relation, ∼,
between children and parents. On the objective level, it is defined to satisfy x ∼ y iff
[Child(x, y)∧Sex(x) = Sex(y)]. Then ∼ is not symmetric.1 Now, suppose that on the
subjective level one cannot recognize whether Child(x, y) holds. In this case similarity
is defined as x ∼s y iff [Υ ∧ Sex(x) = Sex(y)], which is symmetric. �

Example 2.3. Consider the similarity between persons in the set {P1, P2, P3}. This re-
lation, on the objective level, does not have to be transitive, since similarities between
persons P1 and P2 as well as between P2 and P3 do not have to imply the similar-
ity between P1 and P3. On the other hand, subjectively, a robot might not be able to
distinguish between P1, P2 and P3, which makes the similarity relation transitive. �

3 Similarity Spaces

Similarity spaces are used as the formal mechanism for representing the indistinguisha-
bility of individuals in a specific domain of discourse. Similarity spaces are quite ver-
satile in use. They are also used as a basis for defining approximate sets and vague
predicates in addition to modeling the sensory limitations of agents and provide a for-
mal basis for constructing and analyzing subjective state.

Similarity spaces [2] generalize tolerance spaces as defined in [3]. Comparing the
current approach to the approaches of [2,3], we assume that the similarity function can
return the value Υ , since the similarity between some objects might be unknown. Also,
as argued in [2], and advocated in Examples 2.1 and 2.2, we also relax the requirements
that similarity has to be symmetric or reflexive. However, in order to make approxima-
tions intuitively meaningful, we will require the seriality of similarity spaces.

1 In fact, one usually compares children to parents, not vice versa and it might be desirable that
computer reflects this human behavior.
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Definition 3.1. By a similarity function on a set U we mean any function σ : U×U −→
[0, 1] ∪ {Υ}. A similarity function σ is called a total similarity function if, for any
x, y ∈ U , σ(x, y) ∈ [0, 1]. For p ∈ [0, 1], by a similarity relation to a degree at least p,
based on σ, we mean the relation σp = {〈x, y〉 | σ(x, y) ≥ p}. Such defined σp is also
simply called the similarity relation. �

A similarity relation is used to construct similarity neighborhoods for individuals.

Definition 3.2. By a neighborhood of u wrt σp we mean the pair of sets nσp

(u) =〈
nσp

+ (u), nσp

⊕ (u)
〉
, where nσp

+ (u) = {u′ ∈ U | σp(u, u′) holds} is called the lower
approximation of the neighborhood, and nσp

⊕ (u) = nσp

+ (u) ∪ {y | σ(u, y) = Υ} is
called the upper approximation of the neighborhood. �

The lower approximation nσp

+ (u) consists of elements which, in the context of avail-
able knowledge, are surely similar enough to u, while the upper approximation nσp

⊕ (u)
consists additionally of elements that might be similar to u due to the unknown status
of the similarity function. Note that in the case when σ is a total similarity function, we
have that nσp

+ (u) = nσp

⊕ (u), thus the neighborhood can be considered as a single crisp
set rather than pair of approximations.

Definition 3.3. A similarity space is defined as tuple Σ = 〈U, σ, p〉, consisting of

– a nonempty set U , called the domain of Σ
– a similarity function σ
– a similarity threshold p ∈ [0, 1].

If σ is a total similarity function, then Σ is called total. If σ is p-serial (p-reflexive,
p-symmetric, p-transitive) then Σ is called serial (reflexive, symmetric, transitive). �

Tolerance spaces, as defined in [3], are total reflexive and symmetric similarity spaces
(cf. [9]). Since reflexivity implies seriality, tolerance spaces are serial similarity spaces.

4 Approximations and Vagueness

Let us define the notions of approximation and vagueness as understood in this paper.

Definition 4.1. Let Σ = 〈U, σ, p〉 be a serial similarity space and let S ⊆ U . The
lower and upper approximation of S wrt Σ, denoted respectively by SΣ+ and SΣ⊕ , are

defined by SΣ+
def= {u ∈ U : nσp

+ (u) ⊆ S} and SΣ⊕
def= {u ∈ U : nσp

⊕ (u)∩ S �= ∅}. �

By SΣ− and SΣ� we denote the complement of S⊕ and of S+ , respectively. The bound-
ary region of S, denoted by SΣ± , is defined as (SΣ⊕−SΣ+).

Intuition behind Definition 4.1 is depicted in Fig.1. The element marked by ∇ is
in the lower approximation of S – its whole lower approximation neighborhood is in-
cluded in S. The element marked by � is in the boundary region – its upper approxima-
tion neighborhood contains elements which are in S and elements outside S. Finally,
the element marked by � is outside of the upper approximation – its whole upper ap-
proximation neighborhood is outside S. Given a particular similarity space, one can be
sure that ∇ is in S, � is outside S. The membership of � in S cannot be determined.
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Fig. 1. Approximations of set S wrt a similarity space Σ

We observe2 that the following proposition holds.

Proposition 4.2. For any serial Σ = 〈U, σ, p〉 and S ⊆ U , we have SΣ+ ⊆ SΣ⊕ . �

If Σ is not serial, then, in general, the above inclusion does not hold. Without this
property, the intuitive idea of an approximate set being bound set theoretically from
below and above would not hold.

Definition 4.3. Given a similarity space Σ = 〈U, σ, p〉, by a vague set over Σ or simply
a vague set3 (when Σ is known from context), we shall understand a pair 〈SΣ+ , SΣ⊕〉,
where S ⊆ U . 〈SΣ+ , SΣ⊕〉 is called a crisp set over Σ (or simply a crisp set, when Σ
is known), when SΣ+ = SΣ⊕ . Then we write SΣ+ rather than the whole pair. �

Observe that in the definition above, boundary regions model borderline cases. More-
over, the parameter p of Σ may vary when perceptual capabilities of an observer change.
Consequently, for a given concept its boundary region is not definitely fixed but contex-
tual. Note also that relations are sets of tuples and can be approximated given a similar-
ity space on tuples of the corresponding type.

We assume that the objective level is specified by means of crisp or vague rela-
tions, e.g., stored in a relational or deductive database, or defined by means of formulas
of a given logic with underlying relational semantics. We also assume that any serial
similarity space Σ reflects perceptual limitations of an observer’s subjective level:

Definition 4.4. Assume Σ = 〈U, σ, p〉 is a serial similarity space and let Z = 〈X, Y 〉
be a vague set over U . Then a perception report of Z wrt Σ1 = 〈U1, σ1, p1〉 is defined
as the vague set 〈XΣ+

1
, YΣ⊕

1
〉. �

2 E.g., by a slight generalization of the corresponding argument given in [2].
3 We sometimes use the term approximate set as a synonym for “vague set”. We also deal with

vague predicates to mean that their extensions are vague sets (of tuples of respective arity).
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Definition 4.4 allows one to model perception reports pertaining to both the objective
and subjective levels of different agents. For example, in agent communication, a re-
ceiving agent may view the sending agent’s knowledge as objective and then apply a
perceptual filter in terms of its current perceptual limitations. The resulting interpreta-
tion of knowledge is that perceived subjectively by the receiver and it is different from
that perceived "objectively" by the sender. For example, the vague set Z can be provided
by an agent with some perceptual limitations modelled by Σ. Receiver approximates Z
using its own filter Σ1. These ideas are developed, in the context of tolerance spaces, in
[4,5], and can easily be generalized onto arbitrary serial similarity spaces.

We also have the following theorem about the unfalsifiability of perception in the
case of serial similarity spaces. It essentially states that once an element is surely per-
ceived to be in a set under observation, it cannot be further classified not to be in the set,
even when the similarity threshold is arbitrarily changed (without violating seriality).
Similarly, once it is surely perceived to be outside the set, it cannot be further classified
to be in the set no matter what the similarity threshold is (again, retaining seriality).

Theorem 4.5. Let Σ = 〈U, σ, p〉 and Σ1 = 〈U, σ, q〉 be any serial similarity spaces.4

Then, for any vague set Z = 〈X, Y 〉 over U , we have:

1. if s ∈ XΣ+ then s ∈ XΣ⊕
1

2. if s ∈ YΣ− then s ∈ YΣ�
1

Proof. We prove the first part. The second is symmetric. Consider the following cases:

q ≤ p : then nσp

⊕ (s) ⊆ nσq

⊕ (s). If s ∈ XΣ+ then, by seriality of Σ, s ∈ XΣ⊕ . Thus
nσp

⊕ (s) ∩ X �= ∅, i.e., nσq

⊕ (s) ∩ X �= ∅, i.e., s ∈ XΣ⊕
1

q > p : then nσq

+ (s) ⊆ nσp

+ (s). Thus, if s ∈ XΣ+ then nσq

+ (s) ⊆ nσp

+ (s) ⊆ X . By
seriality of Σ1, nσq

+ (s) �= ∅. Thus nσq

+ (s)∩X �= ∅. By definition, nσq

+ (s) ⊆ nσq

⊕ (s),
hence nσq

⊕ (s) ∩ X �= ∅, i.e., s ∈ XΣ⊕
1

. �

In the non-serial case the above theorem does not hold, as is shown in Example 5.1.

5 Examples

The first example provides a counter-example to Theorem 4.5 in the case of non-
seriality of the underlying similarity spaces.

Example 5.1. Let us go back to Example 2.1. Assume that there are two objects: Ob and
the robot Ro, and that the robot determines similarity σ(Ob, Ob) = 1.0, σ(Ob, Ro) =
σ(Ro, Ob) = 0.8 and σ(Ro, Ro) = 0.6. Consider similarity spaces Σ = 〈{Ob, Ro}, σ,
0.8〉 and Σ1 = 〈{Ob, Ro}, σ, 1.0〉. Σ is serial while Σ1 is not. We have: {Ob}Σ+ =
{Ro} and {Ob}Σ⊕

1
= {Ob}. Thus Ro is in {Ob}Σ+ but not in {Ob}Σ⊕

1
which, in the

non-serial case, falsifies Theorem 4.5 with X = {Ob}. �

Consider the heap example and the Sorites Paradox, widely discussed, also in [1].

4 Thus, it is sufficient to require that σ is
(
max{p, q})-serial.
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Example 5.2. Let Heap(n) be a predicate, denoting that n grains of sand make a heap.
Assume that an agent is asked to recognize heaps, provided that the objective level def-
inition of Heap is Heap(n) = n ≥ 100. Assume further that the agent’s subjective re-
ality is modeled in terms of a perception filter given by the similarity space 〈N, σ, 0.8〉,
where N is the set of natural numbers and

σ(k, m) = 1 − | k − m |
max{1, k, m} . 5

Since σ is total, we have that nσ0.8

+ (i) = nσ0.8

⊕ (i) = {j | σ(i, j) ≥ 0.8}. We now
calculate approximations of [100, +∞] which is the set of natural numbers satisfying
the predicate Heap. Using Definition 4.1, we get HeapΣ+ = [125, +∞) and HeapΣ⊕ =
[80, +∞). Consequently, we can put HeapΣ− = N−HeapΣ⊕ = [0, 79] and HeapΣ± =
HeapΣ⊕ −HeapΣ+ = [80, 125). HeapΣ+(n) implies HeapΣ+(n+1), but the converse
implication is satisfied only when n is greater than or equal to a certain natural number,
in our case, n = 125. Similarly, HeapΣ⊕(n + 1) implies HeapΣ⊕(n) for n ≥ 80.

The above induction is related to the Sorites Paradox. We share the opinion that
the paradox results from mixing the objective and subjective levels. Quantitative mea-
surements on the objective level are often not reflected by a qualitative change on the
subjective level. One cannot expect a relatively small change, that cannot be observed
due to perceptual limitations, to cause qualitative change at the agent’s subjective level.
“Grains of sand” are too small to register a qualitative change from non-heap to heap.

To be more specific, consider similarity σ(1000, 1001) = 1 − 1/1001 = 0.999
between 999 and 1000 grains of sand. Given particular perceptual limitations, say p =
0.99, we have that 999 and 1000 grains are indiscriminately different. One grain is too
small “particle” to be recognized in this context and to make a qualitative change. �

In Example 5.2 we computed the subjective perception of Heap wrt the considered
similarity space. One can additionally solve two other related tasks, where the subjective
perception of Heap is understood according to Definition 4.4:

– given a subjective perception of Heap and a similarity space Σ, determine the ob-
jective level definition of Heap

– given an objective level definition of Heap, a subjective perception of Heap and
a similarity space σ, determine the similarity threshold p of Σ,

Example 5.3. Assume that we compare the sweetness of coffee cups by comparing the
number of sugar grains in each cup. Suppose further that objectively two cups contain-
ing k and m grains of sugar, respectively, are of the same sweetness, denoted by k ∼ n,
when for some natural number i, both k and m are in the same interval [i∗10, i∗10+9].
Clearly, ∼ is transitive. Suppose, a robot is given the task to measure sweetness, but has
some subjective limitations pertaining to its sensors. Limitations are represented as the
similarity space Σ = 〈{0, 1, 2, . . .}, σ, 0.6〉, where σ is defined as in Example 5.2. Now,
σ(2, 3) = 2/3 ≥ 0.6, σ(3, 5) = 0.6 ≥ 0.6 and σ(2, 5) = 0.4 �≥ 0.6, i.e., 2, 3 and 3, 5
are of the same sweetness wrt Σ, whereas 2, 5 are not. Thus, on the subjective level,
transitivity does not apply. �

5 This similarity function is just an example. However, it reflects the intuition that heaps, say, of
1000 and 1001 grains are more similar than heaps of, e.g., 100 and 101 grains.
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Example 5.4. Let Fast(c) be a predicate denoting that a car c’s speed is very high. We
assume here that each car is characterized by its speed, measured by a radar.6 The speed
of a car c is given by a function S(c), whose value is in [0, 200] ∪ Υ . Assume that an
agent is asked to identify fast cars, provided that the objective level definition of Fast,
given particular road conditions, is Fast(c) ≡ [S(c) ≥ 80].

Suppose that the agent’s subjective perceptual capability is modelled by a similarity
space Σ = 〈C, σ, 0.9〉, where C is the set of considered cars and

σ(c1, c2)
def=

⎧
⎨

⎩

1 −| S(c1) − S(c2) | /200 when S(c1), S(c2) �= Υ
1 when S(c1) = S(c2) = Υ
Υ otherwise.

We have nσ0.9

+ (c) = {c′ | σ(S(c), S(c′)) ≥ 0.9}. In the same way we have nσ0.9

⊕ (c) =
nσ0.9

+ (c) ∪ {c′ | σ(S(c), S(c′)) = Υ}. We now compute approximations of the set
FC = {c ∈ C | S(c) ≥ 80}. Using Definition 4.1, we finally obtain that FCΣ+ =
{c ∈ C | S(c) ≥ 100} and FCΣ⊕ = {c ∈ C | S(c) ≥ 60 or S(c) = Υ}. �

6 Complexity of the Approach

The approach we propose is tractable in the case of finite domains, as shown below.

Definition 6.1. A similarity space Σ = 〈U, σ, p〉 is tractable, if U is finite and, for all
a, b ∈ U , σ(a, b) can be computed in deterministic polynomial time in the size of U . �

Assume the considered relations are stored in relational or deductive databases tractable
intensional part (e.g., expressed by the classical first-order rules or fixpoint calculus –
see, e.g., [10]). Under such assumptions, we have the following proposition.

Proposition 6.2. Let Σ = 〈U, σ, p〉 be a tractable similarity space. Then, for any set
S ⊆ U , approximations SΣ+ and SΣ⊕ are computable in deterministic polynomial
time in the size of U . �

In consequence, any query referring to RΣ+ and RΣ⊕ , where R is a relation on U , are
computable in deterministic polynomial time in the size of U .

7 Relation to Other Approaches and Conclusion

The use of similarity spaces is a generalization of Pawlak’s [6] pioneering work with
rough sets where indiscernibility among individuals is modeled in terms of equivalence
classes on feature/value pairs. In this paper, we also extend the results in [2,3,4,5].
The incentive for this generalization is due to the novel manner in which Halpern [1]
approaches problems of intransitivity and vagueness. Fuzzy sets [11,12,13] provide an-
other means of modeling vagueness and [14,15] provide insights into how one can
formally translate between fuzzy and rough sets. These techniques can also be applied
to our generalizations. There is also some relevant work outside the soft computing
genre which attempts to provide methods and techniques for reasoning with approxi-
mate relations of which ( [16,17,18,19,20]) are representative.

6 Note that a radar may not be able to measure the speed of some cars.
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