
On the Correspondence between

Approximations and Similarity

Patrick Doherty1 and Andrzej Sza las1,2

1 Dept. of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden
patdo@ida.liu.se

2 The College of Economics and Computer Science,
Olsztyn, Poland

andsz@ida.liu.se

In Proceedings of 4th International Conference on Rough Sets and
Current Trends in Computing, RSCTC-2004.

Abstract. This paper focuses on the use and interpretation of approxi-
mate databases where both rough sets and indiscernibility partitions are
generalized and replaced by approximate relations and similarity spaces.
Similarity spaces are used to define neighborhoods around individuals
and these in turn are used to define approximate sets and relations. There
is a wide spectrum of choice as to what properties the similarity relation
should have and how this affects the properties of approximate relations
in the database. In order to make this interaction precise, we propose a
technique which permits specification of both approximation and simi-
larity constraints on approximate databases and automatic translation
between them. This technique provides great insight into the relation be-
tween similarity and approximation and is similar to that used in modal
correspondence theory. In order to automate the translations, quantifier
elimination techniques are used.

1 Introduction

There is a natural generalization of relational databases where one uses intu-
itions from rough set theory [14] and rather than storing and querying crisp re-
lations, one stores and queries rough relations consisting of an upper and lower
approximation of the implicit crisp relation whose definition one tries to approxi-
mate [4]. There is also a natural generalization of an indiscernibility relation used
in rough set theory, where rather than partitioning the universe of discourse U

into indiscernibility classes, one can consider a covering of U by similarity-based
neighborhoods (see, e.g., [8]) with lower and upper approximations of relations
defined via the neighborhoods. To mark the difference, we will use the terms ap-
proximate relations and approximate databases instead of rough relations and
rough databases. Approximate databases and tolerance spaces have been shown

to be quite versatile in many applications areas requiring the use of approximate
knowledge structures [5, 7].

When taking this step and generalizing to approximate relations and data-
bases, there are many choices that can be made as regards the constraints one
might want to place on the similarity relation used to define upper and lower ap-
proximations. For example, we would not want the relation to have the property
of transitivity since similar things don’t naturally chain in a transitive manner.
Many of these issues are discussed in the context of rough sets (see, e.g., [15–
17]). Whatever choices are made, one wants to ensure that these constraints are
enforced while querying an approximate database. In a similar manner, there are
many constraints that are more naturally expressed in terms of upper and lower
approximations which must remain consistent with the properties one assumes
for the underlying similarity relation and which also have to be enforced while
querying the approximate database. For example, for any relation in an approxi-
mate database, we would like to ensure that the lower approximation is a subset
of the upper approximation. There are even constraints we might like to enforce
that refer to the crisp relation of which we implicitly represent in terms of an
upper and lower approximation. For example the lower approximation should be
a subset of this crisp relation.

The goal of this paper is to study the interaction between constraints stated
in terms of a language of approximate relations and constraints stated in terms
of the underlying similarity relation which is used to define neighborhoods. To do
this, we first define a language of set theoretical terms which permit us to repre-
sent boolean constraints on upper and lower approximations. We then introduce
a first-order language and translation function which translates constraints in
the set theoretical language into first-order formulas. These first-order formulas
are then quantified over various relations in the formulas because we are inter-
ested in universal constraints. We then use quantifier elimination techniques to
generate logically equivalent formulas in a first-order language but in this case,
the resulting output only refers to the similarity relation if the elimination is
successful.

This technique is analogous to techniques used in modal correspondence the-
ory [19] where one studies the nature and expressiveness of modal axioms by
viewing them as expressing constraints on the possible worlds alternative rela-
tion in the underlying Kripke frames. These constraints are represented as 1st-
or higher-order logical formulas and correspondence theory is the study of the
generation and relations between these correspondences. We approach the topic
of the relation between approximate relation axioms and the formulas express-
ing constraints on the underlying similarity relation in a similar manner. In this
case though, we can often automatically generate the resulting correspondence
through the use of quantifier eliminations techniques [6] developed by the authors
in another context.

The correspondences considered in this paper are not surprising in the view
of [19] as well as results more directly oriented towards rough set theory (for an
overview of results see, e.g., [11]). However, the novelty of our approach is that

we show a uniform, principled way to compute appropriate correspondences and
focus on similarity spaces rather then Kripke structures.

2 Preliminaries

The starting point for our approach are tolerance spaces, as introduced in [8].
Technically, they allow us to classify a universe of individuals into indiscernibility
or tolerance neighborhoods based on a parameterized tolerance relation. This is
a generalization on the indiscernibility partitions used in rough set theory where
instead of partitions, the neighborhoods provide a covering of the universe. In
fact, tolerance functions are required to induce reflexive and symmetric neighbor-
hood relations, while rough neighborhood relations are additionally transitive.

Tolerance spaces can still be generalized to represent even weaker notions
of similarity in a universe of individuals. Consequently, we consider similarity
spaces, where the definition of a similarity function has no initial constraints.

Definition 1. By a similarity function on a set U we mean any function
τ : U × U −→ [0, 1].

For p ∈ [0, 1] by a similarity relation to a degree at least p, induced by τ , we

mean the relation σp def
= {〈x, y〉 | τ(x, y) ≥ p}. �

In what follows, we assume p is given and use σ(x, y) to denote the charac-
teristic function of σp.

Similarity relations are used to construct similarity neighborhoods.

Definition 2. By a neighborhood function wrt σp we mean a function given by

nσp

(u)
def
= {u′ ∈ U | σp(u, u′) holds}. By a neighborhood of u wrt σp we mean

the value nσp

(u). �

Definition 3. A similarity space is defined as the tuple S = 〈U, τ, p〉, consisting
of a nonempty set U , called the domain of S, a similarity function τ , and a
similarity threshold p ∈ [0, 1].

Let A ⊆ U . The lower and upper approximation of A wrt S, denoted re-
spectively by AS+ and AS⊕ , are defined by AS+ = {u ∈ U : nσp

(u) ⊆ A},
AS⊕ = {u ∈ U : nσp

(u) ∩A 6= ∅}. �

We shall often provide similarity spaces as pairs 〈U, σ〉, where σ is a similarity
relation induced by a given similarity function and threshold. This simplifies the
presentation and is sufficient for the purposes of the current paper.

The following proposition provides us with an alternative way to define upper
and lower approximations and will be used throughout the paper.

Proposition 1. Let S = 〈U, σ〉 be a similarity space and let A ⊆ U . Then
AS+ ={a ∈ A | ∀b [σ(a, b)→ b ∈ A]} and AS⊕ ={a ∈ A | ∃b [σ(a, b) ∧ b ∈ A]}. �

As a basis for doing quantifier elimination, we will use the following lemma due

to Ackermann [1] (see also, e.g., [6, 18]), where Ψ
[

P (α)← [Φ]
x

α

]

means that

every occurrence of P in Ψ is to be replaced by Φ where the actual arguments
α of P , replaces the variables of x in Φ (and the bound variables are renamed if
necessary).

Lemma 1. Let P be a predicate variable and let Φ and Ψ(P) be first–order
formulae such that Ψ(P) is positive w.r.t. P and Φ contains no occurrences of P

at all. Then ∃P ∀x (P (x̄)→ Φ(x̄, ȳ))∧Ψ(P) ≡ Ψ
[

P (α)← [Φ]
x

α

]

and similarly

if the sign of P is switched and Ψ is negative w.r.t. P . �

3 Languages for Expressing Similarity and Approximation

Constraints

In order to specify constraints on approximate relations and similarity relations
and to show correspondences between them, we will introduce a number of lan-
guages and translations between them. We begin by defining a language for
approximation constraints.

Definition 4. Let U be a set, Ā be a tuple of set symbols3 (respective sets are
assumed to be included in U) and let S = 〈U, σ〉 be a similarity space. Set-
theoretical terms over vocabulary Ā ∪ {S} are defined as follows:

– for A ∈ Ā, A is a set-theoretical term
– if α is a set-theoretical term then −α, αS+ , αS⊕ are set-theoretical terms
– if α, β are set-theoretical terms then α ∪ β is also a set-theoretical term.

If α and β are set-theoretical terms over Ā ∪ {S} then α ⊆ β is an atomic
set-theoretical formula over Ā ∪ {S}. The set of set-theoretical formulas is the
least set which contains all atomic set-theoretical formulas and is closed under
the classical propositional connectives. �

We also define (α ∩ β)
def
= −(−α ∪ −β) and (α = β)

def

≡ (α ⊆ β ∧ β ⊆ α).

Given approximation constraints in the language above, we would like to
translate such constraints into formulas in a first-order language as follows.

Definition 5. Let U, Ā, S be as in Definition 4. Let α be a set-theoretical term
over Ā ∪ {S} and x be a variable over U . Then the translation Tr(α, x) of set-
theoretical terms into first-order formulas is defined inductively as follows:

– Tr(A, x)
def
= A′(x), where A ∈ Ā and A′ is a fresh unary relation symbol

– Tr(−α, x)
def
= ¬Tr(α, x)

3 Later on we will use the same symbols to denote sets and corresponding characteristic
relations.

– Tr(αS+ , x)
def
= ∀y [σ(x, y)→ Tr(α, y)], where y is a fresh variable

– Tr(αS⊕ , x)
def
= ∃y [σ(x, y) ∧ Tr(α, y)], where y is a fresh variable

– Tr(α ∪ β, x)
def
= Tr(α, x) ∨ Tr(β, x).

The translation Tr(γ, x) of set-theoretical formulas into first-order formulas is

defined to satisfy Tr(α ⊆ β, x)
def
= ∀x (Tr(α, x) → Tr(β, x)) and to preserve the

classical propositional connectives. �

Example 1. Let a vocabulary consist of sets A,B,C and similarity space S. Then:

Tr((A ∪B)S+⊆ CS⊕ , x) =
= ∀x [∀y (σ(x, y)→(A(y) ∨B(y)))→ ∃z (σ(x, z) ∧C(z))]. �

4 Computing Correspondences between Approximations

and Similarity

For the purposes of this section, we will fix a similarity space S = 〈U, σ〉 and a
tuple of sets Ā, where all sets in Ā are included in U .

4.1 The general technique

The general techniques used to compute correspondences between similarity con-
straints and approximation constraints are those described in [18] in the context
of modal logics, but rather than working with the alternative relation on possible
worlds, we will work with the similarity space S. The steps are as follows:

1. express the required property of approximations as a set-theoretical formula
γ(Ā) over vocabulary Ā ∪ {S}

2. compute the translation Tr(γ(Ā), x) of the formula obtained in step 1 ac-
cording to Definition 5

3. consider the formula ∀Ā [Tr(γ(Ā), x)] and eliminate second-order variables
Ā, if possible.

If the second-order quantifier elimination is successful then the resulting formula
uses only the non-logical symbols σ and = and is logically equivalent to the initial
logical translation of the set-theoretical property. The quantifier elimination step
can be automated using the algorithm given in [18] or its generalization known
as the Dls algorithm of [6]. There are also other applicable methods which may
be used (for an overview of known techniques see [12]).

In the remainder of this section, we will select a number of approximation con-
straints for analysis and show their correspondence with similarity constraints.

4.2 The meaning of inclusion AS+ ⊆ AS⊕

Consider the very basic requirement in rough set theory that the lower approxi-
mation of a set should be contained in its upper approximation, i.e., for any set

A we have AS+ ⊆ AS⊕ . The translation of this approximation constraint results
in the following first-order formula:

Tr(AS+ ⊆ AS⊕ , x) = ∀x [Tr(AS+ , x)→ Tr(AS⊕ , x)]

= ∀x [∀y (σ(x, y)→ A(y))→ ∃z (σ(x, z) ∧A(z))].

We universalize over all relations A and get the following second-order formula:

∀A ∀x [∀y (σ(x, y)→ A(y))→ ∃z (σ(x, z) ∧A(z))].

To apply Ackermann’s lemma, a number of syntactic transformations on the
original formula are required. In this case, we first negate this formula and switch
the order of initial existential quantifiers:

∃x∃A [∀y (σ(x, y)→ A(y)) ∧ ∀z (¬σ(x, z) ∨ ¬A(z))].

Ackermann’s lemma is then applied resulting in a logically equivalent first-order
formula representing the following similarity constraint:

∃x [∀z (¬σ(x, z) ∨ ¬σ(x, z))].

After simplifying and negating again we find that the initial requirement is
equivalent to ∀x∃z σ(x, z), i.e., to the seriality of σ.4 Upon analysis, this leads
to an interesting observation:

Proposition 2. The condition that for any set A, the approximation constraint
AS+ ⊆ AS⊕ holds, is equivalent to the seriality of σ, i.e., to ∀x∃z σ(x, z). �

Seriality is a weaker requirement on σ than reflexivity, since reflexivity implies
seriality. Assuming this is the only constraint placed on σ, what might this mean
intuitively. In an epistemic context, one use of such a weak notion of similarity
might be to represent a type of self-awareness, or lack of self-awareness in this
case. Here is an example:

Example 2. Consider a society of (at least two) similar robots equipped with
cameras and image processing software that allows a robot to recognize similar
objects. Assume that because of its camera placement each robot can observe the
whole environment except for itself. Assume any robot knows that it is similar
to other robots. Based only on such knowledge no robot can verify that it is
similar to itself. Here similarity is serial, but not reflexive. �

The following example shows another situation where similarity could be
interpreted as serial, but not reflexive.

4 This property reflects the axiom D of modal logics. The properties considered in
consecutive subsections reflect modal axioms T , B and 4, respectively.

Example 3. On a daily basis, humans often use many different relations of simi-
larity concurrently. In commonsense reasoning these relations are generally kept
apart, because this would lead to invalid conclusions. For example, assume we
consider a similarity between parents and children in the sense that a child is
similar to it’s parent. Suppose further that we do not want to mix this notion
of similarity with other similarities, e.g. those of persons to themselves. More
formally we can say that σ(x, y) holds if x is a child of y. Since everybody has
a parent, σ is serial. Obviously it is not reflexive, since no one is its own child.
In this case it would not be symmetric or transitive. �

4.3 The meaning of inclusion AS+ ⊆ A

The properties we consider in this section and the next two sections are well-
known topological properties if one considers the lower approximation to be the
interior operation and the upper approximation to be the closure operation.
From a modal logic perspective, the lower and upper approximations can be
considered analogous to modal necessity and possibility, respectively.

We first translate the approximation constraint Tr(AS+ ⊆ A, x) into:

∀x [∀y (σ(x, y)→ A(y))→ A(x)].

A straightforward calculation, similar to one used for modal logics in [18] shows
that the universal requirement

∀A ∀x [∀y (σ(x, y)→ A(y))→ A(x)]

is equivalent to the similarity constraint ∀xσ(x, x), i.e., to the reflexivity of σ.

Proposition 3. The condition that for any set A, Aσ+ ⊆ A holds is equivalent
to the reflexivity of σ, i.e., to the requirement that ∀xσ(x, x) holds. �

4.4 The meaning of inclusion A ⊆ (AS⊕)S+

We first translate the approximation constraint Tr(A ⊆ (AS⊕)S+ , x) into a first-
order formula:

∀x [A(x)→ ∀y (σ(x, y)→ ∃z (σ(y, z) ∧A(z)))].

A straightforward calculation, similar to one used for modal logics in [18] shows
that the universal requirement

∀A∀x [∀y (σ(x, y)→ A(y))→ A(x)]

is equivalent to the similarity constraint ∀x, y [σ(x, y) → σ(y, x)], i.e., to the
symmetry of σ.

Proposition 4. The condition that for any set A, A ⊆ (AS⊕)S+ holds is equiv-
alent to the symmetry of σ, i.e., to the requirement that ∀x, y [σ(x, y)→ σ(y, x)]
holds. �

4.5 The meaning of inclusion AS+ ⊆ (AS+)S+

We first translate the approximation constraint Tr(AS+ ⊆ (AS+)S+ , x) into:

∀x [∀y(σ(x, y)→ A(y))→ ∀z(σ(x, z)→ ∀u (σ(z, u)→ A(u)))].

A straightforward calculation, similar to one used for modal logics in [18] shows
that the universal requirement

∀A∀x [∀y(σ(x, y)→ A(y))→ ∀z(σ(x, z)→ ∀u (σ(z, u)→ A(u)))]

is equivalent to the similarity constraint ∀x, z, u [(σ(x, z) ∧ σ(z, u)) → σ(x, u)],
i.e., to the transitivity of σ.

Proposition 5. The condition that for any set A, AS+⊆(AS+)S+ holds is equiv-
alent to the transitivity of σ, i.e., to ∀x, z, u [(σ(x, z) ∧ σ(z, u))→ σ(x, u)]. �

5 Approximate Database Considerations

Based on the results above, when working with approximate databases, it is im-
portant that the use of the database is consistent with the approximation and
similarity constraints envisioned by the database engineer and required by the
particular application. In some respects, the approximate and similarity con-
straints have the role of integrity constraints in standard database theory. Yet,
enforcing these constraints is not as straightforward. We now consider this issue.

Definition 6. By a (relational, crisp) database we understand a tuple

D =
〈

U, {Rj | j ∈ J}
〉

,

where U is a finite set, called the domain of D and {Rj | j ∈ J} is a finite
collection of relations over U . By an approximate database we understand a
tuple

D =
〈

U,
{

Rj | Rj =
〈

R
j
+ , R

j
⊕

〉

and j ∈ J
}〉

,

where R
j
+s and R

j
⊕s are crisp relations of the same arity, satisfying R

j
+⊆R

j
⊕ . �

Let R be a relation5 with it’s approximations RS+ and RS⊕ represented in
an approximate database D. Note that R is available only through its approxi-
mations and is not itself stored in D.

We assume a similarity space S = 〈U, σ〉 and the ability to verify whether
σ(x, y) holds for tuples x and y which are stored in D.

5 Of course, any relation is a set of tuples, so our previous considerations apply here,
too.

Consider first a simpler case of constraints referring to approximations only.
Such constraints can be directly represented in the database since approxima-
tions are represented as database relations. The requirements RS+ ⊆ RS⊕ and
RS+ ⊆ (RS+)S+ are examples of such constraints. In this case, both the lower
and upper approximations, RS+ and RS⊕ can be computed according to Propo-
sition 1, since we assume that σ can be verified on elements which are stored
in D.

A more complicated case arises when an approximation constraint refers to
R, the crisp relation being approximated, since R is not stored in D. In such
cases, one will often need to enforce meta-constraints, i.e., constraints that have
to be ensured by database designers, and which cannot explicitly be represented
or computed in an approximate database.

Let us start with the requirement that RS+ ⊆ R holds. In order to preserve
its meaning in D, one has to ensure the following meta-constraint:

the lower approximation RS+ ⊆ R can only contain those tuples which
are known to satisfy R.

The requirement R ⊆ (RS⊕)S+ is more problematic. In some cases it can be
replaced by a constraint that does not refer to R directly. For example, using
our analogy to modal logic (R→ �♦R), it is well known that in the presence of
reflexivity and transitivity, this axiom can be replaced by the property called 5.

The corresponding similarity relation for 5 is known to be Euclidean, i.e., it
satisfies ∀x, y, z[(σ(x, y)∧ σ(x, z))→ σ(y, z)] (see, e.g., [2, 3, 9]). In the language
of approximate constraints, this would be expressed as RS⊕ ⊆ (RS⊕)S+ , which
refers to R via approximations only. In fact, in the presence of this property,
transitivity is no longer required, since any Euclidean and reflexive relation is
also both symmetric and transitive.6

In order to preserve the symmetry requirement on σ, one has to ensure that
the following meta-constraint is preserved:

all tuples satisfying R are to be included in the lower approximation of
the upper approximation RS⊕ .

In general, it is difficult to ensure this meta-constraint. One alternative to
the meta-constraint would be to store, for any relation R, RS+ together with
(−R)S+ . For any database update adding to or deleting a tuple of type compat-
ible with tuples in R from the database, one would then have to check whether
the approximations still satisfy the conditions of Proposition 1.

This technique is tractable, but expensive, as any database update might
cause an integrity check. One could also apply techniques based on the static
verification of database transactions which, in many cases, would result in much

6 This easily follows from the well-known fact that modal logic KT5 characterized
with a reflexive and Euclidean accessibility relation is the same as S5, where the
accessibility relation is reflexive, symmetric and transitive - see, e.g., [3].

more efficient solutions to this problem. A technique which can be applied in
this context was developed in [10].

6 Conclusions

Assuming the use of approximate databases as our starting point which appeal to
a generalization of indiscernibility relations to tolerance or similarity spaces, we
have proposed a set of techniques which permit the expression of approximation
constraints and similarity constraints. We provide a method to automatically
translate between the two and show how intuitions from modal logic and modal
correspondence theory can be put to good use, not only in acquiring insight as
to the interaction between similarity and approximation, but in providing more
efficient means of enforcing such constraints in approximate databases.

References

1. W. Ackermann.
Untersuchungen über das eliminationsproblem der mathematischen
logik.
Mathematische Annalen, 110:390–413, 1935.

2. R. A. Bull and K. Segerberg.
Basic modal logic.
In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2, pages 1–88. D. Reidel Pub. Co., 20198402.

3. B. F. Chellas.
Modal Logic - an Introduction.
Cambridge University Press, 1980.

4. P. Doherty, J. Kachniarz, and A. Sza las.
Using contextually closed queries for local closed-world reasoning in
rough knowledge databases.
In [13], 2003.

5. P. Doherty, W. Lukaszewicz, A. Skowron, and A. Sza las.
Approximation transducers and trees: A technique for combining rough
and crisp knowledge.
In S. K. Pal, L. Polkowski, and A. Skowron, editors, Rough-Neuro
Computing: Techniques for Computing with Words, Heidelberg, 2003.
Springer–Verlag.

6. P. Doherty, W. Lukaszewicz, and A. Sza las.
Computing circumscription revisited.
Journal of Automated Reasoning, 18(3):297–336, 1997.

7. P. Doherty, W. Lukaszewicz, and A Sza las.
Information granules for intelligent knowledge structures.
In Proc. 9th International Conference on rough sets, fuzzy sets,
data mining and granular computing, LNCS. Springer-Verlag, 2003.

8. P. Doherty, W. Lukaszewicz, and A Sza las.
Tolerance spaces and approximative representational structures.
In Proceedings of 26th German Conference on Artificial
Intelligence. Springer-Verlag, 2003.

9. G. E. Hughes and M. J. Cresswell.
An Introduction to Modal Logic.
Methuen and Co. Ltd., London, New York, 1968.

10. J. Kachniarz and A. Sza las.
On a static approach to verification of integrity constraints in
relational databases.
In E. Or lowska and A. Sza las, editors, Relational Methods
for Computer Science Applications, pages 97–109. Springer Physica-Verlag,
2001.

11. C-J Liau.
An overview of rough set semantics for modal and quantifier logics.
Int. Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 8(1):93–118, 2000.

12. A. Nonnengart, H.J. Ohlbach, and A. Sza las.
Elimination of predicate quantifiers.
In H.J. Ohlbach and U. Reyle, editors, Logic, Language and
Reasoning. Essays in Honor of Dov Gabbay, Part I, pages 159–181. Kluwer,
1999.

13. S. K. Pal, L. Polkowski, and A. Skowron, editors.
Rough-Neuro Computing: Techniques for Computing with Words.
Springer–Verlag, Heidelberg, 2003.

14. Z. Pawlak.
Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht, 1991.

15. A. Skowron and J. Stepaniuk.
Tolerance approximation spaces.
Fundamenta Informaticae, 27:245–253, 1996.

16. R. S lowiński and D. Vanderpooten.
Similarity relation as a basis for rough approximations.
In P. Wang, editor, Advances in Machine Intelligence & Soft
Computing, pages 17–33, Raleigh NC, 1997. Bookwrights.

17. R. S lowiński and D. Vanderpooten.
A generalized definition of rough approximations based on similarity.
IEEE Trans. on Data and Knowledge Engineering, 12(2):331–336,
2000.

18. A. Sza las.
On the correspondence between modal and classical logic: An automated
approach.
Journal of Logic and Computation, 3:605–620, 1993.

19. J. Van Benthem.
Correspondence theory.
In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 2, pages 167–247. D. Reidel Pub. Co., 1984.

