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a b s t r a c t

This paper addresses the cooperative localization and visual mapping problem with multiple
heterogeneous robots. The approach is designed to deal with the challenging large semi-structured
outdoors environments in which aerial/ground ensembles are to evolve. We propose the use of
heterogeneous visual landmarks, points and line segments, to achieve effective cooperation in such
environments. A large-scale SLAM algorithm is generalized to handle multiple robots, in which a global
graphmaintains the relative relationships between a series of local sub-maps built by the different robots.
The key issue when dealing with multiple robots is to find the link between them, and to integrate these
relations to maintain the overall geometric consistency; the events that introduce these links on the
global graph are described in detail. Monocular cameras are considered as the primary extereoceptive
sensor. In order to achieve the undelayed initialization required by the bearing-only observations, the
well-known inverse-depth parametrization is adopted to estimate 3D points. Similarly, to estimate 3D
line segments, we present a novel parametrization based on anchored Plücker coordinates, to which
extensible endpoints are added. Extensive simulations show the proposed developments, and the overall
approach is illustrated using real-data taken with a helicopter and a ground rover.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

There are several cooperation schemes in which the comple-
mentarity of aerial and ground robots can be exploited to enhance
the efficiency of autonomous robotics operations. For instance,
aerial robots can provide the ground robots with information re-
lated to the environment, e.g. traversability maps or landmarks,
they can localize the ground robots by perceiving them, or pro-
vide them with communication links with a remote station. Aerial
and ground robots can also cooperate in a more symmetric way to
achieve a task, such as exploration, surveillance or target detection
and tracking. All these tasks can benefit from the enhanced obser-
vation capabilities brought by both kinds of robots.

In this context, the ability to build and share environment
models among the robots is an essential prerequisite to the
development of cooperation schemes. Be it for exploration,
surveillance or intervention missions, environment models are
indeed necessary to plan and coordinate paths, but also to
determine the utility of vantage points, to assess whether
robots will be able to communicate or not, and to localize the
robots in a common frame. In particular, 3D information on the
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environment is required. Not only do the robots evolve in the
three dimensions, but the determination of vantage points calls for
visibility computations in the 3D space. Also, vision is considered
the primary sensor to build environment representations. Besides
the fact that images carry a lot of information on the environment,
vision is passive, it has the main advantage of perceiving features
that are arbitrarily far away, and it can be embedded onboard any
kind of drone, even the smallest ones.

Similarly to the single robot case, one can not take for granted
the fact that the robots are at all times perfectly localized.
Centimeter accuracy RTK-GPS is often disturbed by signal outages,1
and no onboard sensors can ensure a robust long term localization.
Nevertheless, the maps must be spatially consistent; their spatial
uncertainties must be compatible with the actual environment’s
spatial characteristics, and the process of mapping must tolerate
the fact that the robots’ positions are not always perfectly known.
This naturally leads to exploiting a SLAM approach, in which
uncertainties on the environment features and on the robots poses
are explicitly managed over time.

Mapping in a multi-robot system brings forth the following
additional issues, that have to be tackled in our aerial/ground
context:

1 Some applications contexts even preclude its usage.
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Fig. 1. Three aerial images of a village acquired at about 40 m altitude (top) and three images of the same area acquired by a ground rover. The red angular sector in the
aerial images approximately represents the position and field of view of the ground rover camera. How could these data be registered and fused in a spatially consistent data
structure? (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
• Themapping algorithmsmust be distributed among the robots.
They can not rely on a complete and permanent communication
infrastructure between the robots, as this would impose strong
requirements on communication coverage and bandwidth,
which can hardly be satisfied in most field applications.
• The structure of themaps built by the various robotsmust allow

to match, register or fuse them, so that they can be shared
among the robots. For these purposes, the information on the
environment they exhibit must be common to the various
robots. In our context the 3D geometry of the environment
is the only intrinsic environment characteristic on which one
can rely to tackle data association, as it can cope with the fact
that the sensors or viewpoints can be very different among the
different robots (see example data in Fig. 1).

Approach. To tackle these two issues, we aim at defining a
3D multiple robot mapping framework using vision, that is able
to handle any localization means, including matching perceived
data with pre-existing 3D maps. The produced environment
representation must also allow the incorporation of range data
such as those provided by stereo vision or Lidars, these sensors
being widely used on ground robots. For these purposes, we
propose to use 3D points and 3D line segments to represent the
environment from sequences of aerial and ground images. These
representations should gather most of the geometric structure in
the environment, and is the basis to register and fuse the data
acquired from different vantage points, different sensors, and prior
3D information on the environment.

In the direction towards the achievement of such a mapping
framework, the contribution of this paper is twofold:

• We propose a mapping approach in which robots build series
of local maps using a classical EKF-based SLAM paradigm. The
overall spatial consistency of the maps among the robots is
ensured by an optimization process, that takes into account
various inter-robot and absolute localization estimates. This
approach takes after the work on hierarchical SLAM proposed
by Estrada et al. in [1], which relies on a hierarchical represen-
tation of the map; the global level is an adjacency graph, where
nodes are local maps (or ‘‘sub-maps’’), and edges are relative
locations between local maps. In a multi-robot context, the
sub-maps are not necessarily built in a sequential manner, and
various events can trigger loop closures and later mapmerging,
namely rendezvous between robots, feature correspondences
(‘‘matching’’) and absolute localizations, provided either by GPS
fixes or by matches with an a priori existing map [2]. These
events produce loop closures; the global graph exhibits a cycle,
and thus define constraints that allow the system to refine the
estimates of the sub-maps origins. We analyze the impact of
these events on the overall map structure and propose a way
to handle them in a distributed context.
• We exploit 3D points and 3D line segments detected in the im-

ages in order to create representation of the environment that
is invariant to the vantage points. This environment representa-
tion is built using bearing-only information. Bearing-only infor-
mation calls for a dedicated implementation of the EKF-based
SLAM approach, which relies on the undelayed initialization.
We use the well-known inverse-depth parametrization (IDP)
for 3D points and we propose a new parametrization based on
anchored Plücker 3D lines. Plücker coordinates are well known
in computer vision for their nice projective properties, similar to
what happens with homogeneous points. To improve their be-
havior within EKF-SLAM, we add an anchor to the parametriza-
tion as it is done in IDP.

Outline. Section 2 deals with the overall localization and mapping
approach to deal with multiple robots. It presents the principle of
hierarchical SLAM by means of a probabilistic graph model, and
its extension in the multi-robot case, analyzing in particular the
various loop closures that can occur between the robots. It also
discusses how the mapping process could be distributed among
the robots, and simulation results are depicted. Section 3 is devoted
to the line segments detected in monocular imagery. It introduces
the way such segments can be used as landmarks in a monocular
EKF SLAM approach; the anchored Plücker line parametrization
is used, the initialization and update processes are depicted, the
map-matching with lines is presented, and simulation results are
analyzed. Finally, Section 4 presents results obtained with data
gathered by a helicopter and a ground rover in a village-like
environment, and a discussion concludes the paper.
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2. Managing multiple maps among multiple robots

2.1. Related work

The multi-robot SLAM problem has recently gained a lot of
attention. Several approaches have been presented to solve this
problem, based on extended Kalman filters [3–5], information
filters [6,7], maximum likelihood estimators [8,9] and particle
filters [10,11].

Early work on cooperative localization and mapping extended
the well-studied single robot SLAM problem to multiple robots.
This extension is straightforward when the robots start from
a known location and the information is centralized. In [8] a
maximum likelihood algorithm is applied to find themaps that are
maximally consistentwith sensor data andodometry. They assume
the robots start from a known location and a central mapper
improves the map by iteratively combining data from the robots.
Ref. [10] also assumes known location to fuse maps from different
robots combining amaximum likelihood with an a-posteriori pose
estimator. The robots’ poses are propagated using a particle filter
representation of their belief functions, while the map is compiled
in a distributed manner among robots using laser range data. In
[3], the authors do not address implementation issues but the
theoretically attainable estimation accuracy, by providing bounds
for the steady state covariance of the position estimates.

Further developments have been achieved for the case when
the robots do not have prior knowledge about their relative
locations. In [6] a sparse extended information filter is presented
with no knowledge of initial locations. The alignment of localmaps
into a single global map is achieved by a tree-based algorithm to
search for similar-looking local landmark configurations, paired
with a hill climbing algorithm that maximizes the overall
likelihood by searching in the space of correspondences. Ref. [12]
deals with completely unknown starting locations by using an
adapted particle filter in combination with a predictive model of
indoor environments in order to sequentially determine whether
and how the partial maps of two robots overlap.

The authors in [4] proposed an algorithm to align maps built
by different vehicles that do not necessarily overlap. They used the
information provided by the robot-to-robot measurements (ren-
dezvous) to obtain the transformation between their coordinate
frames. They used an Extended Kalman Filter (EKF) to estimate
the robots’ and landmarks’ positions. For maps that do overlap, [5]
presents an incremental minimum cycle basis algorithm that
combined with hierarchical SLAM [1] manages the global level
after a map merging is performed. The work of [13] uses a max-
imum likelihood approach for mergingmaps with initial unknown
correspondences with manifold operations and scan matching.
This work subdivides the multi-robot problem into three sub-
problems; incremental localization andmapping, loop closure and
island merging. This latter work is related to our work in the sense
that we also consider this subdivision, although our approach re-
lies on events such as rendezvous, landmark correspondences or
GPS fixes to first trigger a loop closure in global level and at the
end if required do the map merging.

The theoretical solution for the centralized multi-robot SLAM
algorithm is achieved by appending robots together with land-
marks to the same state-space, using the same filter. The practi-
cal solution requires a central station where all the information is
concentrated [8,10]. Some efforts have been made in terms of de-
centralization, where robots broadcast the gathered information
and, independently, each robot computes its own pose and full
map. A decentralized SLAM approach was proposed by [7] using
channel filters. In order to reduce the communication bandwidth
the authors proposed the use of the covariance intersection algo-
rithm. An interesting distributed SLAM approach is presented in
[14], where communication is limited to an upper trapezoidal ma-
trix which condenses the entire measurement history on the in-
dividual robots. More feasible algorithms can achieve distributed
mapping using cooperative localization [15,16]. Distributed map-
ping is accomplished by the fact that multiple robots build their
own maps. Our solution is related with cooperative localization
in the sense that robots only communicate some past robot poses
(origins of local maps) to each other.

Range and bearing observation characterized most of the
approaches in the literature formulti-robot SLAM [8,10,12,17]. The
work in [18] is one of the very few works on multi-robot SLAM
using vision. The multi-robot terrain mapping algorithm uses
localization information to combine vision-based range estimates
with an elevation profile across the terrain. Also, in [11] the
proposed approach considers the use of a stereo vision system,
where again range and bearing observations are acquired. It relies
on a fully centralized Rao–Blackwellized particle filter, and only
presents simulation results.

2.2. Hierarchical SLAM

Different scalable SLAM approaches in which a single vehicle
builds multiple local maps have been proposed, mainly to reduce
computational complexity and to delay linearization errors until
the map merging [19,20,1,21,22]. When the maps are merged
into a single one, on the basis of either common landmarks
between local maps, or simply the sequential constraint, a fully
correlated map of the environment is obtained. Successful fast
implementations exploiting the topology of the representation to
systematically join and fuse local maps have been proposed for the
single vehicle case, such as trees [23], or binary trees [21].

We formulate the multiple robot localization and mapping
problem using sub-maps, in a similar manner to hierarchical
SLAM in [1] or hybrid metric-topological SLAM in [22], where
there are two levels; the local level (sub-maps), and global level
(adjacency graph). We make use of the probabilistic graphical
models’ representation to describe our approach.

The global level represents the relationships sji between local
maps i and j. The local level contains the sub-maps, composed of
the set of landmarks mi and the current robot pose xik (at instant
k). At a certain point a new local map is generated with the robot
pose acting as the new local reference frame (lrf ). Thus the robot
pose xi truly represents the relation between the previous map
and the new one, and one can set sii+1 = xi. Other non-correlative
relations sji may be established betweenmaps aswewill see. Based
on simple frame compositions, information in the world reference
frame (wrf ) is also available for the origins Si of each map, and
for the map itself (X,M)i if it is required. The Bayesian network in
Fig. 2 shows the representation of this hierarchical/hybrid SLAM.
Local level. The local level contains the feature-based locally
referred stochastic maps, built with the standard EKF-SLAM. The
i-th local map is defined by

xim =
[
xi

mi

]
, (1)

where xi is the current pose of the robot, and mi
= [li1 . . . l

i
m]
⊤

is the set of m mapped landmarks, both with respect to the i-th
lrf. EKF-SLAM keeps a Gaussian estimate xim ∼ N {x̂im, P

i
m} of this

map, namely

x̂im =
[
x̂i

m̂i

]
, Pi

m =

[
Pxixi Pximi

(Pximi)⊤ Pmimi

]
. (2)

The maps are built sequentially as mentioned above. Once a
threshold is passed, either in number of landmarks or in robot’s
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Fig. 2. Graphical model as a simplified Bayesian network that represents the
multiple local sub-maps. Sub-maps constitute the local level (xi,mi) and the
global level on top links the local sub-maps (Si). In this representation there is no
information shared between local sub-maps. The map building here is sequential,
corresponding to one robot exploring and not closing loops, having always sii+1 =
xi . Loop closures will establish non-sequential links sji that are not present in this
figure (see Figs. 5–7 for examples).

uncertainty, a new map is created. No information is shared
between these sub-maps, thus the newmap starts in a lrf with the
robot’s pose and error covariances equal to zero. Each local map
stores information in its own lrf.

We assume the control input of the robot and landmark’s
observation have been already introduced to obtain the local sub-
maps. The joint distribution resulting from the local map SLAM
process is p(xi,mi). Thus the mi conditional probability, as shown
in Fig. 2, is given by,

p(mi
| xi) =

p(xi,mi)

p(mi)
= N (m̂′i, P̂′xi). (3)

Global level. The global level is represented as an adjacency graph
in which origins of local maps Si in wrf are nodes, and the links
between them are the relative transformations sii+1. Let us define
the global level as the Gaussian state s ∼ N {ŝ; Ps} of relative
transformations between sequentially built local maps, namely

ŝ =

 ŝ01
...

ŝii+1

 , Ps =

Ps01
0 0

0 . 0
0 0 Psii+1

 . (4)

The global origins of the maps in the wrf are computed as
the compounding of the previous global origin with the relative
transformation between sub-maps, Si+1 = Si ⊕ sii+1 (a detailed
description of the compounding⊕ and inversion⊖ operations for
2D and 3D can be found in [24]). The current position of the robot
in wrf is computed as Xk = Si ⊕ xik. Also, the global map can be
obtained through,

Mi
= Si ⊕mi. (5)

Mean and covariances of the Gaussian estimates are obtained by
regular linear-Gaussian propagation using the Jacobians of ⊕ and
⊖. The conditional probability distribution of Si, as shown in Fig. 2,
is given by,

p(Si | Si−1, si−1i ) =
p(Si, Si−1 | si−1i )

p(Si−1 | si−1i )
. (6)

Considering the relative transformations between localmaps as
past robot poses, we note that the global level can be viewed as
a sparse delayed-state pose-SLAM [25], where local maps are like
landmarks hanging from robot poses inwrf as shown in Fig. 2. The
main difference is due to the fact that the state-space in our case
contains relative poses si−1i , instead of absolute poses Si (that will
be naturally correlated) as in the pose-SLAM case when the map
features are marginalized out.
Loop closure. At the global level, a loop closure corresponds
to a cycle in the graph, that appears for instance when a
relative position estimate between non-consecutive sub-maps is
Fig. 3. Bayesiannetwork of thehierarchical SLAM for two robots. Twodisconnected
sub-graphs, one for each robot.

established by a map matching process. Such a cycle defines a
constraint between a series of relative transformations:

h(s) = s01 ⊕ s12 · · · ⊕ si0 = 0 (7)

= Si ⊕ si0 = 0. (8)

Given that h(s) is not linear due to the angular terms, the
enforcement of this constraint can be formulated as a nonlinear
constrained optimization problem such that,

min
s

F(s) = min
s
(s− ŝ)⊤P−1s (s− ŝ) (9)

h(s) = 0. (10)

For multiple l loops h(s) is formed by all the constraints h(s) =
[h1(s) . . .hl(s)]⊤. Themaximum a posteriori likelihood solution for
instance, can be based on the Iterative EKF as presented in [1].
As a consequence, the part of the state involved in the loop
closure at global level becomes correlated, resulting in a non-
sparse covariance matrix Ps.

2.3. Multiple robots

A hierarchical/hybrid SLAM approach in the multi-robot case is
quite straightforward; each robot manages a set of sub-maps and
a global graph of poses. This approach lends itself nicely to the
case of multiple robots as shown in the Bayesian network of Fig. 3.
But the interests of multi-robot mapping arise of course when the
robots exchange mapping or position information, which permits
the enhancement of the spatial consistency and the construction of
amulti-robot global graph of map poses. Indeed, when robots meet
or communicate, they can estimate their relative position ormatch
maps that overlap; these kinds of events generate connections
between the individual global graph.

The possible events are the following:

• robots rendezvous (Fig. 4(a)),
• match common information within sub-maps (Fig. 4(b)),
• receiving external information that provide absolute localiza-

tions (e.g. a GPS fix (Fig. 4(c)), or feature matches with an exist-
ing environment model).

The latter is not exactly a direct multi-robot loop closure, but it
provides a link between a lrf and a global geo-referenced frame,
which in turn establishes a link with any other robot that has
already been absolutely localized once.

Whereas in a single robot case a loop closure only occurs when
the robot revisits and matches a previously mapped place, in
a multi-robot case these events trigger loop closures; any cycle
that appears in the overall graph defined by the concatenation
of each robot graph (the multi-robot graph) is a loop closure. The
compounding of all relative transformations that defines a cycle
is equal to zero as in (7), and a nonlinear optimization over the
transformations can be performed. Note that to obtain a cycle in
the graph defined by the concatenation of two robots global levels,
at least two events between these robots are required.
Robot rendezvous. The event occurs when a robot observes another
robot (partial rendezvous) or when both robots observe each
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(a) Rendezvous event. (b) Matching information event. (c) GPS fix.

Fig. 4. Loop-closing events for multiple robots.
Fig. 5. Bayesian network of rendezvous event. The observation z is the relative
transformation between the two nodes.

other (full rendezvous). We focus on the case when the relative
transformation between two robots is fully recovered, from the
information obtained through a partial or full rendezvous. That is,
whenever this event occurs, it leads to an immediate observation of
the relative transformation between locations of the two vehicles.

New local maps are created at the instant of the rendezvous,
then the current robot poses are ‘‘promoted’’ to the global level, i.e.,
si = xi−1k and sj = xj−1k . In this way, the observed transformation
z naturally produces a link between the maps’ origins Si and Sj
on the global level; z = sij. Fig. 5 shows the Bayesian network
representation of this event. Note that in most of the cases,
multiple observations of the relative transformation between two
robots would be needed to recovered the full pose (position and
orientation). This will require a dedicated implementation of a
delayed-state filter for instance.
Matching common information. There are two different ways in the
literature to match common information. The first one uses signal
information independent from the SLAM estimates, e.g. image’s
descriptors matching (SIFT, SURF), image indexing techniques [26]
or scan matching. A common way to produce a map of poses (Pose
SLAM [25]) is to find the rotation and translation between two
robot poses using one of these techniques, as opposed to tracking
features. The second way to match common information is using
the available information in the SLAM maps (landmarks’ position
and uncertainty in a global level using (5)), which is triggered
usually based on the current position of the robot or robots in
thewrf. We refer to the first approach as ‘‘data-matching’’ (image-
matching in the vision case), and the second as ‘‘map-matching’’.

The image-matching produces a link directly between images,
that are associated to certain poses Si and Sj, as shown in Fig. 6(a).
This is a simple, but effective manner to obtain the relationship
between two robots, or even to close a loop with a single robot.
The observations are independent from the previous mapped
information, but the robot poses have to be part of the global
graphwhen this event occurs. As in the rendezvous case, this event
produces directly the missing link z = sij; practically, two current
images matching is equivalent to a rendezvous.

The map-matching requires the transformation between lrf to
be recovered based on previously built maps. It could require
both local maps to be transformed to a common frame for data-
association, e.g. promoted to the global level asMi andMj using (5)
(see Fig. 6(b)). Thematching process happens in the 3D space, being
the wrf or the lrf s. The disadvantage of this method is that in the
worst case the absolute position of the two sub-maps must be
computed. Moreover, once the maps are matched, they have to be
fused into a single one, otherwise it could lead into inconsistencies
when merging all the maps. The reason is that the local maps
involved turn out not to be conditionally independent2 mi mj

| z,
as shown in Fig. 6(b).
Absolute localization. In an aerial/ground context, it is reasonable
to assume that one or both kinds of robots might receive GPS fixes
from time to time.3 The relative transformation provided by a GPS
fix for the pose xik instant k is simply sG

i+1, where G is the geo-
referenced frame and new local map is started. Such information
provides a link between a lrf and a global geo-referenced frame,
and can generate a loop at the graph level for an individual robot.
Fig. 7 shows a graphical model representation of this event.
Mapmerging.Merging sub-maps into a global map is not necessary
for the robots to operate, as this is not required to maintain the
consistency on the graph. Should one require a global map, the
map fusion could be delayed until all possible loop closures are
performed, e.g at the end of themapping process. For that purpose,
we exploit an approach similar to the Divide & Conquer algorithm
[21]. Maps are changed to a common reference frame and merged
twoby two, and the fusion considers the commonmap information
in covariance form.
Impact on the sub-maps. From the point of view of a hierarchical
SLAM formulation, the hierarchical nature of this model manifests
itself in the ability to apply a loop-consistency constraint to
a subset of local transformations (e.g. a single loop) without
taking into account the local sub-maps. Particularly, when no
information is shared between sub-maps, which is the case
between two sub-maps built by different robots with strictly
independent observations but an approximation for the sub-maps

2 We use to express conditional dependence andy conditional independence,
for further details please refer to [27].
3 Typically an aerial robot is often localized using GPS information.
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(a) Data-matching. (b) Map-matching.

Fig. 6. Bayesian network of information matching event. (a) Independent information of the map is observed to establish the link between the nodes (e.g. images), without
the need to recover the global maps. (b) It requires to recover the global maps to perform the data association.
Fig. 7. Bayesian network of GPS fix event. A link is created to the geo-referenced
frame G and the current pose.

with non-independent observations, the origin of the local sub-
map is the only state that changes after the constraint is applied.
We are interested in formulating this important property in terms
of the properties of the graphical model. Let us consider the
conditional independence property of the graph in Fig. 2. It can be
easily shown thatmi−1y Si | si−1i and thereforemi−1ymi

| si−1i , i.e.,
given the relative transformations, the consecutive local sub-maps
are independent, such that

p(mi,mi−1
| si−1i ) = p(mi

| si−1i )p(mi−1
| si−1i ), (11)

where (3) is directly applied. Note that the global poses Si are d-
separated [27] from all possible paths between the pair of sub-
mapsmi−1 and mi or evenMi−1 andMi.

Also, in the multi-robot case it can happen that two different
events create a link on the same node, i.e., if a map-matching is
established after a rendezvous. To avoid this problem, new sub-
maps are started after an event occurs for the robots involved. In
the case of receiving GPS fixes once in a while, the fact of starting
a new local map at the instant k when the fix is received, removes
the dynamics aspects of the internal local maps setting a fix pose at
the global level. Note that in practice GPS fixes could be received at
high frequencies. In this case not everymeasurement should create
an event.

Similarly, to avoid counting information twice if one eventually
wants tomerge all the sub-maps, after amap-matching event both
sub-maps should be fused into a single sub-map. This has the
disadvantage that the sub-maps must be shared among the two
robots, but on the one hand this is a pre-requisite for at least one
robot to establish the matches, and on the other hand such events
will occur when the robots are within communication range.

The main advantage to exploit a hierarchical map structure
in multi-robot mapping is the low communication bandwidth
required among the robots; only the individual graphs need to be
exchanged to update the multi-robot graph. Most importantly is
that in the general case, only marginal distributions of each node
have to be communicated, as opposed to the full joint distributions
of the graph.

2.4. Distributed constraints enforcement

The presented approach is distributed in the sense that each
robot builds its own local sub-maps. The only information that is
shared between robots is the set of relative transformations be-
tween sub-maps sii+1 (the marginals that form the unconstrained
global graph s ∼ N {ŝ, Ps}). With this information, each robot
builds its own graph of global origins and enforces its own con-
straints separately.

In the centralized case (e.g. with a central server), the loop
constraint can be enforced whenever a cycle in the graph is
found. For the distributed case, if a constraint is enforced by one
robot and not the others, further global information exchanges
will lead to incompatible graphs among robots. Therefore, a
loop constraint should only be enforced when it is known by
all the robots (see Fig. 8). Nevertheless, any constraint can be
enforced locally, provided the graph state before the constraint
application is memorized, which allows to backtrack to a globally
consistent graph when new information is received from other
robots.

Several cycles might appear in the graph when an event
happens. Our algorithm deals with this issue enforcing only the
constraints over the minimal cycle, as shown in Fig. 8. This
approximation is performed to enforce only one cycle at a time in
order to accelerate the incremental online solution. The minimal
cycle guarantees fewer linearization errors and focuses only on the
current mapped area. The offline centralized solution should use
instead (9) for all cycles in the graph. The smallest cycle between
the new connected nodes is searched for right after the link is
added. Not only the graph, but also a record of all the new links
relatedwith any event are sent to the robots. This is done especially
for the robots that are not involved in the loop closure.
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(a) Event r1/r2 and r1/r3 . (b) Event r2/r3 . (c) Event r1/r2 and LC r2 and r3 .

(d) Event r2/r3 and LC r1 and r3 . (e) LC r1 , r2 and r3 . (f) LC r3 .

Fig. 8. Example of the graph for the distributed algorithm with three robots. The dash-lines represent events between robots. For the sake of simplicity, we also consider
dash-lines as communication links. Highlighted areas represent nodes involve in the optimization. The algorithm automatically searches for the minimum cycle between
the new connected nodes after an event occurs.
The sequence of steps of the algorithm is as follows:

1. Build local maps.
2. When an event occurs.

(a) Broadcast the unconstrained global graph.4
(b) Append the unconstrained global graph with the new

marginals.
(c) Check if all robots’ information have been received.
(d) Check if there is a cycle.
• Perform optimization over the minimal cycle.

In the example of Fig. 8, three robots are considered. Each robot
searches for cycles in the graph until the information of the other
two has been communicated. For the sake of clarity the robot n is
indicated as the superscript of the global origin i.e., Sni . Note that in
Fig. 8(c) r1 does not have any cycle yet (step 2(b)), while r2 and r3

4 In practice the new nodes can be communicated whenever the robots are in
communication range, e.g., every time a new local map is created.
do, after having received the information of the other two robots
previously (step 2(c)). It is not until Fig. 8(d), when r1 receives
the information from the missing robot that can impose its own
constraint, and therefore re-localize itself.
Algorithms complexity. Within the local maps, the EKF-SLAM is
O(m2), with m the number of landmarks in each submap. At
the global level, finding the minimum cycle is O(log n), with n
the number of nodes of the graph, and the optimization of the
minimum cycle of g nodes is O(g), without the full computation
of Ps that is O(n2).

2.5. Simulation results

We use simulations to benchmark the algorithms under
controlled conditions, which allows us to compare the estimated
values against perfect ground truth and therefore to conclude on
the consistency of the solution.
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Table 1
Simulation parameters for the three robots settings.

Experiment Rob Real initial position Slam initial position Initial standard deviation Speed
(x, y, z, ψ, θ, φ) (x, y, z, ψ, θ, φ) (σx, σy, σz , σψ , σθ , σφ) (u, ω)
(m, m, m, rad, rad, rad) (m, m, m, rad, rad, rad) (m, m, m, rad, rad, rad) (m/s, rad/s)

Rendezvous r1 (0,−25, 8, 0, 0, 0) (0,−25, 8, 0, 0, 0) (0, 0, 0, 0, 0, 0) (0.1, 0.01)
r2 (0, 25, 0, 0, 0, 0) (0.2, 25.5,−0.3, (0.05, 0.05, 0.05, (0.1,−0.01)

0.015, 0.015, 0.015) 0.0003, 0.0003, 0.0003)
Map matching r1 (0, 0, 8, 0, 0, 0) (0, 0, 8, 0, 0, 0) (0, 0, 0, 0, 0, 0) (0.1, 0.007)

r2 (0, 25, 0, 0, 0, 0) (−0.1, 24.7, 0.1, (0.05, 0.05, 0.05, (0.1, 0.01)
0.015, 0.015, 0.015) 0.0003, 0.0003, 0.0003)

Full collaboration r1 (25, 50, 0, 0, 0, 0) (25, 50, 0, 0, 0, 0) (0.1, 0.1, 0.1, 0, 0, 0) (0.1,−0.01)
r2 (−25,−50, 0, 0, 0, 0) (−25,−50, 0, 0, 0, 0) (0.1, 0.1, 0.1, 0, 0, 0) (0.2, 0.01)
r3 (0,−40, 8, 0, 0, 0) (0,−40, 8, 0, 0, 0) (0.1, 0.1, 0.1, 0, 0, 0) (0.3, 0.008)
0 200 400 600
E

rr
or

 x
(m

)

Position Errors Robot1

0 200 400 600

E
rr

or
 y

(m
)

0 200 400 600
Time (s)

E
rr

or
 z

(m
)

0 200 400 600

Position Errors Robot2

0 200 400 600

0 200 400 600
Time (s)

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

0 200 400 600

E
rr

or
 y

aw
(r

ad
)

Orientation Errors Robot1

0 200 400 600

E
rr

or
 p

itc
h(

ra
d)

0 200 400 600
Time (s)

E
rr

or
 r

ol
l(r

ad
)

0 200 400 600

Orientation Errors Robot2

0 200 400 600

0 200 400 600
Time (s)

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

–0.1

–0.05

0

0.05

0.1

(a) Robot paths and global level. (b) Position errors r1 and r2 . (c) Orientation errors r1 and r2 .

Fig. 9. Rendezvous single run simulation results for one aerial and one ground robots. In (a) the odometry is shown in green, real and estimated trajectories are shown
in red and blue respectively. 3σ ellipsoids are plotted on the basis of each lrf. (b) shows the global position errors for each robot and their global 3σ uncertainty bounds.
(c) shows the global orientation errors for each robot and their global 3σ uncertainty bounds. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Simulation results are analyzed for three settings: Rendezvous,
map matching, and the distributed full collaboration of three
robots with several loop closures triggered by the latter events.

Theworld has 300 landmarks spread along a 10,000m2 surface.
Aerial and ground robots build fixed size local maps with point
landmarks. We show robots’ trajectories and consistency plots
before the final global map merging. In each sub-map, the poses
and their uncertainties are expressed in the associated lrf s: in
order to plot the global positions, we compound the poses and the
covariances to obtain them in the wrf.

The robots make bearing-only observations: the inverse-depth
parametrization (IDP) is used to map 3D point landmarks, with
the parameters ρinit = 0.5 m−1 and σρ = 0.5 m−1 [28]. The
bearing-only observationmodel has a 0.2° standard deviation, and
the initial parameters for the three experiments are shown in
Table 1. Robots are controlled by linear u and angular ω velocities
on their own planes with the following odometry noise model:
σu = 0.01 m/

√
s, σω = 1°/

√
s, σωu = σuω = 0. The uncertainty of

each robot is considered for the 6DOFpose vector (x, y, z, ψ, θ, φ).

Rendezvous. For this settingwe use two robots, r1 (aerial robot) and
r2 (ground robot).We choose to startwith a large uncertainty for r2
to see the impact of loop closures in the global localization — each
local map is started with zero uncertainty, so this does not affect
the local EKF-SLAM performance.

The robots meet in the middle of the environment where r1
detects r2 and computes the transformation between the two
robots. This event triggers a loop closure because both robots’
initial positions are expressed in the same wrf. The standard
deviation of the relative measure between robots is (0.02, 0.02,
0.02, 0.005, 0.005, 0.005) in (m, m, m, rad, rad, rad). The robots
meet twice, the first time about 300 s and then approximately at
440 s as shown Fig. 9. The first rendezvous reduces the covariance
on the position of r2 and the error as well (see Fig. 9(b) at 300 s).
As one can see in the plot after the second rendezvous, again r2 is
re-localized.

To evaluate the consistency of the approach, we performed a
25-runs Monte Carlo analysis of the normalized estimation error
squared (NEES) of the current robot pose in wrf as explained in
[29]. Fig. 11(a) shows the average NEES for the global pose of both
robots and the single-sided 95% region for the N ∗ 6 DOF during
this setting. The average NEES shows good consistency for the full
simulation, thanks to the use of sub-maps. For robot r2, the average
NEES is small compared with the consistency limits after the loop
closure. This is because some uncertainty in the orientation was
added by sensing each other (see Fig. 9(c)), while the estimation
error remain the same.
Map matching. For this experiment the two robots move clockwise
in a circle. Robot r1 moves in the direction of the initial position
of r2. Once r1 reaches that position it is able to close a loop, as
seen in Fig. 10. Data association is known. One of the main issues
of this experiment is to compute the transformation between the
two local maps which have common landmarks, because the least-
square estimation is very sensitive to points whose localization
is not accurate. The problem is even more difficult for bearing-
only observations, when newly initialized points can be anywhere
on the bearing line. The eigenvalues of each point’s covariance
matrix are computed, and points whose eigenvalues are below a
threshold (e.g. 0.1m2) are selected to estimate the transformation.
The relative transformation is recoveredusing the approach in [30].

The results of a single run experiment are presented in Fig. 10.
A first loop is closed at 380 s, which increases the precision of
the global localization of r2. At 520 s the two robots close another
loop. Note that those two loops have mostly improved the global
localization of r2.When r2 reaches its origin, it closes a loopwith its
first map, at around 610 s; that map being topologically connected
to themaps of r1, a slight improvement on the localization of r1 can
be seen through its error covariance (Fig. 10(b)).
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(a) Robot paths and global level. (b) Position errors r1 and r2 . (c) Orientation errors r1 and r2 .

Fig. 10. Map-matching simulation results for one aerial and one ground robots. See caption of Fig. 9.
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(a) Rendezvous setting. (b) Map-matching setting.

Fig. 11. Average NEES of 25 Monte Carlo runs of the robot pose (position and orientation) for (a) the rendezvous setting and (b) the map-matching setting. The averaged
NEES is in a thick line. The thin lines represent the NEES for each run. The dashed line corresponds to a NEES value of 7.18, which is the single-sided consistency limit of 95%
confidence for the 6-dimensional state vector.
Fig. 11(b) shows the average NEES of the robots poses for this
setting; after a loop closing the average NEES remains pretty much
the same, showing consistency for both robots.

Distributed collaboration between three robots. We show here
the effects of multiple loop closures between three robots that
communicate their unconstrained global maps whenever an event
occurs. Two ground robots r1 and r2 move along circles in different
locations on the environment. They never meet, and their maps
never overlap. The third robot r3 is an aerial robot that moves in a
circular trajectorywhich extends from the area covered by r1 to the
one covered by r2. Each robot simulation runs in its own process.

The three robots start at a well known location, then at
240 s, r1 and r3 have a rendezvous, later at 610 s and 700 s
the robot r3 detects a loop closure with two maps of r2 (the
video slamnet.mp45 shows a run of this simulation). The robots
communicate the unconstrained global graph when a local map
is created. Perfect communication is assumed. The uncertainties
are expressed in the wrf so that the effects of the loop closure
can be seen. Notice the robots only have information about their
own landmarks. The consistency plots for a single run are shown
in Fig. 12. The final map and global graph before and after merging
(at the end of the simulation) are shown in Fig. 13.

5 http://homepages.laas.fr/simon/videos-RAS2011/slamnet.mp4.
3. Estimating line segments in the monocular EKF-SLAM
framework

Most of the visual SLAM approaches rely on landmarks defined
by interest points detected in the images, be they Harris, CenSurE,
SIFT, SURF or other features. The estimated state of such landmarks
is their 3D position, and the resulting maps are sparse collections
of 3D points; even though they are spatially consistent and
span the world’s three dimensions, such maps do not represent
useful information to asses volumes, to compute visibilities, or to
establish matches either with maps built by another robot or with
existing 3D maps now widely available.

To improve the map’s representational power, one of the key
points here is to use, in addition to sparse 3D points, linear
landmarks or line segments. Lines provide an improved semantic
over points: they inherently contain the notions of connectivity
(they span from one position to another) and boundary (they
separate one region from another), which open the door to
potential automatic interpretations of the environment, both at the
local and global levels. A 3Dmodel based on lines can further allow
the possibility to build higher level entities (planes, closed regions,
objects).

By building such maps, our goal is to aim at building a
meaningful 3D model, on the basis of which one can assess
visibilities and match features or maps from disparate viewpoints.

http://homepages.laas.fr/simon/videos-RAS2011/slamnet.mp4
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(a) Robot paths and Global level. (b) Position Errors r1 , r2 and r3 . (c) Orientation Errors r1 , r2 and r3 .

Fig. 12. Simulation results for the 3 robots exploration; one aerial and two ground robots. See caption of Fig. 9.
(a) Before merging. (b) After merging.

Fig. 13. Final map resulting from the 3 robots exploration centralizing the information. The figure shows the 3D global map, local map origins and the final robots and
landmarks location in wrf.
These goals, however, are difficult to achieve and lie beyond the
scope of this work. As recognized by Smith et al. [31], one of
the difficult features to achieve satisfactory SLAM operation with
lines is a good lines extractor and matcher algorithm, which is
not one of our goals in this paper. We concentrate only on the
estimation of the geometry of 3D lines from moving monocular
platforms, which constitutes by its own right a problem that has
not been successfully solved yet, as we expose in the following
section. Wide baseline mapmatching based on lines is introduced,
and demonstrated only in simulation. Real map matching based
on lines and map interpretation are left for future work. The focus
is therefore on the ability of building heterogeneous maps with
points and lines.

3.1. Related work

Most approaches to visual SLAM with segments define the
segments based on two endpoints that support them, fixing the
segment’s length so that partially occluded segments remain
shorter than they actually are regardless of the evidence gathered
with new observations. Additionally, the majority of these
works make use of delayed initialization techniques, limiting the
potential performances of monocular or long-range sensing SLAM.
These remarks are detailed in the following paragraphs.

Ref. [32] proposes a model-based monocular SLAM system
using line segments and the UKF, but the use of direct-distance
parametrization for the unknown endpoints depths leads to
delayed initialization. Ref. [31] represents segmentswith their two
endpoints. The support endpoints are coded using inverse-depth
parameters during the initialization phase, and are converted to
Cartesian representations after convergence. The inverse depth
parameters are initially estimated by an external EKF until
convergence, thus delaying initialization. Ref. [33] makes use
of small edge landmarks, named ‘edgelets’, associated to a 3D
point which is initialized in an undelayed manner. Edgelets are
typically 15 pixels long, and longer lines must be represented
by several edgelets. This intrinsically local definition of edgelets
does not possess the connectivity property that we highlighted
above (though it does possess local boundary), compromising
precisely the representativeness that we are seeking.We look here
for representations of arbitrarily long lines with the additional
possibility of incrementally updating their endpoints according to
new observations.

These works have been conceived and demonstrated in indoor
setups, often using camera motions that have been purposely
chosen to maximize observability (i.e., motions with a significant
sideways component looking at objects close by), thus achieving
successful operation even with delayed initialization. Our case is
radically different as we are dealing with outdoors robots whose
trajectories are planned and executedwith other priorities inmind,
andwhere objects to bemappedmight be at large distances. As we
have demonstrated earlier [34–36], undelayed initialization allows
the robots to use the partial landmark information for localization
from the very first observation of a landmark, regardless of the
sensor trajectory and the distance to the landmark, greatly helping
to constrain the camera localization. In particular, this makes
the use of remote landmarks beneficial for long term attitude
estimation, minimizing angular drift which is the major cause of
inconsistency in EKF-SLAM [29]. This constitutes a crucial feature
in e.g. aerial vehicles as in our case, especially because, due to the
long range sensing requirements and strict energy and payload
constraints, only monocular vision seems to be practicable.

Our approach draws on [36], which is in turn based on [37].
Ref. [37] performs SLAM with segments using the Euclidean
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(a) Plücker line. (b) Anchored Plücker line.

Fig. 14. Geometrical representation of Plücker-based lines, the sub-vectors n and v and the anchor p0 . (a) The Plücker line L and the origin O define the support plane
π . The line’s sub-vector n ∈ R3 is orthogonal to π . The sub-vector v ∈ R3 is a director vector of the line, and lies on π . This implies n ⊥ v. The closest point to O is
Q = (v × n : v⊤v) ∈ P3 . The distance from L to O is d = ‖n‖/‖v‖, showing that v acts as the homogeneous part of L, thus exhibiting inverse-depth properties. (b) The
anchored Plücker lineΛ is a Plücker line referred to an anchor p0 . The closest point of the line to the anchor is q = p0 + (v× n)/(v⊤v).
Plücker coordinates (a sub-set of the Plücker coordinates where
the direction vector is normalized) to map infinite lines. The major
drawback of [37] is a delayed initialization. In [36] we added
undelayed operation by using the Plücker coordinates directly,
where the Plücker direction vector’s norm exhibits inverse-
distance behavior. Here we add an anchor to improve linearity,
equivalently to what it is shown in [38] for the case of points.
Plücker lines have also been used inmanymajor visionworks with
straight 3D lines [39–41]. These works, and other ones referenced
therein, are based on Structure From Motion approaches solved
offline using nonlinear optimization. Online, incremental SLAM
methods based on these techniqueswould have to drawon e.g. [42]
(which works for points and edgelets) but they have not yet been
reported.

3.2. Plücker lines (PL): incorporating the inverse-depth concept to
lines

The Plücker coordinates for a line consist of a homogeneous
6-vector in projective space,L ∈ P5. In this vector, one can identify
two sub-vectors,6 L = (n : v), with {n, v} ∈ R3, with which
an intuitive geometrical interpretation of the line in 3D Euclidean
space is possible [36] (Fig. 14(a)):

1. The sub-vector n is a vector normal to the plane π supporting
the line L and the origin O.

2. The sub-vector v is a director vector of the line.
3. The distance from the line to the origin is given by d = ‖n‖/‖v‖.

The basic operations needed to manipulate Plücker lines are
detailed below:

Frame transformation. Given a (camera) reference frame C speci-
fied by a rotation matrix R and a translation vector T, a
Plücker line L in global frame is obtained from a line LC

in frame C with the linear transformation [39]

L =

[
R [T]× R
0 R

]
·LC . (12)

Pin-hole projection. Given a perspective camera defined by the in-
trinsic parameters k = (u0, v0, αu, αv), a Plücker line in
camera frame LC

= (nC
: vC) projects into a homo-

geneous line λ ∈ P2 in the image plane with the linear

6 We use a colon (:) to separate the non-homogeneous and homogeneous parts
in projective space.
expression [39]

λ = K · nC ,


αv 0 0
0 αu 0
−αvu0 −αuv0 αuαv


· nC
∈ P2. (13)

where K is called the Plücker intrinsic matrix. Its relation
to the regular intrinsic matrix K is K ∝ K−⊤.

The two most remarkable properties of the Plücker line are its
linear transformation and projection equations and the inverse-
depth behavior of the sub-vector v (recall property 3. above),
something that allows us to design appropriate undelayed
initialization methods for EKF. For further details on the use of
Plücker lines in monocular EKF-SLAM see [36].

3.3. Anchored Plücker lines (APL): improving on PL linearity

Now, we add an anchor to the parametrization to improve lin-
earity, as it is done for points in the inverse-depth parametriza-
tion [28]. Anchoring the Plücker line means referring it to a point
p0 in 3D space different from the origin (Fig. 14(b)). The anchor
point p0 is chosen to be the optical center at initialization time.
Thanks to this, the Plücker line part (n : v) is correlated to the rest
of the map only through the anchor p0. As a consequence, on sub-
sequent EKF updates, only the accumulated errors from p0 to the
current camera position T are considered, in contrast with regular
Plücker lines where the error accounts for the absolute motion of
the sensor from the origin of coordinates.

The anchored Plücker line (APL, Fig. 14(b)) is then the 9-vector:

Λ =

p0
n
v


∈ R9. (14)

The operations needed to manipulate APL are as follows:

Frame transformation. Frame transformation reduces simply to
transforming the point p0 and rotating the vectors n and
v. This is accomplished with the affine transformation

Λ =


R 0 0
0 R 0
0 0 R


·ΛC
+


T
0
0


. (15)

Un-anchoring. Given an anchored Plücker lineΛ = (p0,n : v), its
corresponding (un-anchored) Plücker line L is obtained
by transforming the Plücker part (n : v) from a frame at
the anchor (T,R) = (p0, I3) to the global framewith (12),
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and removing the anchor. This reduces to

L =

[
n+ p0 × v

v

]
. (16)

Transformation and projection. Transformation and projection are
accomplished with a transformation to the camera
frame (the inverse of (15)), un-anchoring (16), and
Plücker projection (13). The three steps can be composed
in one single expression with:

λ = K · R⊤ · (n− (T− p0)× v) ∈ P2, (17)

3.4. Segment endpoints

The line’s endpoints in 3D space are maintained out of the filter
via two abscissas defined in the local 1D reference frame of the line,
whose origin is at the point q = p0 + (v × n)/(v⊤v), the closest
point to the anchor (see Fig. 14(b)). Given the lineΛ = (p0,n : v)
and abscissas {t1, t2}, the 3D Euclidean endpoints are obtained for
i ∈ {1, 2}with

pi = q+ ti ·
v
‖v‖
= p0 +

v× n
‖v‖2

+ ti ·
v
‖v‖

. (18)

3.5. Back-projection of an APL

APL back-projection consists in defining a Plücker line L from
a segment observation λ, and anchoring it at the camera position
T to obtain an APLΛ. These operations are detailed below.

Back-projection of a Plücker line. Here we briefly summarize the
development in [36]. In the camera frame, the Plücker
sub-vector nC resulting from the observation λ is simply
the inverse of (13),

nC
= K−1λ. (19)

The second sub-vector vC is not measured and must be
obtained by injecting prior information. This prior must
specify exclusively the 2 DOF that are missing in the
observation. It is defined in the 2-dimensional plane and
mapped to the plane orthogonal to the observed nC . This
plane is spanned by the base matrix Ewhich is obviously
orthogonal to nC ,

E =

e1 e2


, nC

⊥ e1 ⊥ e2 ⊥ nC . (20)

Then, given a prior β ∈ R2, the sub-vector vC is obtained
linearly with

vC
= Eβ. (21)

For convenience, we arbitrarily build E so that the points
in the β-plane correspond to lines easy to interpret. With
this purpose of intuitiveness we choose the base vectors
{e1, e2} so that ‖β‖ is exactly inverse-distance and e1 is
parallel to the image plane, leading to

e1 =

nC
2 −nC

1 0
⊤

(nC
1 )

2 + (nC
2 )

2
· ‖nC
‖ and e2 =

nC
× e1
‖nC‖

.

(22)

Anchoring. This step is trivial as we have an interest in making
the anchor p0 coincide with the current camera position,
which is the origin when we are in the camera frame,

ΛC
=

 0
nC

vC

 . (23)
Back-projection and transformation. The operations above plus the
transformation to the global frame (15) can be composed
and written as a single-step function of R, T, λ and β ,

Λ =

p0
n
v


=

 T
RK−1λ
REβ

 . (24)

We name this function g() and retain it as it is needed
for landmark initialization. In EKF-SLAM, the pose orien-
tation R is often encoded by a quaternion or the Euler an-
gles, which we denote indistinctly byQ. The camera pose
C is specified by the vector x = (T,Q) (we neglect here
the super-index indicating the local map, x ≡ xi, to make
the notation easier to read), in which case the function
above becomes

Λ = g(x, λ, β), (25)

which is simply a function of the current state x, the cur-
rent measurement λ and the provided prior β .

3.6. Undelayed APL initialization in EKF-SLAM

To initialize the APL, suppose we have a camera C at location
x = (T,Q), with intrinsic Plücker matrix K . x has uncertainties
encoded in the map,7 while K is assumed to be deterministic. A
newly detected segment, together with its uncertainty encoded by
a covariances matrix, needs to be transformed (via regular covari-
ance propagation based on the Jacobians of the transformation)
to a homogeneous line in P2. For example, if the segment is de-
tected in the form of two endpoints {u1,u2}, with noise covari-
ance Ru = diag(σ 2

u , σ
2
u ) each, we obtain the homogeneous line’s

pdf λ ∼ N {λ̂; L} by joining the two points

λ̂ = u1 × u2 (26)

L =

u1


×
· Ru ·


u1

⊤
×
+

u2


×
· Ru ·


u2

⊤
×
, (27)

where ui = (ui : 1), Ru = diag(Ru, 0), and [•]× is the skew-
symmetric matrix associated to the cross-product (i.e., [u]× v ≡
u× v),

[u]× ,

 0 −uz uy
uz 0 −ux
−uy ux 0


. (28)

Initialization of the support APL is done with the classical EKF-
SLAM method, by linearizing Λ = g(x, λ, β), Eqs. (24)–(25), and
providing β as a Gaussian prior. The camera C is part of the i-th
local map vector xim, that we rename here simply xm. Its Gaussian
pdf xm ∼ N {x̂m; Pm} is decomposed in (2), let us renamem ≡ mi

the set of existing landmarks in the current (the i-th) local map.
For the prior β we define a Gaussian pdf β ∼ N {β̂; B} as

shown in Fig. 15. This Gaussian in the β-plane will be conveniently
mapped to the 3D space via the transformation matrix E, as
we have seen in the previous section. We use the non-isotropic
Gaussian shown in Fig. 15(b), described by

β̂ =

[
1/3dmin

0

]
, B =

[
(1/3dmin)

2 0
0 (1/2dmin)

2

]
. (29)

We further choose dmin = 0.75 m.

7 The camera pose C may be encoded in the map indirectly, i.e., via a fixed
transformation related to the robot pose, C = f (x). Without loss of generality we
consider this function here to be the identity. In case a non-trivial transformation
is to be considered, we need to compose it with (25) to get the new function
Λ = g(f (x), λ, β) , g∗(x, λ, β).
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(a) Isotropic pdf with line at infinity. (b) Non-isotropic pdf penalizing
lines at the back of the camera.

Fig. 15. Defining a pdf for the prior β . (a) The Gaussian pdf contains all possible
lines at a minimum distance of dmin; it is isotropic in orientation, it includes the
origin which represents the line at infinity, and dmin is at 2σ . For reference, a
Gaussian shape is superimposed on the horizontal axis to evaluate the probability
values at 2σ and 3σ . (b) An interesting alternative that penalizes lines in the back of
the camera is to approximate just the right-hand half of the pdf in (a) (here dashed)
by a newGaussian. A good fit is obtainedwith β̂ = (1/3dmin, 0) and a non-isotropic
covariance B = diag([σ 2

β1
, σ 2

β2
])with σβ1 = 1/3dmin and σβ2 = 1/2dmin .

We obtain with (24) the landmark’s mean and Jacobians

Λ̂ = g(x̂, λ̂, β̂) (30)

Gx =
∂g
∂x


(x̂,λ̂,β̂)

, Gλ =
∂g
∂λ


(x̂,λ̂,β̂)

, Gβ =
∂g
∂β


(x̂,λ̂,β̂)

. (31)

with which, being x, λ and β mutually independent, we compute
the co- and cross-variances

PΛΛ = Gx · Pxx · G⊤x + Gλ · L · G⊤λ + Gβ · B · G⊤β (32)

PΛxm = Gx ·

Pxx Pxm


(33)

to finally augment the map

xm ←
[
xm
Λ

]
, x̂m ←

[
x̂m
Λ̂

]
, Pm ←

[
Pm P⊤Λxm
PΛxm PΛΛ

]
. (34)

The endpoints are found by retroprojecting both image
endpoints {u1,u2} onto the Plücker estimate’s mean, expressing
the solution {p1, p2} in terms of abscissas {t1, t2} with (18), and
solving for them. Details of these operations and the necessary
algebra can be found in [37,36].

3.7. Segment EKF correction

The update of the APL is essentially a standard EKF update.
The only difficulty, perhaps, is the fact that a proper measure
of distance between two lines is not available in the Euclidean
sense, and we need to find something practicable to define the
innovation. We chose the technique described in [37] which
defines the innovation space in polar coordinates (Fig. 16). The
observation function h() is defined by composing (17) with the
transformation from homogeneous lines λ = (λ1, λ2, λ3) into
polar coordinates (ρ, θ), given by[
ρ
θ

]
=


−λ3/


λ21 + λ

2
2

arctan(λ2, λ1)


. (35)

The measured lines are defined by 2 endpoints {u1,u2} with
a fixed covariance Ru each. Converting them to polar coordinates
is just a matter of composing (26) with (35). We remind that an
innovation measure y = z − h(x̂m) based on a mapping (35)
contains some singularities and discontinuities that we need to
tackle. See [37] for details.

The currentlymeasured segment’s endpoints are retro-projected
onto the 3D line, and its abscissas {t1, t2} computed (see Eq. (18)).
Fig. 16. The polar coordinates of a line in 2D space.

During the line’s convergence phase, the segment endpoints ab-
scissas are systematically replaced with the current ones. We use
some heuristics to determine when the line estimate is stable
enough, and then apply an extending-only policy; each segment’s
abscissa is updatedwith the new one only if this lengthens the seg-
ment.

3.8. Map-matching with 3D lines

Assuming the data-association problem for lines in the
3D Euclidean space is solved, the problem of recovering the
transformation between two reference frames, based on a set of
3D lines, is approached using a closed form least-squares solution.

First the APLs are transformed to the Euclidean Plücker coor-
dinates representation using (16) and normalized with respect to
the line direction as v = v

‖v‖ and n = n
‖v‖ . When removing the

anchor, the normal n is defined with respect to the origin of the
reference frame. Then (12) is used to state the least-squares prob-
lem to determine R and T. As in the case of pose estimation from
corresponding 3D points, the problem is decoupled to first recover
the rotation matrix and later the translation vector [30].

From corresponding Euclidean PLs the orientation is deter-
mined through the following criterion,

Err(R) =
N−

n=1

‖vin − R(vjn)‖
2 (36)

whereN is the number of matched lines between reference frames
i and j. The rotationmatrix thatminimizes (36) is obtained through
a singular value decomposition (SVD) algorithm as described
in [30] for 3D points.

The translation vector T is obtained by minimizing,

Err(T) =
N−

n=1

‖ni
n − Rnj

n −

vin
⊤
×
T‖2, (37)

thus the explicit translation is recovered as follows,

T =


N−

n=1


vin
⊤
×


vin

×

−1  N−
n=1


vin

×
(ni

n − Rnj
n)


. (38)

3.9. Simulation results

We simulate a scenario consisting of a wireframe of a
house built with 27 segments. Fig. 17 shows the house being
reconstructed. A robot with one perspective camera (90° FOV,
640× 480 pix resolution, 0.5 pix error) looking forward approa-
ches from a certain distance at 1.2 m/s, gathering images at
30 fps. In order to observe the scale factor, the robot takes noisy
odometry readingswith 0.01m/

√
mand 0.25°/

√
merror. In order

to improve consistency, the measurement noise covariance is
multiplied by a factor 2, i.e., Ru = 2 × diag(0.52, 0.52) pix2, as
suggested in [29].
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(a) Without ground-truth. (b) With ground-truth.

Fig. 17. The simulated environment consists of a robot approaching a wireframe of a house. The figure shows (a) the partially reconstructed house, after approximately 40
frames have been processed. Despite the preliminary state of the map, the structure is already visible. With this fair amount of data, a map made of points (with e.g. one
point at each line intersection) would not convey very much information besides localization, because it lacks structural semantics such as connectivity and boundaries. (b)
Fully reconstructed house with the ground-truth in blue.
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(a) Single APL map. (b) Multiple APL maps.

Fig. 18. 25 Monte Carlo runs (thin gray lines) showing the NEES measures of the robot 6D-pose. The averaged NEES is in thick line. The dashed line corresponds to a NEES
value of 7.18, which is the single-sided consistency limit of 95% confidence for 6 DOF and N = 25 runs, i.e., χ2

(6×25)(1 − 0.95)/25 = 7.18, see [29]. (a) APL-SLAM without
submapping. (b) APL-SLAM using submapping; 4 maps are created.
To evaluate the estimation’s consistency, aMonte Carlo analysis
of the normalized estimation error squared (NEES) of the robot
6D-pose is made (Fig. 18(a)). The averaged NEES after 25 runs
shows good consistency up to frame 100 and a riskier behavior
from then on. This is in accordancewith [29], which concludes that
long-term EKF-SLAM is always inconsistent, providing evidence of
the necessity of approaches using multiple local maps. Simulation
results with multiple local maps are shown Fig. 18(b), where the
consistency has been clearly improved.

In order to evaluate the map-matching approach presented
in Section 3.8, two robots are deployed in a simulation set-
ting populated with line segments only (see adjoint video
mapMatchingLines.avi8). The robots trajectories do not inter-
sect until the end of the run, however two of their 50 lines sub-
maps partially overlap. A map-matching event occurs at frame
377 (data association is known in this setup). The event takes
place after 16 anchored Plücker lines from the aerial robot cur-
rent frame (S4) are matched with a previous map built form the
ground robot (S2). Lines with large uncertainties are not taken
into account for the least square minimization. The transforma-
tion between the lrf s obtained with the proposed approach is
ŝ24 = (0.73, 14.42,−6.14,−1.178,−0.004, 0.006)

⊤ in (m, m, m,
rad, rad, rad). The real transformation between the reference 4th

8 http://homepages.laas.fr/simon/videos-RAS2011/mapMatchingLines.avi.
and 2th frames is s24 = (0.66, 14.56,−6,−1.169, 0, 0)
⊤. Note that

the orientation and the translation are well-estimated, but most
importantly they are consistent. Fig. 19 shows the 3D robots lo-
cation and sub-maps before and after the map-matching event,
and Fig. 20 shows the consistency plots for a single run of this
setting.

4. Experimental results

4.1. Setup

Outdoors data acquisitions in a large environment have been
conducted to verify the performance of the proposed approach,
with the ground robot ‘‘Dala’’ and the helicopter ‘‘Ressac’’ (Fig. 21).
The environment is an abandoned country village in the south of
France, now used as a military training facility — see Fig. 1. It is
‘‘semi-structured’’, in the sense that it does not contain as many
buildings as an urban area, and the building themselves do not
contain many straight lines or perfect planar areas.

The ground robot Dala is an iRobot ATRV platform, equipped
with a calibrated stereo-vision bench made of two 1024 × 768
cameras with a baseline of 0.35 m. The helicopter Ressac is
controlled by algorithms developed at Onera [43], and is also
equippedwith a calibrated stereo vision benchmade of two 1024×
768 cameras, with a 0.9 m baseline.

http://homepages.laas.fr/simon/videos-RAS2011/mapMatchingLines.avi
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(a) Before line-matching event. (b) After line-matching event.

Fig. 19. Event effect in the global map, the sub-maps origins expressed in the wrf are the large ellipsoids — 3D line segments landmarks are also shown here.
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(a) Robot paths and global level. (b) Position errors r1 . (c) Orientation errors r1 .

Fig. 20. Multiple APL maps with line-matching event single run simulation results for ground and aerial robots. In (a) the odometry is shown in green, real and estimated
trajectories are shown in red and blue respectively. 3σ ellipsoids are plotted on the basis of each lrf. (b) shows the global position errors for each robot and their global 3σ
uncertainty bounds. (c) shows the global orientation errors for each robot and their global 3σ uncertainty bounds. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
(a) Dala. (b) Ressac.

Fig. 21. Ground and aerial robots used for the experimental validation.
Several thousands of images have been acquired while the
helicopter Ressac is automatically achieving a swathing pattern at
an altitude of about 40 m, and Dala is making loop trajectories
in the north-west group of buildings under manual control
(Fig. 24).

4.2. Involved processes

The SLAM algorithms integrate two types of observations from
only one camera; image points and image line segments. The
mapped points are parametrized as inverse-depth points, and
the mapped segments are parametrized as anchored Plücker line
segments, as presented Section 3.

Unfortunately, because of engineering issues encountered
during the data collection, no inertial or odometric motion
estimates are available.9 As a consequence, we use a visual
odometry approach based on stereo vision for the motion
prediction steps of the EKF SLAM algorithms —which in turn is the
mean through which the scale is recovered.

9 GPS ground truth could neither be recorded.
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(a) Dala local map. (b) Ressac local map.

Fig. 22. Local maps built by the rover Dala (a) and the UAV Ressac (b).
(a) Dala local map. (b) Ressac local map. (c) Ressac/Dala combined map.

Fig. 23. Local maps superimposed on a aerial view of the scene; with the rover Dala (a), the UAV Ressac (b), and the combined submaps (c). Yellow ellipsoids represent the
endpoints covariances. Note that only line segments with small covariances have been plotted.
At each image acquisition, point observations are firstly
processed; the resulting updated motion estimate is exploited by
the line segment tracker, and line landmarks observations are then
processed. Images are sub-sampled by a factor of 2 before being
processed (640× 480), and a heuristic is used to select the points
that will be used as landmarks; the image is regularly partitioned
in 3 × 3 regions, in which one ensures that at least 2 landmarks
are being tracked — one or two new interest points are selected as
a landmark every time this is not satisfied. As for the lines, only
the ones whose length is greater than 60 pixels are retained as
landmarks.

4.3. Landmark detection, tracking and deletion

Point landmarks are Harris interest points that are matched
from one view to the other with the group based matching
procedure described in [44]; a first candidate match between
two interest points is established using signal information (the
two principal curvatures of the auto-correlation function), and
confirmed if matches of neighboring points that satisfy geometric
constraints on their location in the image are found.

We use different initialization parameters for inverse depth
point parametrization with Dala and Ressac. Dala’s parameters are
ρinit = 0.1 m−1 and σρ = 0.2 m−1, while Ressac’s parameters are
ρinit = 0.025m−1 and σρ = 0.0125m−1 (the points are initialized
at 40m,which is the helicopter average elevation over the terrain).

To extract and track line segments, we use a model-driven
approach, that is very robust to scene and illumination variations,
and that does not require the setting of any sensitive parameter
(details can be found in [45]).

For the estimation part, the a priori parameters used in the
experiment for the APL are β = (0.025, 0), σβ1 = 0.025 and
σβ2 = 0.0375 for both robots. The prediction of the line segment
position in the image, required by the segment tracker, is done
using the projection of the 3D line segment into the image frame.

Smart landmark deletion is crucial for maintaining reliable
maps consisting of only stable and consistent landmarks. We
perform it at the local-map level, based on a test using three
counters associated to each landmark: Ns, the number of match
attempts (searches); Nm, the number of matches performed; and
Ni, the number of validated matches (inliers). A landmark is
deleted whenever the condition D(Ns,Nm,Ni) = (Ns > 10) ∧
[(Nm/Ns < 0.5)∨ (Ni/Nm < 0.5)] holds true. D() basically ensures
sufficient evidence with (Ns > 10), and then checks if the land-
mark appearance OR visibility are unstable, with (Nm/Ns < 0.5),
or if the landmark estimate is inconsistent with the observations,
with (Ni/Nm < 0.5). The three thresholds (10, 0.5, 0.5) could be
optimized in some way, however, with these initial values the im-
pact on map quality and estimation consistency is notable.

4.4. Local maps

New local maps are created when 100 landmarks (combining
points and line segments) are in the map. Immediately after, the
current robot’s pose is the new relative transformation in the
global graph. Figs. 22 and 23 shows examples of local maps built
by Dala and Ressac: The maps consist of a set of 3D line segments
and 3D points.

Fig. 24 shows the estimated trajectories of the robots,
superimposed to the aerial image of the area. For this run, no events
that link the two robots graphs are considered.

4.5. Enforcing loop closures

With this dataset, only very few line segments are mapped by
both robots,which precludes the segmentmapmatching. To define
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(a) Dala trajectory in open loop. (b) Ressac trajectory in open loop.

Fig. 24. SLAM trajectories for Dala and Ressac in open loop, drawn on an aerial view of the experiment area (obtained on www.geoportail.fr). The actual trajectory of Dala
fits the road, whereas here the trajectory estimate does not, although its origin as been set at the good position over the aerial view.
loop closing events, we therefore take advantage of the availability
of stereovision data, and emulatewith 3D pointmatches two types
of events, rendezvous and data-matching (image to image):

• The rendezvous is emulated using matches of interest points
perceived by the two robots using their current image frames.
The 3D coordinates of the points obtained by stereovision yield
the possibility to provide an estimate of the relative robot
position.
• The image-matching event recovers the relative transformation

between the current robot pose and a past pose from a different
robot (origin of a local sub-map, such as in Fig. 6(a)) using
alsomatches of interest points between their respective frames.
Only key-frames corresponding to the origins of local sub-maps
are used for the matching.

Once an event arises, a modified A-star algorithm is used to
detect the occurrence of a cycle in the graph, and in particular
the minimum cycle on which the loop constraint is applied (the
algorithm searches for the minimal length path between the two
nodes linked by the event, the existence of this link being ignored
for the search).

Figs. 25–28 show results obtained by the integration of events
between Dala and Ressac. Dala starts at the entry of the north-
west group of buildings, with no uncertainty in its local map, but
also in the wrf :.; the first Dala sub-map is the origin of the world.
Ressac starts above Dala, and heads towards the south-east. A first
rendezvous event occurs immediately after the start, and Ressac is
localized in Dala’s reference frame.

A second event occurs after Ressac comes back from the south-
east village, passing above a place previously visited by Dala. The
effects of the image-matching event are shown in Fig. 25. The figure
also shows the image frames thatwere evaluated for thematching;
new local maps are initiated afterward for both robots. Note that
Ressac’s uncertainty in height is pretty large, especially before the
second event: the visual odometry used as predictions is indeed
not very precise in the vertical direction, because the Ressac stereo
baseline is small with respect to the depth of the perceived points
— and the integration of points and lines in the sub-maps does not
greatly reduce the elevation estimates. However, after the data-
matching event, the elevation of Ressac and the origins of all the
built maps are strongly corrected. Nomap-merging is done. Fig. 26
shows in the same plot the robots’ trajectories as estimated by
visual odometry, SLAMwithout any loop closure event integrated,
and with the integration of the events.
The final global graph (origins of local maps with associated
uncertainties in the wrf ), and the robots’ trajectory in wrf are
shown Fig. 27. This figure shows how the origins of Ressac’s sub-
maps around the same area (sub-map 5 and 27) have a similar
uncertainty, as an effect of the loop closing event when it comes
back. Note also that Ressac’s 3D filtered path is off the trajectory
defined by the sub-maps origins (mean of the ellipsoids); the
path shown is the result of the EKF at each time instant, that is
not corrected by the optimization algorithm. However, the full
topology (origins of the localmaps) is readjusted, as in a smoothing
algorithm.

Finally, Fig. 28 presents qualitative results of the proposed
approach. Each robot has processed over 1200 images mapping
approximately an area of 300× 300 m.

In the second part of the adjoint video airGround.mov,10
the robots trajectory in wrf are shown. The south-east group of
buildings is easy to spot in the video, it is the placewhere Ressacc is
turning 180 °. Also, the video shows the processed image sequence
for Dala and Ressac, along with the 3D landmarks, and local maps’
origins in wrf.

5. Discussion

The contributions proposed in this paper fit well with the
objective of deploying cooperative aerial / ground robotic systems;
on the one hand, the distributed multi-map approach handles
communication losses and can cope with large areas, and on
the other hand, maps made of points and lines represent better
the environment geometry than only points, and thus yield the
possibility tomatch and fuse data acquired by both kinds of robots.

The proposed solution to the localization andmapping problem
is based on a combination of filtering (within the local maps the
robots poses are filtered) and smoothing (the origins of the local
sub-maps are past robots’ poses and whenever an event occurs
the past poses are corrected). The mapping problem is therefore
relegated within the local sub-maps, and is decorrelated from
the global localization problem, making our approach akin to a
cooperative localization approach, where robots improve their
localization using the information provided by other robots [15].

In terms of cooperation, the marginals of graph level is the
sole information that must be exchanged between the robots or

10 http://homepages.laas.fr/simon/videos-RAS2011/dalaRessacExp.mov.

http://www.geoportail.fr
http://homepages.laas.fr/simon/videos-RAS2011/dalaRessacExp.mov
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(a) Image frame for Dala. (b) Image frame for Ressac.

(c) Before an event. (d) After an event.

Fig. 25. Top: Image frames from both robots before the event, approximately corresponding to the middle column images of Fig. 1. Green squares represent interest point
currently considered as landmarks, yellow squares represent interest points just initialized as landmarks. The line segments are in blue, with endpoints in red. Yellow ellipses
are the uncertainty in the image view. Bottom: Event effect in the global map, the sub maps origins expressed in the wrf are the large ellipsoids — only 3D line segments
landmarks are shown here. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 26. Comparative trajectory plots; odometry in dash-dot line, open loop run in dashed line and cooperative run for Dala (left) and Ressac (right).
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Fig. 27. Final global graph (the global level) with Dala’s trajectory in blue and Ressac’s trajectory in red in thewrf. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
 

 

Fig. 28. The thick-lines are the estimated trajectories for Dala and Ressac after the
integration of two rendezvous/matching events. Ressac’s trajectory is shown in red,
and Dala’s trajectory is shown in blue. Note that Dala’s SLAM trajectory is now fitted
the road. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

to a central server. Future work considers the implementation
of the distributed approach in a real scenario. The approach is
well suited to a multi-robot context, and it can in particular
handle all the possible localization means, from odometry to
absolute localization with respect to an initial model. The fact
that no information is shared between sub-maps leads to a loss of
information, as faraway points and lines that are being tracked for
long periods of time and between sub-mapneed to be re-initialized
after a new sub-map is created. The conditional independentmaps
approach (CI-SLAM [46]) palliates this problem in the single robot
case. But in the multi-robot case, this solution raises issues that
remain to be studied — in particular, sharing information between
the robots can not be straightforwardly done at the graph level.

In order to obtain the best localization for each robot in the
incremental SLAM solution and to avoid any graph incompatibility
between robots, an alternative efficient implementation of a
posteriori maximum likelihood solution should be considered
instead of the minimal cycle optimization.

The map merging process is not required for the robots to
operate, but should one require a global map, it can be done at
the end of the mapping process. In our simulations, we applied
a fusion in covariance form; fusion in information form [6] has
however more interesting properties for decentralized systems,
because information in the same reference frame is just added.
Moreover, the sparseness of the information matrix’s structure
can be exploited to reduce communication bandwidth. Combining
covariance and information forms might reduce the computation
complexity, as shown in [47]which exploits the advantages of both
methods.

In order to build landmark maps that are invariant to the
vantage point, we have proposed to use 3D points and line
segments. An important contribution of this paper is the new
line segment parametrization for undelayed initialization, the
anchored Plücker line, with which we exploited the two key
concepts of inverse-distance and anchoring. The outcome is
promising, but not fully satisfactory yet. Ongoing work is a more
detailed analysis of different line parametrizations with the aim of
further improving line estimation performances, most particularly
with regard to filter consistency but also to other important aspects
such as endpoints management [48].

The built maps combine inverse-depth points and anchored
Plücker line segments. Essentially, as we stated the problem,
detected line endpoints do not provide useful information as there
is no guarantee that they represent stable 3D points. Therefore,
one line in the image conveys the same amount of information
as one point: 2DOF. In general, a set of N 3D lines in general
configuration provides the same amount of information as a set of
the same number of points, also in general configuration. Having
both points and lines means that such an amount of information
can be gathered with, say, N/2 points and N/2 lines. Within
a complex scenario, there may be places where mostly points
are visible, but other places where mostly lines are visible and
trackable (structured scenarios for example). An algorithm that is
able to exploit both types of landmarks is therefore in advantage
in front of single-type ones.

The use of line segments is very promising, but yields a
wireframemodel that remains preliminary. Further post-processes
can allow the building of a whole surfaces model, e.g. by collapsing
point landmarks or by using homographies to verify plane
hypotheses generated on the basis of pairs or triplets of coplanar
segments.

Finally, much work remains to be done at the control level
in order to efficiently deploy these mapping processes among a
fleet of heterogeneous robots. For instance, creating a new submap
after every detected loop closure becomes totally inefficient
when GPS is available, and besides sharing graphs every-time
a connection between robots occurs, one must define what
additional information has to be transmitted — e.g. which maps
should be associated to trigger a loop closure?Mapping is an active
process that must be controlled and supervised; this is even more
necessary when it is distributed among several robots.
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