Models for Prediction

P@trik Haslum
Department of Computer Science, Linkoping University
pahas@ida.liu.se

Abstract

Prediction is found to be a part of many more
complex reasoning problems, e.g. state estima-
tion, planning and diagnosis. In spite of this,
the prediction problem is rarely studied on its
own. Yet, there appears to be a wide range of
choices for the design of the central component
in a solution to this problem, the predictive
model. We examine some of the alternatives
and, as a case study, present two different solu-
tions to a specific prediction problem that we
have encountered in the WITAS UAV project.

1 Introduction

The capability to predict the future development of a
dynamic environment from information about the past
and present is an essential component of many reason-
ing tasks. That it appears as a component in the so-
lution of a more complex problem is natural, since the
value of prediction lies in its use to support decisions
in e.g. planning or diagnosis, but because of this, the
problem of prediction in itself is more rarely studied. It
appears that there is a wide range of choices in the de-
sign of a predictive mechanism, and that in many cases
the component that manages prediction in e.g. a plan-
ning system could be substituted without major changes
to the remaining parts of the system. Because of this, it
makes sense to investigate the “design space” of predic-
tive mechanisms, as well as classes of environments for
which one mechanism or another may be more suitable.

In the remainder of this section, we examine some
of the reasoning tasks in which prediction plays a role,
while section 2 examines some of the choices that are to
be made in the design of a predictive mechanism. In sec-
tion 3, we present as a case study a prediction problem
along with two different solutions, that is, models. The
problem, taken from the WITAS project?, is to predict

!The WITAS project studies architectures and tech-
niques for intelligent autonomous systems, centered around
an unmanned aerial vehicle (UAV) for traffic surveillance.
For an overview, see e.g. (Doherty et al, 2000) or
http://www.ida.liu.se/ext/witas/.

the movements of a car in road network, and appears in
the context of the task of planning a search strategy to
locate a specific car.

1.1 Sensing: State Estimation and
Reidentification

State estimation may be described as the problem of
constructing a coherent and as correct as possible world
view from a sequence of sensor readings disturbed by
noise. Here, “world view” may be anything from the
position of a mobile robot to classifications and motion
vectors of all objects detected in a stream of images.

Predicting the evolution of the world from the time
of one reading to the next introduces a dependency be-
tween measurements, which allows more information to
be used and a more accurate estimate to be made (as
long as the predictive model is not more wrong than the
sensors). Examples include the Kalman filter (Kalman,
1960), Markov localization methods (see e.g. Thrun
(2000) for a survey) and their combination (Thiébaux
and Lamb, 2000).

Reidentification
A closely related problem is found in the process of an-
choring symbolic referents to sensory perceptions (ob-
jects): Reidentification of a previously observed object?.

Consider, for example, tracking an object by vision
(a problem that arises also in the WITAS UAV appli-
cation).When a tracked object is lost from sight and
later seen again, its visual appearance may have changed,
due to e.g. perspective or light conditions changing, so
much that comparing visual characteristics like shape
and color is not sufficient to reconize the object with a
usefull degree of certainty. Again, prediction can intro-
duce a dependency between the past and present obser-
vations of the object, increasing certainty in the decision
of whether to match the two.

In the work of Huang et al (1997; 1999) on tracking
cars by means of cameras stationed along a freeway, pre-
diction takes the form of appearance probabilities that

?Coradeschi and Saffiotti (2000) describe instead the
problem as finding the best match, if any, for a previously
anchored referent among a set of perceived objects, and call
it reacquisition.

“define how an object observed at some point in the past
can be expected to appear at some point in the future”
and depend both the object and the camera positions
(for example, the objects estimated velocity and the dis-
tance to the next observation point determine the ex-
pected time of reappearance). Coradeschi and Saffiotti
(2000) define a framework in abstract, and leave the con-
crete form of the predictive model open.

1.2 Control: Reaction and Anticipation

Although tracking control, z.e. control problems in
which the reference point is constantly changing, is in-
herently a reactive activity, predicting the near future
reference values can improve the precision and economy
of the controller.

Taking a problem from the WITAS project, consider
the UAV tracking a car traveling on aroad: It is desirable
to keep the UAV at some angle, say 25° - 45°, behind
the tracked car w.r.t. the cars direction of movement.
Matching the expected future velocity of the car instead
of that currently measured reduces the need for abrupt
course corrections (reducing the risk of losing track of
the car due to sudden camera movements) and the risk
of overshoot. Even a very simple predictive model (es-
sentially assuming that the car maintains its current z, y
velocity) allows the UAV to approach the desired posi-
tion and velocity much more smoothly. A more elaborate
model could take into account the shape of the road and
behaviour such as slowing down when approaching an
intersection.

The principle applies on a larger time scale as well: If
events in the near future can be predicted, more time
is available to prepare a reaction and the actions taken
can be better tailored to the developing situation. An
example is Propice-Plan (Despouys and Ingrand, 1999;
Despouys, 2000), a task execution and monitoring sys-
tem. The system applies short-term prediction to make
a more informed choice of which of several alternative
procedures to apply to achieve a given goal, as well as
to anticipate, and if possible avoid, failures before they
become a fact.

1.3 Planning: Verification and Guidance

In most cases the aim of planning is to produce correct
plans, z.e. plans that are if not certain at least highly
likely to achieve the intended goals. Verifying a plan
amounts to deciding, given facts of the initial situation,
whether every possible (or at least the most likely) exe-
cution path of the plan does indeed lead to the achieve-
ment of the intended goals, and this is a prediction prob-
lem.

For the STRIPS class of planning domains the prob-
lem is extremely simple, since information is assumed
complete and accurate and the dynamics are determinis-
tic, and therefore very rarely explicitly considered®. For

®Though note that if the steps of the plan are only par-
tially ordered, determining what holds and what does not
at a particular point in execution of the plan is not as easy
(Chapman, 1987).

planning in domains in which facts and outcomes of ac-
tions are unknown or uncertain, verification naturally
becomes harder, as can be seen in that it contributes
a significant part to the complexity of planning algo-
rithms for such domains. Contrast, for example, solution
extraction procedures in GRAPHPLAN (Blum and Furst,
1997) and the conformant planner cGp (Smith and Weld,
1998). In Markov decision problems (Puterman, 1994;
Kaelbling et al., 1998), which are frequently used for
planning under uncertainty, the aim is to find a pol-
icy that maximizes the expected utility or reward. Tak-
ing expectations implies the existence of a (probabilistic)
predictive model.

Certain “repair based” planners, e.g. XFRM (Beetz
and McDermott, 1992) and WEAVER (Blythe, 1998),
make explicit use of prediction to detect flaws in a candi-
date plans and guide the selection of repairs. The predic-
tion procedure in XFRM (McDermott, 1994) is based on
a description by probabilistic rules and events appearing
randomly with a given intensity*. WEAVER interleaves
contingent planning in a simplified domain and predict-
ing likely failures in the resulting plan. Repair consists
in “de-simplifying” relevant parts of the domain and re-
planning.

1.4 Execution Monitoring and Diagnosis

Execution monitoring and diagnosis is often cast as the
problem of detecting faulty behaviour in a system and
isolating the malfunctioning system component respon-
sible for it.The commonly adopted definition (e.g. Dean
and Wellman (1991)) of “faulty behaviour” is behaviour
that deviates from the expected behaviour®.

In the presence of fault models, the diagnosis task
closely resembles discrete state identification, z.e. de-
termining which of a set of different state trajectories
or operating modes of the system best explain (or some-
times, are consistent with) the given observations, based
on models that predict system behaviour in each mode.
It is also in this area that perhaps the widest range of
different kinds of predictive models have been consid-
ered. Examples include probabilistic and hybrid transi-
tion systems (DeCoste, 1990; Williams and Nayak, 1996;
Mcllraith et al., 2000), logical action theories (Mcllraith,
1998) and specifications in fuzzy linear temporal logic
(Ben Lamine and Kabanza, 2000)°.

2 The Predictive Model

Without a model there can be no prediction. The model
contains the knowledge, or assumptions, about the dy-

#Although we have not formally proven it, the prediction
model used by XFRM appears to be a Markov jump process
(see section 3.5).

®Saffiotti (1998) takes the, in a sense more general, view
that monitoring consists not in deciding if the observed sit-
uation is the expected, but whether the executing plan or
program remains relevant in this situation.

5The logic (LTL) and progression algorithm used by Ben
Lamine and Kabanza (2000) is similar to the logic MITL used
in our expectation-based model (see section 3.2).

namics of the environment that allows the prediction
mechanism to conclude something more than that “any-
thing can happen”. To be more precise, a predictive
model describes what can possibly happen, and option-
ally what is lzkely to happen.

This section examines some issues in the construction,
representation and use of models for prediction. The
representation of the prediction model constrains the en-
tire predictive mechanism, e.g. how the model can be
acquired, what results can be obtained from it and how
those results are computed. Naturally, the model repre-
sentation may equally be said to be determined by the
results desired, the acquisition methods available, etc.
Nevertheless, representation will be the main starting
point of the discussion, and limited to models based on
the notion of state’.

2.1 Representations of State and Time

What aspects are to be included in a state and what
form they take, e.g. whether measurements should be
treated as continuous or discrete, is largely determined
by the constraints and needs of the application.

Regarding time, not so many different views can be
adopted: (1) Time may be viewed as a continuum, in
which the state evolves continuously. The typical ex-
ample of a model of this kind is a differential equation
(though note that computation with such models usu-
ally is based on discrete approximations). (2) Time may
be viewed as a continuum, in which the state remains
steady until it changes instantaneously. Examples of
such models include timed and hybrid transition systems
(Alur and Dill, 1994; Alur et al., 2000), partially ordered
plans and formalisms like the event calculus (Kowalski
and Sergot, 1986). Constraints of some form appear to
be the most common method of representation and rea-
soning with time in this kind of model. (8) Time may
be view as a sequence of discrete “points”, with a state
at each point and state changes between points. This
is the most common kind of model, examples including
classical plans, diagnosis models, and more.

When discrete time is viewed as an abstraction of con-
tinuous change, which is often the case, an implicit as-
sumption is that the discretization is fine enough, z.e.
that the changes between one point and the next amount
to no more than the change from the state at the first
point to the state at the next.

2.2 Representations of Uncertainty

In all but the most trivial cases, predicting the future
is an uncertain business. At least three approaches to
dealing with this uncertainty have been used: (1) Ignore
it. In, for example, planning it is of course the case that
any part of a plan always may fail (and fail in a number

"From systems theory, we know that for any general sys-
tem a representation by state object and response func-
tion can be found (Mesarovic and Takahara, 1975), although
Rosen (1991) argues that certain systems, in particular living
beings, can not be represented in such a “mechanical” way.

of different ways), but if failures are very rare, it may not
be worthwhile to plan for the contingencies that failures
cause and hence to view the expected outcome of ev-
ery action as certain. (2) Treat it as non-determinism,
that is, to consider all possible outcomes regardless of
likelihood. This view is necessary when absolute cer-
tainty is required, e.g. in formal verification (Clarke
et al., 1999), and is also adopted in conditional plan-
ning (Peot and Smith, 1992; Collins and Pryor, 1995;
Weld et al., 1998). (8) Quantify it. This approach is
at its best when reliable measures or estimates, such as
statistics, of any uncertainties are available, and when
“sufficient” or “best possible”, rather than absolute, cer-
tainty is required of the prediction. Examples are found
in most of the applications in the previous section, e.g.
Kalman filters in state estimation and MDPs in plan-
ning. The most common way to measure uncertainty is
by probabilities, though alternatives, e.g. fuzzy logic,
exist.

From an algorithmic point of view, the difference
between non-deterministic and probabilistic representa-
tions seems to be small. For example, dynamic pro-
gramming methods for solving MDPs translate into al-
gorithms for non-deterministic planning by considering
at each step the worst outcome rather than each out-
come weighted according to probability (Koenig and
Simmons, 1995; Bonet and Gefiner, 2000). The differ-
ence lies in the interpretation of the result. An exam-
ple is the “strong cyclic plan” of Cimatti et al. (1998),
which is guaranteed to reach its goal assuming no ex-
ecution path of the plan is ignored forever. In other
words, the plan works if actions are random (with non-
zero probability of each outcome) but may loop forever
if actions are non-deterministic.

2.3 Model Acquisition

An important aspect of the construction of a predictive
model is its source: It may be computed, or learned,
from data, it may be an encoding of “expert knowledge”,
or it may have been derived from a model of another
kind. Representations are often more or less suited to
each mode of acquisition. Probabilities, for example, can
be accurately estimated from data by statistical meth-
ods, while people, experts or not, are notoriously poor at
estimating probabilities (Tversky and Kahneman, 1974).

2.4 Computation with the Model

The purpose of the predictive model is to compute pre-
dictions. However, the importance of computational
properties such as scaling, numerical stability or even
decidability depends on the application, specifically on
what questions the prediction is meant to answer.

For example, contingent planning is in most cases re-
stricted to relatively simple forms of plans, typically
trees of finite depth, because every additional compli-
cation in a plan makes the problem of verifying it, for
every possible outcome, immediately much harder. The
XFRM planner, on the other hand, never considers every

outcome but only a random sample, and therefore can
allow much more complex plan forms.

Another example is the model representation devel-
oped in sections 3.2 — 3.3, which has its roots in the area
of formal verification but which relaxes several restric-
tions. The reason is that those restrictions are neces-
sary to make verification problems, which concern the
infinite horizon behaviour of the modeled system, decid-
able, while the application we study is concerned only
with finite predictions.

3 Case Study: Predicting Car
Movement

As a case study, we take a prediction problem from the
WITAS project and develop two different solutions, z.e.
predictive models. Because we currently lack the data
necessary to build accurate predictive models for the
domain, and the possibility to experimentally evaluate
them, models are only sketched. The focus is on the
representational choices and the consequences of those
choices. Strategies for evaluating model designs are dis-
cussed in section 4.

A typical task for the traffic monitoring UAV may be
to find a specific car that has previously been seen. This
requires planning a search strategy. Assuming that the
car is behaving independently of the UAV, z.e. that
it is neither cooperative nor adversarial, the problem
decomposes in two parts: (1) Determine locations and
times where the car is most likely to be intercepted®. (2)
Plan a flight path to cover as many locations/times as
possible. Here, we focus on the first part.

The problem, thus, is to predict the most likely
present locations of a car, from one or more observations
of its position some time in the past®. A detailed map of
the road network, with some “static” information about
car behaviour, e.g. average speeds and traffic volumes,
is assumed to be available.

Both models are based on a discrete state represen-
tation, where the position of the car is described only
by what road or intersection it is in (the exact position
along a road will quickly become too uncertain to be
of any use). Because of the inherent uncertainty and
large differences in the time the car stays in different
states, a continuous, event based, representation of time
is adopted in both models. The main difference is in the
way they represent uncertainty.

3.1 Case I: Expectations as Constraints

In the first model, world dynamics are represented by
a timed transition system. The dynamics of the world
determine only what developments, that is sequences of
states and events, are possible. In addition, we expect

8Lacking any information about the likely present posi-
tion, the best strategy is “submarine search”, i.e. searching
in a pattern spiraling outwards from the last known position.

°The same problem but on a much smaller time scale is
considered by Forbes et al. (1995). Their solution uses prob-
abilistic networks to represent a discrete-time model.

the world state to develop along certain lines, for in-
stance that cars do not suddenly stop or make U-turns
(or at least not more than one in quick succession). A
development is normal to the degree that it satisfies
our expectations. These expectations are constraints on
state/event sequences, expressed in a temporal logic.

The next section introduces the necessary technical
background, while the model is described in the follow-
ing section. Discussion of the advantages and disadvan-
tages of the representation is in section 4.

3.2 Technical Background

This section introduces timed transition systems and
Metric Interval Temporal Logic (MITL). Details can be
found in e.g. Alur (1999) and Emerson (1990).

Timed Transition Systems

Timed transition systems (Alur and Dill, 1994) are es-
sentially finite state automata, augmented with time
constraints of two kinds: A transition can have a time
window in which it is possible to make the transition
and a state can have a maximal time that the system
may remain in the state before it has to exit by some
transition.

Let Rt denote real numbers > 0, with a special sym-
bol oo for infinity. Formally, a timed transition system
S = (Q,R,C, L), consists of a set of states, @, and a
transition relation,

RCExQxQ@xR" xR"

where ¥ is some set of event labels. The interpretation
is that if (a,q, ¢, t,t') € R, the system may transit from
state ¢ to ¢’ in response to the event a in the time in-
terval [¢,¢], relative to the time that the system entered
g. Time constraints of the second kind are specified by
the function C : @ — RT. States are labeled with
properties from a set P via a function L : Q — 2°
(often the set of states is 2F, i.e. a state is defined by
its properties).

Like a finite automaton accepts a set of strings over
its alphabet, a timed transition system “accepts” a set
of histories: A development is a sequence of states and
events marking state transitions, d = g¢o, a0, q1,01, ...,
with an associated function T': d — RT that tells the
starting time of each state, such that

(3) for © > 0, there exists ¢, € R such that
R(ai, i, ¢i+1, 4, t') and T(g:)+t < T(giv) < T(2)+
t', and

(44) for i >0, T(gi+1) < T(g:) + C(g:)™.

10Two additional properties are usually required of a timed
transition system: FEzecutability, which is the requirement
that any finite prefix satisfying conditions (i) and (i) can
be extended to an infinite development, and non-zenoness,
which is the requirement that the system does not make an
infinite number of transitions in finite time. Because we shall
only be concerned with finite (in time and number of events)
developments, these properties are not important to us.

The duration of a state g; is denoted D(g;) = T'(gi+1) —
T(gs).

Even when only finite development prefixes starting
in a specific state gy are considered, the set of possi-
ble developments is uncountable, since the starting time
of any state in a development can change by an arbi-
trarily small amount. To be able to enumerate finite
developments, we have to adopt a more compact repre-
sentation: A set of developments that differ only on state
starting times are represented by the sequence of states
and events, d = qo, a0, ... ,qn, and a set of constraints
on the starting times T'(qo), ... ,T(gn). The time con-
straints are managed in a temporal constraint network
(TCN) (Dechter et al., 1991).

Metric Interval Temporal Logic
The language of MITL (Alur et al., 1996) consists
of atoms P, t.e. the properties of states, proposi-
tional connectives and the temporal operators always
(Op,e19), eventually (Ort,e), next (Oft,e19) and until
(pUt,t1%). The intervals adjoined to the operators take
values in Rt and express metric temporal restrictions!!.
Formulas in MITL are evaluated over a time devel-
opment (d,T) as follows: Let d* denote the suffix of d
starting with the :th state. A formula ¢ not contain-
ing any temporal operator holds in the development d*
iff ¢ holds in the state ¢;. The conditions for temporal
formulas are

e Ot ¢ holds in d® iff ¢ holds in every d* such that
T(g:)+t < T(gr) < T(g:)+t orsuch that T'(g;)+t <
T(qe+1) < T(q) +t.

e O holds in d’ iff there exists an g such that

T(g:i) +t < T(qe) < T(q) +1t' or T(qx) < t <
T(gk+1), and such that ¢ holds in d*.

e Ojt,e)¢ holds in d* if ¢ holds in g;1; and T(g;) +¢ <
Tgi11) < T(g) + '

® Ui % holds in d’ iff there exists a g such that
T(g) +t < Tlge) < T(g) + 1 or T(gr) < t <
T(qr+1), ¥ holds in d* and ¢ holds for all &/ with
1 < 7 < k. begins to hold.

Connectives are interpreted as in ordinary logic.

Progression of MITL Formulas
The above conditions for the truth of an MITL formula
are written for infinite developments. For a finite (prefix)
development, we say a formula holds iff it holds in some
continuation of the development, according to the above
conditions. To determine if this is the case, the formula
progression algorithm of Bacchus and Kabanza (1996)
can be used.

The algorithm takes an MITL formula ¢ and a state
g with duration D(g) and returns an MITL formula ¢

1 The standard definition of MITL disallows singleton in-
tervals, ¢.e. of the form [¢,t], to make certain questions
regarding the infinite horizon behaviour of the system de-
cidable. Again because we shall be dealing only with finite
developments, we ignore this restriction.

such that ¢’ holds in the next state iff ¢ holds in g. If the
input formula is not true in any continued development,
the result of progression is equivalent to FALSE.

The basic progression algorithm assumes that D(gq)
is known exactly, but as explained at the end of the
previous section we have to represent sets of develop-
ments by a combination of a state/event sequence and
constraints on state starting times. Therefore, the al-
gorithm has to be extended to take as input a set of
time constraints, C, and return the set of all solutions,
{(¢1,C1),- .., (¥, CL)}, where each C] is a set of ad-
ditional time constraints consistent with C' and ¢} is
the result of progressing the input formula ¢ under con-
straints C'U C..

Because the progression algorithm works recursively
by cases, the extension is straightforward (though some-
what complicated in practice): For example, progressing
the formula ¢ = O 9] Ojo,4] p through state g results in
(a) Ops-D(q),9-D(g)] Olo,41 P, if D(q) < 5;

(b) %' A Ojo,0—b(q)] Olo,4] P, if 5 < D(g) < 9;

(c) ¢',if 9 < D(q)

where 9’ is the result of progressing Ojo,4p through g:
(d) piff D(g) < 4, and (e) FALSE if not. If the input
set of constraints is C' = {0 < D(q) < 7}, the extended
algorithm returns two solutions:

©1 = Os_D(q),9-D(q)] Olo,4] P With the associated con-
straint set C] = {D(g) < 5} (case (a)), and

@5 = FALSE A Ojp 9_p(q)|@ along with the constraint set
Cy ={4 <5< D(q)} (cases (b) and (e)).

The combination of cases (b) and (d) is inconsistent
(since it requires 5 < D(g) < 4), and case (c¢) contra-
dicts the input constraints.

In general, an MITL formula defines a tree-like struc-
ture of possible progressions with associated time con-
straints, and the extended algorithm retrieves all consis-
tent paths through this tree.

3.3 The Model

We sketch a predictive model based on the transi-
tion/expectation representation in three steps: First, the
properties and dynamics of states and second, the con-
straints on developments that represent expectations.
Last is a brief discussion of how predictions are com-
puted using the model and how predictions are used to
answer queries.

State Properties and Dynamics

Properties and dynamics of states are represented by a
timed transition system. Let the set of atoms comprise
in(r;), in(x;) for all roads r; and intersections x; in the
map, denoting the location of the car, at_start(r;) and
at_end(r;), indicating the car is at the very beginning
or end of road r; and an atom moving. Examples of
transitions are

(enter(r, z),
in(z) Amoving A starts(r, z),
—in(z) A in(r) A at_start(r),
1l,0)€R

(drive(r),
in(r) A at_start(r) A moving,
—at_start(r) A at_end(r),
t™"(r),00) € R

(stop,moving, "moving, 0,00) € R

for all roads r and intersections z in the map'?. Because
the drive transition represents the car traveling the en-
tire length of the road the lower bound can be made a
function of the road, based on e.g. length, shape and
volume of traffic. Matching upper bounds are provided
by state constraints:

C(in(r) Amoving) = t™%(r)

C(in(z) Amoving) =5
expressing that the car can only remain in the same lo-
cation for a certain time and still be considered moving.

The Expectation Hierarchy
Next, the model is enriched with constraints represent-
ing expectations on developments, constraints expressed
as MITL formulas. For example, the expectation that
the car does not suddenly stop or make a U-turn can be
formulated

O(0,00](in(r) Amoving A ends(r,z) —

(in(r) AmovingUp tmaz ()] in(z))) (1)
stating that “it’s always the case that if the car is in road
r and moving, it remains in the road and moving until
it’s in the intersection = at the end of r”. Furthermore,
tmaz (r) sets an upper bound on the time that the car
is expected to remain in the road. To express a lower
bound, a more complicated construction is needed:

00,001 ((in(z) A starts(r,z) A Opo,00)in(r)) —
O10,00]T[0,¢min_(r)1in(r)) (2)

This states that “(it’s always the case that) if the car is in
intersection = and in the next state in road r beginning
at z, it is in 7 at all times in the interval [0,¢nar (7)]
from the beginning time of the next state”.

We expect of course that where the car goes depends

on where it is going:
Ojo,00] ((in(7) A Cpo,007in(r") A
distance(r,r") < distance(r',r")) —
—destination(r")) (3)

This states that if the car is first in road r and later in
road 7/, and if the distance from 7’ to r is greater than
the distance from r to r”, then the cars destination is
not in road r”. This is a strong expectation, not allow-
ing the car any detours, but weaker forms can also be

12For compactness and modularity, the states involved in
each transition are only partially described and a STRIPS
style (minimal change) semantics is assumed. This neces-
sitates an additional complication: The time window of a
transition is not relative to the time of the latest event, but
to the time at which the transition became enabled. Besides
state atoms, conditions also include some “static” facts, such
as starts(r,z) and ends(r, z), describing the road network.

expressed. In difference to properties like location, the
atom destination(r) can not be observed, so expecta-
tion (3) may seem useless, but since we assume that the
destination does not change over time, if a sequence of
observations is available, the expectation can be used to
rule out some possibilities, in effect inferring what the
potential destinations are.

As mentioned, a development is normal to the degree
that it satisfies expectations, but since satisfaction of
MITL formulas is strictly Boolean, “degree” can only
mean “number of”. At the same time, we have more
confidence in some expectations than in others. The so-
lution to both problems is to arrange expectations in
a hierarchy of some sort, the simplest being a sequence
©1,.-.,@n of decreasing confidence. A development sat-
isfying expectations ¢4, . .. , ¢ but not g1 is then said
to be normal at level k.

For example, a weaker form of expectation (1) not
specifying an upper time bound may be ordered before
(1) and (2) and after them (3), since that is a very strong
constraint. In general, ordering expectations according
to confidence is a very important, and often difficult,
issue in building a model of this kind.

Computing Predictions

How is the answer to the question “where is the car
expected to be now?” computed from a set of past ob-
servations and a model as described above? The answer
amounts to finding the position of the car in all states
that may exist at time “now” in the set of most normal
developments starting from the state at the last obser-
vation. That is, it is a reachability problem and can be
solved by search in the tree of finite developments.

If a sequence of observations is available, progressing
expectations like (3) through the observed states leads to
constraints on the possible values of unobservable prop-
erties, such as destination. The inferred knowledge
can then be used to limit the prediction search.

The tree of developments can grow exponentially with
the depth, :.e. prediction time span. However, if uncer-
tainty is low, for example due to strong expectations,
the branching factor comes close to 1, resulting in linear
growth.

3.4 Case II: A Markov Process

The second model is a Markov process, z.e. a transi-
tion system that has probabilities associated with the
transitions out of each state. Because much of the un-
certainty in predicting the cars movement is related to
time, the time in each state in a development is a con-
tinuous probability distribution instead of a simple dis-
cretization. The state duration distribution is, for com-
putational reasons, limited to the exponential, and since
this distribution is unsuited for describing the domain a
certain “encoding trick” must be used.

Again, the next section introduces technical back-
ground, while the model and its use for prediction is
described in the following one. Discussion is in section
4.

3.5 Technical Background

This section briefly introduces the continuous-time
Markov jump process, some simple methods for param-
eter estimation and the phase method. For a more de-
tailed treatment, see e.g. Tijms (1994).

Markov Chains

A Markov chain is a discrete time random process. For-
mally it consists of a finite or countably infinite set of
states X and a sequence of random variables Xg, X1, ...,
taking values in X, representing the state of the process
at each stage. The process being Markov, it satisfies

P(Xl = ZEz|Xo =Ty ,Xi,1 = 581‘71) =
P(Xi =Z; | Xi,1 = :Ez;l) (4)

1.e. the probability of state z materializing at stage ¢
depends only on the state of the process at stage 1+ — 1.
The P(X; = z;| X;—1 = ®;_1) are called the transition
probabilities, and if they are identical for all z the process
is stationary. In this case, the abbreviations

P(z,2') =P(X;11 =2' | X; = 2)

P*(z,2') =P(Xiyn=12'| X = z)
are used.

Let m;(z) = P(X; = z), z € X, denote the distribu-
tion of the process at stage :. Because of stationarity and

the Markov property, m; and the transition probabilities
determine the distribution at every subsequent stage:

mipk(2) =) mi(a')PH(a',2) (5)
T'eEX
A stationary Markov chain is therefore characterized by
the transition probabilities and the initial distribution
To.

The Markov Jump Process
For the continuous time case, let X(¢), ¢ > 0 denote
the state of the process at t2zme t. The discrete sequence
obtained by “sampling” the state of the process just after
every state change is called the embedded chain of the
process.

A Markov jump process is arandom process X (¢), t >
0 such that the embedded chain is a stationary Markov
chain and such that the time in each stage, T;, satisfies
the conditions:

(v) T; is exponentially distributed with a mean ﬁ
that depends only on the state of the process at the
stage, t.e. T; = T(X;) (A(z) is called the leaving
rate of state z).

(22) The number of stages that occur in a finite time
interval is finite with probability 1.

If the leaving rate is A(z) = A for all z € X, the process
is said to be uniform. By convention, the transition
probability P(z,z) = 0 for all z € X to ensure that the
time T'(z) is unambiguously defined.

The leaving rates and the transition probabilities do
not in the general case uniquely determine a continuous-
time Markov jump process. However, when the state

space is finite, the process is unique and a distribution
m(z) = P(X(¢) = z), z € X determines the distribution
for all ¢ > t. If the process is also uniform, with leaving
rate A, this distribution is

meia(z) = Y m(a) Y F(k,AA)PH(a,z) (6)

T'EX k>0

where F(k,u) is the Poisson probability function with
mean 'S

3.6 The Phase Method

The main limitation of the Markov jump process, from
the point of view of our application, is the restriction
to exponentially distributed stage time. To circumvent
it an “encoding trick”, invented by A. K. Erlang in the
early 20th century and known as the phase method, is
needed.

Let F'(z) be any non-negative distribution and for any
fixed § > 0 let

S RSN Dl
Fio(e) = > pa(k) (1= D emi=002 (7)
k=0 i=0 ’

where ps(k) = F(ké)—F((k—1)8) for k =1,2,.... Then
lims_,q F5(z) = F(z), t.e. any non-negative distribution
can be approximated with arbitrary precision by a sum
of exponentially distributed variables all with the same
rate parameter, %.

If the stage time T'(z) of a continuous-time Markov
process is, for instance, normally distributed with mean
wu(z) and standard deviation o(z), both of which depend
on the state!®, it may instead be seen as a sum of k
exponentially distributed “phases” with mean %, with

probability
o) = 8P o L0y

for each k, where ®(z) denotes the standard normal dis-
tribution. Thereby, the process can be approximated by
one that is a uniform Markov jump process.

Estimating Processes Parameters

It is a simple generalization to let the transition proba-
bilities depend on an additional, unknown but time con-
stant, parameter, Y, taking values in some finite, dis-
crete domain Y:

Py(z,2') =P(Xiy1 =2’ | Xy =2,Y =y) (9)

The a prior: probabilities P(Y = y), y €) are as-
sumed known. Estimating the likelihood of Y = y after
observation of a sequence of states is a straightforward
application of Bayes’ rule.

13F(k,AA) may be interpreted as the probability of see-
ing k events in A units of time, if the time between any
two events is exponentially distributed with intensity A, z.e.
events happen “on average” once every % time unit.

1% Although the normal distribution assigns positive prob-
ability to negative values, let us assume u(z) and o(z) are
such that this probability is negligible.

The distribution of the stage time T'(z) can also be
made to depend on unknown parameters, in addition to
the state. There are many models to chose from, for
example T'(z) = Fy + Fi(z) where Fy and Fj are in-
dependent, normally distributed and the parameters of
Fy the unknown, or T'(z) = Fp - Fi(z) with the same
assumptions. The methods available to estimate the un-
known parameters vary with the choice of model, but
most depend on having observations of T'(z) which is
possible only if the process is observed continuously so
that the time of each state change can be recorded.

3.7 The Model

The state of the process is the road that the car cur-
rently occupies (we ignore the intersections). The cars
traveling time in road r is a random variable with dis-
tribution T'(r), containing some unknown parameters.
The parameter to the transition probabilities is the cars
destination, d.

Because of the use of phases to encode T'(r), the state
space of the process is the set of pairs (r, k), where r is a
road in the map and k the phase counter. The transition
probabilities are

Pd((ri k)i(rik_ 1)) =1 (10)
Py((r,0),(r', k) =
S —
p5(7’, k) dlsta.nce(g ,d) (11)
Pd((dv 0),(d,0)) =1 (12)
where ' # d and r" range over all roads starting from
the intersection at the end of » and £ = 1,.... The ex-

pression ps(r, k) denotes the probability of the car stay-
ing k phases in road r, given by equation (8).

The process as defined by (10) - (12) has an infi-
nite state space, since the number of phases is, theoret-
ically, unbounded. In practice, however, the probability
ps(r, k) is negligibly close to zero for all but a finite range
of values of k.

Computing Predictions
Given a model as described above and a set of past obser-
vations, to answer the question “Where is the car most
likely to be now?” amounts to computing the distribu-
tion 7(z) at time “now”, starting from a distribution
concentrated to a single state (or a set of states shar-
ing the same road component) at the time of the last
observation. This is straightforward, using equation (6).
If a sequence of state changes has been observed, esti-
mates of the values of unknown parameters can be im-
proved. If not, the a prior: parameter probabilities are
used.

4 Evaluation

Searching for criteria for evaluating the two kinds of pre-
dictive models described above, it is tempting to suggest
“accuracy”. This would be a mistake since the accuracy
of predictions is a product of the model, not of the way

it is represented. In short, it is certainly possible to con-
struct a bad model using even the best representation.

Instead, we suggest looking at three points: (1) Rep-
resentation, meaning both adequacy and efficacy. That
is, is the representation rich enough to express the re-
quired model? Can a model of this kind be built, and
maintained, with the available sources? (2) Computa-
tzon. Can a prediction algorithm based on this kind of
model be made efficient enough? (3) Integration. Does
a model of this kind provide the kind of predictions that
the application needs? This is, arguably, the most im-
portant point, since the value of prediction lies in its use
in a larger context.

4.1 Representation

Regarding point (1) we do, as stated at the beginning
of this study, not yet have enough data to construct re-
alistic models!® nor the possibility to test such models
against reality. Both the presented models are sketches
and make many simplistic assumptions, e.g. that drivers
navigate rationally. It can be conjectured that statistics,
for example on the volume of traffic in different parts of
the network, are easier to make use of in the Markov
kind of model. A criticism against models of both kinds
may be that they do not represent the drivers actions in
a natural way, since they both treat events as instanta-
neous.

4.2 Computation

With regards to point (2), there may seem to be no
difference, since both methods of computing predictions
are clearly exponential. They are, however, exponential
in different ways.

Computing predictions, z.e. future distributions, in
the Markov model is exponential in the dimension of the
state space (which, due to the encoding of stage time dis-
tributions as phases, also increases with the “span”, or
difference, over those distributions), but polynomial in
the prediction time span and almost independent of the
amount of uncertainty in the initial distribution or the
transition probabilities. In contrast, the time to search
the tree of normal developments in the expectation based
model depends most of all on the size of the tree, which
is exponential in the “amount of uncertainty” (z.e. the
branching factor) and the prediction time span, but is on
the other hand only linearly affected by the dimension
of the state space, ¢.e. the number of state properties.

4.3 Integration

Examining finally point (8), the models are roughly
equivalent even though they provide different kinds of
answers. The Markov model gives a more fine-grained
measure of the likelihood of finding the car in any par-
ticular location, but this measure is only useful in so far

15 Models of traffic typically deal only with “collective” be-
haviour, e.g. origin/destination frequencies. Matstoms et al.
(1996) present the average speed of vehicles as a function of
traffic density, so called volume/delay functions, for 70 types
of roads in Sweden, but without statistics like variance.

as it is reliable, z.e. that the model is exact. Else it
represents merely a “false accuracy”.

4.4 Empirical Evaluation

Prediction mechanisms based on models of both kinds
presented here have been implemented and tested on a
map of the Revinge test flight area (see Doherty et al
(2000) for a description). However, this experiment can
not really be said to constitute an empirical evaluation,
for several reasons: First and foremost, our current mod-
els are not realistic. Neither is the test flight area a real-
istic testing ground, since it is (for safety reasons) closed
off and thus does not contain any real traffic, and since
it is too small for prediction to have a noticeable effect.
For experiments in general, the WITAS project relies to
a large extent on realistic simulations, but to realistically
simulate traffic we would need to already have a model
of driver behaviour. Second, the prediction mechnisms
are not integrated in the UAV system, so their impact
on the overall system performance can not be assesed.

5 Conclusions

We have tried to show that prediction is frequent as a
component in more complex reasoning tasks and that
there are in the design of any predictive model many
intricate choices, leading to several alternatives. This is
our working hypothesis. As an example in favour of this
hypothesis, we presented two alternative solutions to the
problem of predicting car movement in a road network.

Besides developing and integrating and testing the two
presented prediction mechanisms, we seek to test the hy-
pothesis in more cases. Since several examples of prob-
lems involving prediction were found in the context of
the WITAS UAV project a natural approach is to ex-
amine also those prediction problems, looking at what
kinds of models are being used and if there are any viable
alternatives.

Acknowledgments

Many thanks go to Patrick Doherty and Marcus Bjare-
land for their valuable comments on drafts of this paper.
Thanks also to the reviewers for pointers to interesting
related work. Many ideas presented here, not only the
problem treated in the case study, have grown out of
experiences gained in the interesting environment cre-
ated by the WITAS project, to which all members of
the project team contribute.

The WITAS project and this research is supported by
the Wallenberg Foundation and the ECSEL/ENSYM
graduate studies program.

References

(Alur and Dill, 1994) R. Alur and D. Dill. A theory
of timed automata. Theoretical Computer Science,
126(2):183 — 236, 1994.

(Alur et al., 1996) R. Alur, T. Feder, and T.A. Hen-

zinger. The benefits of relaxing punctuality. Journal
of the ACM, 43(1):116 — 146, 1996.

(Alur et al., 2000) R. Alur, T.A. Henzinger, and P.S.
Ho. Automatic symbolic verification of embedded sys-
tems. [EEE Transactions on Software Engineer-
ing, 22(3):181 — 201, 2000.

(Alur, 1999) R. Alur. Timed automata. In NATO-
ASI Summer School on Verification of Digi-
tal and Hybrid Systems, 1999. Available at
http://www.cis.upenn.edu/~alur/Nato97.ps.gz.

(Bacchus and Kabanza, 1996) F. Bacchus and F. Ka-
banza. Planning for temporally extended goals. In
Proc. 13th National Conference on Artificial In-
telligence (AAAI’96), 1996.

(Beetz and McDermott, 1992) M. Beetz and D. McDer-
mott. Declarative goals in reactive plans. In Proc.
1st International Conference on AI Planning Sys-
tems, 1992.

(Ben Lamine and Kabanza, 2000) K. Ben Lamine and
F. Kabanza. History checking of temporal fuzzy
logic formulas for monitoring behavior-based mobile
robots. In Proc. IEEE International Conference
on Tools with Artifictal Intelligence, 2000.

(Blum and Furst, 1997) A.L. Blum and M.L. Furst.
Fast planning through graph analysis. Artifictal In-
tellzgence, 90(1-2):281 — 300, 1997.

(Blythe, 1998) J. Blythe. Planning under Uncertainty

i Dynamic Domains. PhD thesis, Carnegie Mellon
University, 1998.

(Bonet and Gefiner, 2000) B. Bonet and H. Gefner.
Planning with incomplete information as heuristic
search in belief space. In Proc. 5th International
Conference on Artifictal Intelligence Planning and
Scheduling, 2000.

(Chapman, 1987) D. Chapman. Planning for conjunc-
tive goals. Artifictal Intelligence, 32:333 — 377, 1987.

(Cimatti et al., 1998) A. Cimatti, M. Roveri, and
P. Traverso. Automatic OBDD-based generation of
universal plans in non-deterministic domains. In
Proc. 15th National Conference on Artificial In-
telligence (AAAI’98), 1998.

(Clarke et al., 1999) E.M. Clarke, O. Grumberg, and
D. Peled. Model Checking. MIT Press, 1999.

(Collins and Pryor, 1995) G. Collins and L. Pryor.
Planning under uncertanity: Some key issues. In
Proc. 14th International Joint Conference on Ar-
tificial Intelligence, 1995.

(Coradeschi and Saffiotti, 2000) S. Coradeschi and
A. Saffiotti. Anchoring symbols to sensor data: Pre-
liminary report. In Proc. 17th National Conference
on Artifictal Intelligence, 2000.

(Dean and Wellman, 1991) T.L. Dean and M.P. Well-
man. Planning and Control. Morgan Kaufmann,
1901.

(Dechter et al., 1991) R. Dechter, I. Meiri, and J. Pearl.

Temporal constraint networks. Artificial Intellz-
gence, 49:61 — 95, 1991.

(DeCoste, 1990) D. DeCoste. Dynamic across-time mea-
surement interpretation. In Proc. 8th National Con-
ference on Artifictal Intelligence, 1990.

(Despouys and Ingrand, 1999) O. Despouys and F. In-
grand. Propice-Plan: Toward a unified framework for
planning and execution. In Proc. 5th European Con-
ference on Planning (ECP’99), 1999.

(Despouys, 2000) O. Despouys. Une Architecture
Intégrée pour la Planification et le Contréle
d’Ezécution en Environnement Dynamique. PhD
thesis, I'Institut National Polytechnique de Toulouse,
2000.

(Doherty et al., 2000) P. Doherty, G. Granlund,
K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skar-
man, and J. Wiklund. The WITAS unmanned aerial
vehicle project. In Proc. European Conference on
Artifictal Intelligence, 2000.

(Emerson, 1990) E.A. Emerson. Temporal and modal
logic. In Handbook of Theoretical Computer Sci-
ence, pages 997 — 1072. Elsevier, 1990.

(Forbes et al., 1995) J. Forbes, T. Huang,
K. Kanazawa, and S. Russel. The BATmobile:
Towards a Bayesian automate taxi. In Proc. 14th
International Jownt Conference on Artificial
Intelligence, 1995.

(Huang and Russel, 1997) T. Huang and S. Russel. Ob-
ject identification in a bayesian context. In Proc.
15th International Joint Conference on Artificial
Intelligence, 1997.

(Kaelbling et al., 1998) L.P. Kaelbling, M.L. Littman,
and A.R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Artificial In-
telligence, 101:99 — 134, 1998.

(Kalman, 1960) R.E. Kalman. A new approach to linear
filtering and prediction problems. Transactions of
the ASME - Journal of Basic Engineering, March
1960.

(Koenig and Simmons, 1995) S. Koenig and R. Sim-
mons. Real-time search in non-deterministic domains.
In Proc. 14th International Joint Conference on
Artifictal Intelligence, 1995.

(Kowalski and Sergot, 1986) R. Kowalski and M. Ser-
got. A logic-based calculus of events. New Gen-
eration Computing, 4, 1986.

(Matstoms et al., 1996) P. Matstoms, H. Jonsson, and
A. Carlsson. Berdkning av volume/delay-funktioner
for natverksanalys. VTI Meddelande, 777, 1996.

(McDermott, 1994) D. McDermott. An algorithm
for probabilistic totally-ordered temporal projection.
Technical Report YALEU/CSD/RR 941, Yale Uni-
versity, 1994.

(Mcllraith et al., 2000) S. Mcllraith, G. Biswas,
C. Clancy, and V. Gupta. Hybrid systems diagnosis.
In Proc. International Workshop on Hybrid
Systems: Computation and Control, 2000.

(Mcllraith, 1998) S. Mcllraith. Explanatory diagno-
sis: Conjecturing actions to explain observations.
In Proc. 6th International Conference on Princi-
ples of Knowledge Representation and Reasoning,
1998.

(Mesarovic and Takahara, 1975) M.D. Mesarovic and
Y. Takahara. General Systems Theory: Mathemat-
ical Foundations. Academic Press, 1975.

(Pasula et al., 1999) H. Pasula, S. Russel, M. Ostland,
and Y. Ritov. Tracking many objects with many sen-
sors. In Proc. 16th International Joint Conference
on Artifictal Intelligence, 1999.

(Peot and Smith, 1992) M. Peot and D. Smith. Condi-
tional nonlinear planning. In Artifictal Intelligence
Planning Systems: Proc. International Confrence,
1992.

(Puterman, 1994) M.L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Program-
mang. Wiley, 1994.

(Rosen, 1991) R. Rosen. Life Itself: A Comprehensive
Inquary into the Nature, Origin, and Fabrication
of Life. Columbia University Press, 1991.

(Saffiotti, 1998) A. Saffiotti. Autonomous Robot Nav-
igation:. A Fuzzy Logic Approach. PhD Thesis,
Faculté de Science Appliquées, IRIDIA, Université Li-
bre de Bruxelles, 1998.

(Smith and Weld, 1998) D. Smith and D. Weld. Con-
formant Graphplan. In Proc. 15th National Con-
ference on Artifical Intelligence (AAAI’98), 1998.

(Thiébaux and Lamb, 2000) S. Thiébaux and P. Lamb.
Combining Kalman filtering and Markov localization
in network-like environments. In Proc. 6th Pacific-
Rim International Conference on Artificial Intel-
lzgence, 2000.

(Thrun, 2000) S. Thrun. Probabilistic algorithms in
robotics. AI Magazine, 21, Winter 2000.

(Tijms, 1994) H.C. Tijms. Stochastic Models. Wiley,
1994.

(Tversky and Kahneman, 1974) A. Tversky and
D. Kahneman. Judgement under uncertainty:
Heuristics and biases. Science, 185:1124 — 1131,
1974.

(Weld et al., 1998) D. Weld, C. Anderson, and
D. Smith. Extending Graphplan to handle uncer-
tainty & sensing actions. In Proc. 15th National
Conference on Artifical Intelligence (AAAI’98),
1998.

(Williams and Nayak, 1996) B.C. Williams and P.P.
Nayak. A model-based approach to reactive self-
configuring systems. In Proc. 13th National Con-
ference on Artificial Intelligence, 1996.

