
Hybrid Dynamic Programming for Simultaneous
Coalition Structure Generation and Assignment

Fredrik Präntare[0000−0002−0367−2430] and Fredrik Heintz[0000−0002−9595−2471]

Linköping University
581 83 Linköping, Sweden

{firstname.lastname}@liu.se

Abstract. We present, analyze and benchmark two algorithms for simultaneous
coalition structure generation and assignment: one based entirely on dynamic
programming, and one anytime hybrid approach that uses branch-and-bound to-
gether with dynamic programming. To evaluate the algorithms’ performance, we
benchmark them against both CPLEX (an industry-grade solver) and the state-
of-the-art using difficult randomized data sets of varying distribution and com-
plexity. Our results show that our hybrid algorithm greatly outperforms CPLEX,
pure dynamic programming and the current state-of-the-art in all of our bench-
marks. For example, when solving one of the most difficult problem sets, our
hybrid approach finds optimum in roughly 0.1% of the time that the current best
method needs, and it generates 98% efficient interim solutions in milliseconds in
all of our anytime benchmarks; a considerable improvement over what previous
methods can achieve.

Keywords: Combinatorial assignment · Dynamic programming · Coalition for-
mation · Coalition structure generation · Games with alternatives.

1 Introduction

Forming teams of agents and coordinating them is central to many applications in both
artificial intelligence and operations research. In cooperative game theory, this is known
as coalition formation—the process by which heterogeneous agents group together to
achieve some goal. Central to this endeavor is: i) optimally partitioning the set of agents
into disjoint groups—an optimization problem known as coalition structure generation
(CSG) [13,11]; and ii) deciding on the teams’ individual goals, which can be modelled
as a linear assignment problem [2,4]. Combining these problems, and solving them si-
multaneously, can potentially both reduce a problem’s computational complexity and
increase the agents’ aggregated potential utility and performance [6]. This combined
CSG and linear assignment problem is a general case of utilitarian combinatorial assign-
ment, and it is known as simultaneous coalition structure generation and assignment
(SCSGA) in the multi-agent research community.

Technically, from a game theoretic perspective, SCSGA is a CSG problem for
games with alternatives [1]. In this game type, there is a set of agents A = {a1, ..., an},
and several alternatives t1, ..., tm, of which each agent must choose exactly one, with
Ci ⊆ {a1, ..., an} defined to be the set of agents who choose alternative ti. The vector

2 F. Präntare and F. Heintz

〈C1, ..., Cm〉 thus constitutes an ordered coalition structure overA. In SCSGA, the goal
is to find an ordered coalition structure that maximizes welfare in such contexts.

Moreover, SCSGA algorithms have a range of potential different applications in
many domains. They can for example be used to deploy personnel to different loca-
tions and/or allocate alternatives to agents (examples include utilitarian course alloca-
tion and winner determination in combinatorial auctions). SCSGA is also the only CSG
paradigm in the literature that has been demonstrated for use in a real-world commer-
cial application to improve agents’ coordination capabilities, wherein it has been used to
optimally form and deploy teams of agents to different geospatial regions [5]. However,
the state-of-the-art algorithm can only solve problems with severely limited inputs with
up to roughly 20 agents in reasonable time. Although this algorithm performs fairly well
in practice and greatly outperforms the industry-grade solver CPLEX, it suffers from
there being no proven guarantee that it can find an optimum without first evaluating all
the mn possible feasible solutions. [7]

To address these issues, we develop an algorithm with a proven worst-case time
complexity better (lower) than O(mn), and devise a second algorithm that finds both
optimal and anytime (interim) solutions faster than the state-of-the-art. More specifi-
cally, we focus on the paradigm dynamic programming to accomplish this, and investi-
gate how dynamic programming can be combined with branch-and-bound to obtain the
best features of both. Against this background, our two main contributions that advances
the state-of-the-art are the following:

– We develop, present and benchmark DP—a simple, easy-to-implement dynamic
programming algorithm for SCSGA. We also analyze it, and prove its correctness
and worst-case time/memory complexity, consequently showing that it has the low-
est worst-case time complexity proven in the literature.

– We develop and present HY—a hybrid optimal anytime SCSGA algorithm that uses
dynamic programming together with branch-and-bound. Subsequently, we empiri-
cally show that our hybrid algorithm greatly outperforms both current state-of-the-
art and the industry-grade solver CPLEX in all of our benchmarks. We also provide
empirical data that shows that the hybrid algorithm is more robust to the distribution
of values compared to the state-of-the-art.

The remainder of this paper is structured as follows. We begin by presenting related
work in Section 2. Then, in Section 3, we define the basic concepts that we use through-
out this report. In Section 4, we describe our pure dynamic programming algorithm, and
in Section 5 we show how we combine dynamic programming techniques with branch-
and-bound. In Section 6, we present our experiments. Finally, in Section 7, we conclude
with a summary.

2 Related Work

The only optimal algorithm in the literature that has been developed for the SCSGA
problem is the aforementioned branch-and-bound algorithm. (We improve on this work
by combining it with dynamic programming to construct a stronger hybrid algorithm.)
Apart from this, a plethora of different optimal algorithms have been developed for

Hybrid Simultaneous Coalition Structure Generation and Assignment 3

the closely related characteristic function game CSG problem. The first algorithm pre-
sented for it used dynamic programming [14], which [8] then improved upon by finding
ways to guarantee optimality while making fewer evaluations. These algorithms both
run in O(3n) for n agents, and have the disadvantage that they produce no interim
solutions—i.e., they generate no solution at all if they are terminated before comple-
tion. Subsequently, [12] presented an anytime tree search algorithm based on branch-
and-bound that circumvented this issue, but at the cost of a much worse worst-case time
complexity of O(nn). In addition to these algorithms, several hybrid algorithms have
been proposed. They fuse earlier methods in an attempt to obtain the best features of
their constituent parts [9,3,10].

However, all of these CSG algorithms were specifically designed for problems with-
out alternatives. Consequently, they: a) only consider unordered coalition structures,
while we need to consider all permutations of them; b) do not allow empty coalitions in
solutions—in SCSGA, an empty coalition corresponds to no agents choosing an alter-
native, while in CSG, empty coalitions have no clear purpose or practical interpretation;
and c) evaluate coalition structures of any size (we are only interested in size-m ordered
coalition structures, where m is the number of alternatives). These properties arguably
renders it difficult (or impossible) to use them for SCSGA in a straightforward fashion
without greatly sacrificing computational performance.

3 Basic Concepts and Notation

The SCSGA problem is defined as follows:

Input: a set of agents A = {a1, ..., an}, a vector of alternatives T = 〈t1, ..., tm〉, and
a function v : 2A × T 7→ R that maps a value to every possible pairing of a coalition
C ⊆ A to an alternative t ∈ T .

Output: an ordered coalition structure (Definition 1) 〈C1, ..., Cm〉 over A that maxi-
mizes

∑m
i=1 v(Ci, ti).

Definition 1. 〈C1, ..., Cm〉 is an ordered coalition structure over A if Ci ∩ Cj = ∅ for
all i 6= j, and

⋃m
i=1 Ci = A. We omit the notion “over A” for brevity.

As is common practice, we use:

V (S) =

m∑
i=1

v(Ci, ti)

to denote the value of an ordered coalition structure S = 〈C1, ..., Cm〉; the conventions
n = |A| and m = |T | when it improves readability; and the terms solution and or-
dered coalition structure interchangeably. For a multiset X , we use P(X) to denote its
powerset. We use ΠA for the set of all ordered coalition structures over A, and define:

Πm
A = {S ∈ ΠA : |S| = m}.

4 F. Präntare and F. Heintz

Finally, we say that a solution S∗ is optimal if and only if:

V (S∗) = max
S∈Πm

A

V (S).

4 The Dynamic Programming Algorithm

The DP algorithm is straightforwardly based on computing the following recurrence:

w(U, k) =

{
v(U, tk) if k = 1

maxC∈P(U) v(C, tk) +w(U \ C, k − 1) if k = 2, ...,m
(1)

where U ⊆ A. As shown in Theorem 1, this recurrence’s value is equal to the value of
the highest-valued k-sized ordered coalition structure over U ⊆ A.

Theorem 1. If U ⊆ A and k ∈ {1, ...,m}, then:

w(U, k) = max
S∈Πk

U

V (S).

Proof. By straightforward induction. This holds for k = 1, since 〈U〉 is the only 1-sized
ordered coalition structure over U that exists, and consequently:

max
S∈Π1

U

V (S) = V (〈U〉) = v(U, t1) = w(U, 1). (2)

We now show for j = 2, ...,m, that if our theorem holds for k = j − 1, then it also
holds for k = j. First, note that:

max
S∈Πk

U

V (S) = max
C∈P(U)

{
v(C, tk) + max

S∈Πk−1
U\C

V (S)

}
(3)

holds for k = 2, ...,m and U ⊆ A. Now, for some j ∈ {2, ...,m}, let our inductive
hypothesis be:

w(U, j − 1) = max
S∈Πj−1

U

V (S)

for all U ⊆ A. This in conjunction with (1) gives:

w(U, j) = max
C∈P(U)

{
v(C, tj) + max

S∈Πj−1
U\C

V (S)

}
.

Consequently, together with (3), we have: w(U, j) = maxS∈Πj
U
V (S), which together

with (2) proves the theorem. ut

Hybrid Simultaneous Coalition Structure Generation and Assignment 5

Value Prerequisite values
w({a1, a2}, 3) w(∅, 2), w({a1}, 2), w({a2}, 2), w({a1, a2}, 2)
w(∅, 2) w(∅, 1)
w({a1}, 2) w(∅, 1), w({a1}, 1)
w({a2}, 2) w(∅, 1), w({a2}, 1)
w({a1, a2}, 2) w(∅, 1), w({a1}, 1), w({a2}, 1), w({a1, a2}, 1)
w(∅, 1) -
w({a1}, 1) -
w({a2}, 1) -
w({a1, a2}, 1) -

Fig. 1: The prerequisite values needed to compute w(A,m) for A = {a1, a2} and m = 3. The
symbol “-” represents that no prerequisite values have to be computed.

Importantly for DP, the equality w(A,m) = maxS∈Πm
A
V (S) follows as a spe-

cial case of Theorem 1. Consequently, a solution S∗ ∈ Πm
A is optimal if and only if

V (S∗) = w(A,m). The DP algorithm works by computing w(A,m), while simul-
taneously constructing two tables that are subsequently used to generate an optimal
solution that corresponds to the process by which this value is computed. However,
computing w(A,m) recursively in a naı̈ve fashion has the consequence that identical
function calls have to be computed multiple times, as illustrated in Figure 1.

In light of this, we introduce two different approaches for computing w(A,m) that
do not introduce such redundancy: Algorithm 1, which uses memoization to store in-
termediary results, so that a function call never has to be computed more than once;
and Algorithm 2, which uses tabulation so that a value is only evaluated once all its
prerequisite values have been computed.

Algorithm 1 : DPMemoization(U = A, k = m)
Based on Theorem 1, this algorithm recursively computes w(A,m), while simultane-
ously generating the two tables Γw and Γc.

1: if Γw[U, k] 6= null then
2: return Γw[U, k]

3: if k = 1 then
4: Γw[U, k]← v(U, tk); Γc[U, k]← U //Base case.
5: return v(U, tk)

6: for all C ∈ P(U) do
7: w ← v(C, tk) + DPMemoization(U \ C, k − 1)
8: if Γw[U, k] = null, or w > Γw[U, k] then
9: Γw[U, k]← w; Γc[U, k]← C

10: return Γw[U, k]

6 F. Präntare and F. Heintz

Algorithm 2 : DPTabulation()
Based on Theorem 1, this algorithm iteratively computes w(A,m), while simultane-
ously generating the two tables Γw and Γc.

1: for all C ∈ P(A) do
2: Γw[C, 1]← v(C, t1); Γc[C, 1]← C //Base case.
3: for k = 2, ...,m do
4: for all U ∈ P(A) do
5: for all C ∈ P(U) do
6: w ← v(C, tk) + Γw[U \ C, k − 1]
7: if Γw[U, k] = null, or w > Γw[U, k] then
8: Γw[U, k]← w; Γc[U, k]← C

9: return Γw[A,m]

For both approaches, the tables Γc and Γw are used to store the following coalitions
and values:

– Γc[U, k]← U,
– Γw[U, k]← v(U, tk)

for every U ⊆ A and k = 1; and

– Γc[U, k]← argmaxC∈P(U) v(C, tk) + Γw[U \ C, k − 1],
– Γw[U, k]← maxC∈P(U) v(C, tk) + Γw[U \ C, k − 1]

for every U ⊆ A and k = 2, ...,m. If each coalition is represented in constant size using
e.g., a fixed-size binary string defined by its binary-coalition encoding (Definition 2),
these tables require O(m|P(A)|) = O(m2n) space.

Definition 2. The binary coalition-encoding of C ⊆ A over A = 〈a1, ..., a|A|〉 is the
binary string j = b|A|...b1 with:

bi =

{
1 if ai ∈ C
0 otherwise

For example, the binary coalition-encoding of {a1, a3} over 〈a1, a2, a3〉 is equal to 101.

To construct an optimal solution, DP uses Algorithm 3 together with the table Γc
(that has been generated using either Algorithm 1 or Algorithm 2), with which DP’s
worst-case time complexity is O(m3n), as shown in Theorem 2.

Algorithm 3 : DPConstruct()
Uses the table Γc (generated by e.g., Algorithm 1 or Algorithm 2) to construct an opti-
mal ordered coalition structure.
1: U ← A; S∗ ← ∅m
2: for i = m, ..., 1 do
3: S∗[i]← Γc[U, i]; U ← U \ Γc[U, i]

4: return S∗

Hybrid Simultaneous Coalition Structure Generation and Assignment 7

Theorem 2. DP’s worst-case time complexity is O(m3n).

Proof. DPTabulation (Algorithm 2) makes O(2n) elementary operations on lines
1-2, and then proceeds to perform a total of O(mQn) operations on lines 3-8 for some
Qn ∈ N+. DPConstruct runs inO(m). Therefore, DP’s worst-case time complexity
is equal to:

O(2n) +O(mQn) +O(m) = O(2n +mQn). (4)

Now recall that, for a set with n elements, there exists exactly
(
n
k

)
possible k-sized

subsets. Consequently, we have:

Qn =

n∑
i=0

(
n

i

)
2i, (5)

since we iterate over (m − 1)2i i-sized subsets for i = 0, ..., n on lines 4-5. Also, as a
consequence of the binomial theorem, the following holds:

(1 + 2)n =

n∑
i=0

(
n

i

)
1n−i2i =

n∑
i=0

(
n

i

)
2i.

From this and (5), it follows that Qn = (1 + 2)n = 3n. This together with (4) proves
the theorem. ut

5 The Hybrid Algorithm

Our hybrid algorithm (HY) is designed to combine the redundancy-eliminating capa-
bilities of dynamic programming with the pruning abilities and anytime characteristics
of branch-and-bound. In more detail, it incorporates these techniques with the search
space presentation based on multiset permutations of integer partitions proposed by [6].
In their search space representation, each multiset permutation (ordered arrangement)
of a size-m zero-inclusive integer partition of n (see Definition 3) corresponds to a set
of solutions. More formally, if P = 〈p1, ..., pm〉 is such an ordered arrangement, it
represents all solutions 〈C1, ..., Cm〉 with |Ci| = pi for i = 1, ...,m.

Definition 3. The multiset of non-negative integers {x1, ..., xk} is a zero-inclusive in-
teger partition of y ∈ N if:

k∑
i=1

xi = y.

For example, the multiset {0, 1, 1, 2, 3} is a zero-inclusive integer partition of 7, since
0 + 1 + 1 + 2 + 3 = 7.

For brevity and convenience, we define the subspace SP represented by P as the
following set of solutions:

SP = {〈C1, ..., Cm〉 ∈ Πm
A : |Ci| = pi for i = 1, ...,m}.

8 F. Präntare and F. Heintz

For example, for a SCSGA problem instance with the set of agents {a1, a2, a3} and
vector of alternatives 〈t1, t2〉 as input, 〈1, 2〉 represents the following three solutions
(and the subspace that constitutes them):

〈{a1}, {a2, a3}〉, 〈{a2}, {a1, a3}〉, 〈{a3}, {a1, a2}〉.

As shown by [6], it is possible to compute a lower and an upper bound for the value of
the best solution in such a subspace without having to evaluate any ordered coalition
structures. To accomplish this, first define:

Kp = {C ⊆ A : |C| = p}.

Then, with the purpose to compute a lower bound, let:

A(p, t) =
1

|Kp|
∑
C∈Kp

v(C, t);

and to compute an upper bound, define:

M(p, t) = max
C∈Kp

v(C, t).

A lower bound and an upper bound for all solutions represented by P = 〈p1, ..., pm〉
(if SP 6= ∅) can now be computed as lP =

∑m
i=1 A(pi, ti) and uP =

∑m
i=1 M(pi, ti),

respectively. See [6] for proofs.
In light of these observations, we now propose a new algorithm (Algorithm 4) for

searching such subspaces: ADP (for anytime DP). Technically, ADP uses depth-first
branch-and-bound combined with an alteration of the dynamic programming techniques
used in Algorithm 1. By using branch-and-bound, ADP only generates solutions that are
better than the best solution that has already been found, and discards (prunes) branches
of the recursion tree when they are deemed sufficiently bad. To accomplish this, ADP
introduces the following variables:

– υ∗ : denotes the value of the best solution found so far; this is a globally kept
variable initialized to −∞, and it is not reinitialized when a subspace search is
initiated.

– α : equals the sum of the values of all antecedent “fixed” coalition-to-alternative
assignments (at shallower recursion depths).

– β : equals the most α can possibly increase at subsequent recursion steps deeper
down in the recursion tree; it is initialized to uP through a straightforward evalua-
tion of the value function.

Consequently, since the sum α+β constitutes an upper bound on the recursion branch,
the recursion can be discarded if α+β ≤ v∗ (see line 3 in Algorithm 4) without forfeit-
ing optimality. Furthermore, ADP uses the tables Γc and Γw in the same fashion as DP
uses them (i.e., to prevent evaluating the same function call again), with the difference
that ADP only stores the values that are needed for generating the best solution for the
subspace that is being investigated. The specific entries that are computed thus depends

Hybrid Simultaneous Coalition Structure Generation and Assignment 9

Algorithm 4 : ADP(P = 〈p1, ..., pm〉, U = A, k = m, α = 0, β = uP)
Computes maxS∈SP V (S) using dynamic programming together with depth-first
branch-and-bound, while simultaneously generating entries for the tables Γc and Γw.
1: if k = 1 then //Base case.
2: return v(U, tk)

3: if α+ β ≤ υ∗ then
4: return −∞ //Cannot yield a better solution.
5: if Γw[U, k] exists then //Has this call been evaluated?
6: return Γw[U, k]

7: υ ← −∞; C ← ∅
8: for all C′ ∈ P(U) ∩ Kpk do
9: if computation budget is exhausted then

10: break
11: α′ ← α+ v(C′, tk); β′ ← β −M(pk, tk)
12: υ′ ← v(C′, tk) + ADP(P,U \ C′, k − 1, α′, β′)
13: if υ′ > υ then
14: υ ← υ′; C ← C′ //Found a better choice.
15: if v 6= −∞ then
16: Γw[U, k]← υ; Γc[U, k]← C //Cache best choice.
17: if α+ υ > υ∗ then
18: υ∗ ← α+ υ //We found a better solution.
19: return υ

both on the subspace’s representation, and the distribution of values—therefore, it is
not clear beforehand how many entries that need to be computed (we investigate this
further in Section 6.1). Finally, if Algorithm 4 returns a value larger than −∞, then Γc
can be used to construct a solution argmaxS∈SP V (S) in a similar fashion as DP does.
If −∞ is returned, then maxS∈SP V (S) ≤ v∗.

To summarize, the complete hybrid algorithm (HY) works by continuously generat-
ing integer partitions, evaluating them, and then computing the aforementioned bounds
of their multiset permutations with the aim to prune large portions of the search space. It
thus generates the search space representation in a similar fashion as the state-of-the-art
does. Then, when a subspace is to be searched, HY uses ADP to search it.

6 Benchmarks and Experiments

In accordance with the state-of-the-art for benchmarking SCSGA algorithms [6], we
use UPD, NPD and NDCS for generating difficult problem instances:

– UPD: v(C, t) ∼ U(0, 1);
– NPD: v(C, t) ∼N (1, 0.01); and
– NDCS: v(C, t) ∼N (|C|,max(|C|, 10−9));

for all C ⊆ A and t ∈ T , where U(a, b) and N (µ, σ2) are the uniform and normal
distributions, respectively. In our benchmarks, we store these values in an array, and we
treat v as a black-box function that can be queried in O(1).

10 F. Präntare and F. Heintz

The result of each experiment was produced by calculating the average of the re-
sulting values from 20 generated problem sets per experiment. Following best practice,
we plot the 95% confidence interval in all graphs. All code was written in C++11,
and all random numbers were generated with uniform real distribution and
normal distribution from the C++ Standard Library. All tests were conducted
with an Intel 7700K CPU and 16GB memory.

6.1 Optimality Benchmarks

We plot the execution time to find optimum when solving problems with 8 alternatives
and different numbers of agents in Figure 2. The results show that HY is not as affected
by the value distribution as the state-of-the-art algorithm (abbreviated MP) is, and that
HY is considerably faster (by many orders of magnitude) compared to all other algo-
rithms in these benchmarks. For example, for 18 agents and NPD, our algorithm finds
optima in ≈ 1% of the time that CPLEX (abbreviated CP) and MP needs.

14 15 16 17 18 19 20 21 22 23 24

10−1

101

103 3 minutes 2 minutes8 minutes4 minutes

CP
DP
MP
HY

14 15 16 17 18 19 20 21 22 23 24

10−1

101

103 3 minutes
18 minutes

4 minutes
4 minutes

C
om

pl
et

io
n

tim
e

(s
)

CP
DP
MP
HY

14 15 16 17 18 19 20 21 22 23 24

10−1

101

103 4 minutes 7 minutes
4 minutes

4 minutes

No of agents

CP
DP
MP
HY

Fig. 2: The completion time (log-scale) for optimally solving problems with 8 alternatives and
values generated with UPD (top), NPD (middle) and NDCS (bottom).

Hybrid Simultaneous Coalition Structure Generation and Assignment 11

Algorithm tmin(s) tmax(s) tmean(s) tvar(s
2)

MP (UPD) 0.02976 0.54829 0.10479 0.00572

HY (UPD) 0.02977 0.05833 0.03606 0.00003

DP (UPD) 0.85720 1.01132 0.86806 0.00017

MP (NPD) 0.04638 3.26065 0.77145 0.49433

HY (NPD) 0.03156 0.22626 0.06060 0.00092

DP (NPD) 0.85622 0.93133 0.86586 0.00013

MP (NDCS) 0.23562 2.11546 0.89745 0.00075

HY (NDCS) 0.04602 0.11447 0.06813 0.00009

DP (NDCS) 0.85946 0.89658 0.86906 0.00007

Fig. 3: Data from optimally solving problem sets with 14 agents and 8 alternatives.

When we ran our optimality benchmarks, we noticed that MP sometimes spent a
considerable amount of time searching. To investigate this further, we ran 100 experi-
ments per problem instance and algorithm with n = 14 and m = 8. We then computed
the minimum tmin, maximum tmax, mean tmean and variance tvar for the algorithms’
different completion times. The results of these experiments are shown in Figure 3. As
expected, they show that HY’s execution time varies very little compared to MP’s, and
that MP’s worst-case execution time is much worse than HY’s.

Since HY requires additional memory due to using memoization, we investigate
how its memoization table grows in the number of agents, and how it is affected by
different value distributions. We tested this by keeping track of the aggregated number
of entries (= |Γw| = |Γc|) in the algorithms’ memoization tables during runtime. Our
results from these experiments are plotted in Figure 4, and show: i) that, at worst-case,
HY approximately requires ≈ 10% of the number of entries that DP needs; and ii) that
this number indeed depends on the distribution of values and not only on the problem
instance’s input size—for example, for UPD, HY typically only requires storing 5% of
the number of entries that DP needs. These numbers are indicative to HY’s ability to
discard recursion branches.

12 F. Präntare and F. Heintz

12 14 16 18
211

217

223
4 194 304 entries

127 828 entries

N
o

of
en

tr
ie

s

DP
HY

12 14 16 18

4 194 304 entries

251 420 entries

No of agents

DP
HY

12 14 16 18

4 194 304 entries

211 270 entries

DP
HY

Fig. 4: The total number of entries (log-scale) stored in the memoization tables for problems with
8 alternatives and values generated with UPD (left), NPD (middle) and NDCS (right).

6.2 Anytime Benchmarks

In our next benchmarks, we investigate the quality of the anytime solutions generated
by HY (DP is not included, since it is not anytime). To this end, we also benchmark
against two simple and easy-to-implement non-optimal algorithms, which results’ we
use as a worst-case baseline:

– A random sampling (RS) algorithm. RS works by randomly (uniformly) assigning
every agent to an alternative. Then, when all agents have been assigned, it evaluates
the resulting solution’s value. It continuously runs this procedure until the time limit
has been exceeded, at which point RS returns the best result it has found so far.

– A simple greedy (AG) algorithm. AG generates a solution by sequentially assigning
agents to alternatives in a greedy fashion.

Moreover, we used 13 agents and 14 tasks for these benchmarks, resulting in a total
number of 1413 ≈ 8× 1014 possible solutions per problem instance. Our results from
these experiments are presented in Figure 5, with the execution time shown on the x-
axis, and the normalized ratio to optimal on the y-axis. This ratio, for a feasible solution
S′, is defined as the following value:

V (S′)− V (S∗)

V (S∗)− V (S∗)

where S∗ is an optimal solution, and S∗ is a “worst” solution—in other words, V (S∗) =
maxS∈Πm

A
V (S) and V (S∗) = minS∈Πm

A
V (S). Also, note that in these tests, RS gen-

erated and evaluated approximately 4.4 million solutions per second; and that for the
execution time in these graphs, CPLEX fails to find any feasible (interim) solutions.

As shown by the graphs in Figure 5, HY generates at least 95%-efficient solutions
in less than 10 milliseconds for all problem sets with 13 agents and 14 tasks. Moreover,
HY found near-optimal 99%-efficient solutions very rapidly for all distributions and
benchmarks (e.g., at worst case for NPD, this takes roughly 900 milliseconds). More-
over, compared to MP, it always finds better solutions for the same execution time. Our

Hybrid Simultaneous Coalition Structure Generation and Assignment 13

anytime benchmarks thus clearly show that HY is extremely fast at finding near-optimal
solutions, and that it greatly outperforms the state-of-the-art in generating high-quality
interim solutions.

200 400 600 800

0.8

0.85

0.9

0.95

1

HY MP AG RS

200 400 600 800

0.8

0.85

0.9

0.95

1

R
at

io
to

op
tim

al

HY MP AG RS

200 400 600 800

0.8

0.85

0.9

0.95

1

Execution time (ms)

HY MP GA RS

Fig. 5: The normalized ratio to optimal obtained by the different algorithms for problem sets
generated using UPD (top), NPD (middle) and NDCS (bottom) with 13 agents and 14 tasks.

14 F. Präntare and F. Heintz

7 Conclusions

We presented two different algorithms that use dynamic programming to optimally
solve the simultaneous coalition structure generation and assignment problem: one
based purely on dynamic programming, and a second hybrid approach that uses dy-
namic programming together with branch-and-bound. We benchmarked them against
the state-of-the-art, and our results show that our hybrid approach greatly outperforms
all other methods in all of our experiments (often by many orders of magnitude). For
example, for 18 agents, 8 alternatives, and normally distributed values, our algorithm
finds an optimum in roughly 3 seconds, while this takes both the industry-grade solver
CPLEX and previous state-of-the-art approximately 3 minutes. For future work, we
hope to investigate if metaheuristic algorithms, probabilistic search and/or machine
learning can be applied to solve large-scale problems with many agents.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

1. Bolger, E.M.: A value for games with n players and r alternatives. International Journal of
Game Theory 22(4), 319–334 (1993)

2. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics
(NRL) 2(1-2), 83–97 (1955)

3. Michalak, T.P., Dowell, A.J., McBurney, P., Wooldridge, M.J.: Optimal coalition structure
generation in partition function games. In: European Conference on Artificial Intelligence.
pp. 388–392 (2008)

4. Pentico, D.W.: Assignment problems: A golden anniversary survey. European Journal of
Operational Research 176(2), 774–793 (2007)

5. Präntare, F.: Simultaneous coalition formation and task assignment in a real-time strategy
game. In: Master thesis (2017)

6. Präntare, F., Heintz, F.: An anytime algorithm for simultaneous coalition structure genera-
tion and assignment. In: International Conference on Principles and Practice of Multi-Agent
Systems. pp. 158–174 (2018)

7. Präntare, F., Heintz, F.: An anytime algorithm for optimal simultaneous coalition struc-
ture generation and assignment. Autonomous Agents and Multi-Agent Systems 34(1), 1–31
(2020)

8. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition
structure generation. In: Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems. pp. 1417–1420 (2008)

9. Rahwan, T., Jennings, N.: Coalition structure generation: Dynamic programming meets any-
time optimisation. In: Proceedings of the Twenty-Third AAAI Conference on Artificial In-
telligence (2008)

10. Rahwan, T., Michalak, T.P., Jennings, N.R.: A hybrid algorithm for coalition structure gener-
ation. In: Twenty-Sixth AAAI Conference on Artificial Intelligence. pp. 1443–1449 (2012)

Hybrid Simultaneous Coalition Structure Generation and Assignment 15

11. Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation:
A survey. Artificial Intelligence 229, 139–174 (2015)

12. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for
optimal coalition structure generation. Journal of Artificial Intelligence Research 34, 521–
567 (2009)

13. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure gen-
eration with worst case guarantees. Artificial Intelligence 111(1-2), 209–238 (1999)

14. Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem. BIT
Numerical Mathematics 26(4), 467–474 (1986)

	Hybrid Dynamic Programming for Simultaneous Coalition Structure Generation and Assignment

