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581 83 Linköping, Sweden
{firstname.lastname}@liu.se

Abstract. A fundamental problem in artificial intelligence is how to organize
and coordinate agents to improve their performance and skills. In this paper, we
consider simultaneously generating coalitions of agents and assigning the coali-
tions to independent tasks, and present an anytime algorithm for the simultaneous
coalition structure generation and assignment problem. This optimization prob-
lem has many real-world applications, including forming goal-oriented teams of
agents. To evaluate the algorithm’s performance, we extend established meth-
ods for synthetic problem set generation, and benchmark the algorithm against
CPLEX using randomized data sets of varying distribution and complexity.
We also apply the algorithm to solve the problem of assigning agents to regions
in a major commercial strategy game, and show that the algorithm can be utilized
in game-playing to coordinate smaller sets of agents in real-time.

Keywords: coalition structure generation · assignment problem.

1 Introduction

An important research challenge in the domain of artificial intelligence is to solve the
problem of how to organize and coordinate multiple artificial entities (e.g. agents) to
improve their performance, behaviour, and/or capabilities. There are many approaches
to this, including task allocation [7], assignment algorithms [4, 12, 15, 16, 29], multi-
agent reinforcement learning [14], and organizational paradigms [10].

Coalition formation [11, 24] is a major coordination-paradigm and study of coali-
tions (flat goal-oriented organizations of agents) that has received extensive coverage
in the literature over the past two decades [22]. This paradigm typically involves form-
ing coalitions and allocating tasks, with applications in economics [30], planning [6],
sensor fusion [5], wireless networks [9], and cell networks [32]. In cooperative games
with transferable utility, coalition formation generally involves identifying coalition
structures (sets of disjoint and exhaustive coalitions) that maximizes social welfare
(utility) through coalition structure generation [20]. Coalition structure generation is
NP-complete [23], and many algorithms have been presented that solves this problem,
including algorithms based on dynamic programming [18, 31], tree-search [21], con-
straint optimization [27], and hybrid techniques [19]—each with their own strengths
and weaknesses, making them suitable for solving different types of problems. Vari-
ations on the coalition structure generation problem also exist, e.g. with overlapping
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coalitions—where agents have limited resources that they can use to partake in multi-
ple coalitions at the same time [3, 8].

Coalition structure generation and assignment (of coalitional goals) are two pro-
cesses for coordination that are often treated separately—including the majority of the
previous examples. This is because traditional algorithms for coalition structure gener-
ation have no notion of independent coalitional goals, even though coalitions are often
described as goal-oriented organizational structures. In instances for which coordination
of multiple coalitions is important, this may generate suboptimal teams for achieving
and accomplishing the tasks and goals at hand, and would typically require two differ-
ent utility functions: one for deciding on which coalitions to form, and one for assigning
them to tasks/goals. This is potentially disadvantageous, since it is often complicated
to create good utility functions (or to generate realistic performance measures), and it
is not necessarily a simple task to predict how the two utility functions influence the
quality of generated solutions. Also, there are many settings and scenarios in which the
utility of a team not only depends on its members and the environment, but also on the
task/goal it is assigned to. It would therefore be beneficial if algorithms for coalition
structure generation could take advantage of goal-orientation.

To make this possible, and to address the aforementioned issues, we present an any-
time algorithm that solves the simultaneous coalition structure generation and assign-
ment problem by integrating coalition-to-task assignment into the formation of coali-
tions. We accomplish this by extending the coalition structure generation problem, and
generating coalition structures for which each coalition is assigned to exactly one goal.
Our algorithm can thus be used to create structured collaboration through explicit goal-
orientation. Furthermore, our algorithm only requires one utility function, has the ability
to prune large parts of the search space, can give worst-case guarantees on solutions,
and always generates an optimal solution when run to completion.

To evaluate the algorithm’s performance, we extend established methods for gener-
ating synthetic problem sets, and benchmark our algorithm against CPLEX—a commer-
cial state-of-the-art optimization software. Our experiments are conducted to deduce
whether the presented algorithm can handle difficult data sets efficiently. We also apply
our algorithm to solve the problem of simultaneously forming and assigning groups of
armies to regions in the commercial strategy game Europa Universalis 4, and empiri-
cally show that our algorithm can be used to optimally solve a difficult game-playing
problem in real-time. Apart from being applied to strategy games, our algorithm can
potentially be used to solve many important real-world problems. It could, for example,
be used to form optimal cross-functional teams aimed at solving a set of problems, to
assist in the organization and coordination of subsystems in an artificial entity (e.g. a
robot), or to allocate tasks in multi-agent systems (e.g. multi-robot facilities). Since the
algorithm is anytime and can return a valid solution even if it is interrupted prior to fin-
ishing a search, it can potentially be used in many real-world scenarios with real-time
constraints as well, including time-critical systems for managing tactical decisions.

Note that this paper is the full-paper version of a previous extended abstract [17].
This version has been thoroughly revised and extended. The presented algorithm, its
presentation, and the benchmarks herein, have all been significantly improved.
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We begin by formalizing the problem that we solve in Section 2. Then, in Section 3,
we describe our algorithm. In Section 4, we present the results from our experiments.
Finally, in Section 5, we conclude with a summary.

2 Problem Formalization

The simultaneous coalition structure generation and assignment problem formalizes as:

Input: A set of agents A = {a1, ..., an}, a list of tasks T = 〈t1, ..., tm〉, and the value
v(C, t) 7→ R for assigning any coalition C ⊆ A to any task t ∈ T .

Output: A list of coalitions 〈C1, ..., Cm〉 that maximizes
∑m

i=1 v(Ci, ti), whereCi ⊆ A
for i = 1, ...,m, Ci ∩ Cj = ∅ for all i 6= j, and

⋃m
i=1 Ci = A.

Note that we use the sum V (S) =
∑m

i=1 v(Ci, ti) to denote the value of a solution
S = 〈C1, ..., Cm〉 throughout this report. We also use the terms agent and task as ab-
stractions (they can be substituted for any type of entities, e.g. resources, regions), and
we use the conventions n = |A| and m = |T |.

Now, with this in mind, and given the aforementioned input, we can also formalize
this problem using a binary integer programming model:

Maximize
2n−1∑
j=0

m∑
k=1

xjk · v(Cj , tk)

subject to
2n−1∑
j=0

m∑
k=1

xjk · yij = 1 i = 1, ..., n

m∑
k=1

xjk ≤ 1 j = 1, ..., 2n − 1

2n−1∑
j=0

xjk = 1 k = 1, ...,m

xjk ∈ {0, 1}

where yij = 1 if agent ai ∈ Cj , yij = 0 if not, and Cj is a coalition defined through
its binary coalition-encoding given by j over A (see Definition 1). Note that xjk = 1
if and only if coalition Cj is to be assigned to task tk, and that C0 = ∅ is the only
coalition that can be assigned to multiple tasks. The first constraint ensures disjoint and
exhaustive coalitions, while the second and third constraints ensures coalition-to-task
bijections.

Definition 1. Binary coalition-encoding. Given a set of agents A = {a1, ..., an}, and
the non-negative integer j < 2n on binary form j = b12

0 + b22
1 + ...+ bn2

(n−1) with
bi ∈ {0, 1} for all i ∈ N, we say that the coalition Cj ⊆ A has a binary coalition-
encoding given by j overA if and only if bk = 1 ⇐⇒ ak ∈ Cj for k = 1, ..., n. For ex-
ample, if the coalition Cj has a binary coalition-encoding given by j over {a1, ..., an},
we have C0 = ∅ for j = 0, C3 = {a1, a2} for j = 3 = 112, and C8 = {a4} for
j = 8 = 10002.
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3 Algorithm Description

To solve this optimization problem, we propose an anytime search algorithm that uti-
lizes branch-and-bound and a search space representation based on multiset permuta-
tions of integer partitions. By doing so, our algorithm always generates optimal so-
lutions when run to exhaustion, and solutions with worst-case guarantees when inter-
rupted prior to finishing a search. The algorithm consists of the following major steps:

I. Partitioning of the search space.
II. Calculation of the bounds for partitions.

III. Searching for solutions using branch-and-bound.

These steps are described in the following subsections.

3.1 Partitioning of the Search Space

To partition the search space, we use a search space representation that is based on
multiset permutations (ordered arrangements) of integer partitions (see Definition 2). In
this representation, a list of non-negative integers 〈p1, ..., pm〉 represents all solutions
〈C1, ..., Cm〉 with |Ci| = pi for i = 1, ...,m. Note that this is, technically speaking, a
refinement (or an extension) of Rahwan, Ramchurn, Jennings and Giovannucci’s search
space representation for conventional coalition structure generation [21].

Definition 2. Integer partition. An integer partition of y ∈ N is a multiset of positive
integers {x1, ..., xk} such that:

k∑
i=1

xi = y

For example, the multiset {1, 1, 2} is an integer partition of 4 since 1 + 1 + 2 = 4, and
{1, 2, 12, 15} is an integer partition of 30 since 1 + 2 + 12 + 15 = 30.

In more detail, we generate all multiset permutations of m-sized non-negative inte-
ger partitions of n. We use the following three steps to do so:

1. First, generate the setM1 of all integer partitions of n that hasm or fewer elements.
For example, if n = 4 and m = 3, then M1 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}}. Al-
gorithms that can be used to generate these integer partitions already exist, e.g.
[1, 25]. In our case, order is of no concern, and it is trivial to exclude integer parti-
tions that have more than m elements, so any algorithm can potentially be used.

2. Generate M2 by appending zeros to the integer partitions in M1 (that we generated
during step 1) until all of them havem elements. For example, if n = 4 andm = 3,
then M2 = {{4, 0, 0}, {3, 1, 0}, {2, 2, 0}, {2, 1, 1}}.

3. Now, let M3 be the set of all multiset permutations of the multisets in M2. For ex-
ample, if n = 4 and m = 3, then M3 =
{ 〈4, 0, 0〉, 〈0, 4, 0〉, 〈0, 0, 4〉, 〈0, 2, 2〉, 〈2, 0, 2〉, 〈2, 2, 0〉,
〈3, 1, 0〉, 〈3, 0, 1〉, 〈0, 3, 1〉, 〈1, 3, 0〉, 〈1, 0, 3〉, 〈0, 1, 3〉,
〈2, 1, 1〉, 〈1, 2, 1〉, 〈1, 1, 2〉 }
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Each multiset permutation 〈p1, ..., pm〉 ∈M3 represents the partition (subspace)
that contains all solutions 〈C1, ..., Cm〉with |Ci| = pi andCi ⊆ A for i = 1, ...,m.
For instance, if n = 4 and m = 3, the multiset permutation 〈3, 1, 0〉 then repre-
sents 〈{a1, a2, a3}, {a4}, ∅〉, 〈{a1, a2, a4}, {a3}, ∅〉, 〈{a1, a3, a4}, {a2}, ∅〉, and
〈{a2, a3, a4}, {a1}, ∅〉. Note that there exists several known algorithms that can
generate these multiset permutations in O(1) per permutation, e.g. [26, 28].

The reason that partitions represented by the multiset permutations in M3 cover the
whole search space, is the fact that every coalition structure that consists of k agents can
be mapped to exactly one of the integer partitions of k (see [21] for proof). For example,
the coalition structure {{a1, a2}, {a3}} can be mapped to {2, 1}, and {{a1, a2, a3}} to
{3}. In step 1, we generate the partitions that correspond to these mappings. We then
remove unnecessary coalition structures in step 2, so that we only look at coalition
structures that can represent valid solutions (i.e. m-sized coalition structures). Finally,
in step 3, we refine the representation of the search space that was generated in step 2,
by taking advantage of the fact that we are only interested in coalition-to-task bijections.

Now, given any multiset permutation P = 〈p1, ..., pm〉 generated through this pro-
cess, let SP denote the set of all possible solutions 〈C1, ..., Cm〉 with |Ci| = pi and
Ci ⊆ A for i = 1, ...,m. In other words, let SP be the subspace of the search space that
contains all solutions represented by the multiset permutation P ∈M3.

3.2 Calculation of the Bounds for Partitions

To establish bounds for partitions (subspaces), so that the algorithm can make more in-
formed decisions during search, let Cp := {X ⊆ A : |X| = p}, i.e. the set of all p-sized
coalitions, and define:

• M(p, t) := max {v(C, t) : C ∈ Cp}
• Avg(p, t):= 1

|Cp|
∑
{v(C, t) : C ∈ Cp}

We can now establish an upper and a lower bound for the value of the best possible
solution in SP as the sums

∑m
i=1 M(pi, ti) and

∑m
i=1 Avg(pi, ti), respectively. For

proofs, see Theorem 1 and Theorem 2. Note that this lower bound, that we base on the
average values of coalitional values, is better than the one you would achieve by using
the more straight-forward min {v(C, t) : C ∈ Cp}. A proof for this follows directly
from the definition of Avg(p, t).

Theorem 1. uP =
∑m

i=1 M(pi, ti) is an upper bound for the value of the best possible
solution in the subspace SP that is represented by P = 〈p1, ..., pm〉. In other words,∑m

i=1 v(Ci, ti) ≤ uP for all 〈C1, ..., Cm〉 ∈ SP .

Proof. If 〈C1, ..., Cm〉 ∈ SP , then pi = |Ci| for i = 1, ...,m. From this, it follows that:

M(pi, ti) = M(|Ci|, ti) (1)

Since v(Ci, ti) ≤M(|Ci|, ti) for i = 1, ...,m, we have:
m∑
i=1

v(Ci, ti) ≤
m∑
i=1

M(|Ci|, ti)
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Based on this, and (1), we conclude that:
m∑
i=1

v(Ci, ti) ≤
m∑
i=1

M(pi, ti)

Theorem 2. lP =
∑m

i=1 Avg(pi, ti) is a lower bound for the value of the best possible
solution in the subspace SP that is represented by P = 〈p1, ..., pm〉. In other words:

lP ≤ max
〈C1,...,Cm〉∈SP

{
m∑
i=1

v(Ci, ti)}

Proof. Recall that, for the arithmetic mean y1, ..., yk of a finite set {y1, ..., yk} ⊂ R, the
following holds:

y1, ..., yk ≤ max {y1, ..., yk} (2)

Now, since there are |Cp| coalitions of size p ∈ P , we have:

|SP | = Xi · |Cpi
| (3)

for some integer Xi ∈ N for i = 1, ...,m. This is because there are |Cpi | different
coalitions that can be assigned to task ti, and for each coalition assigned to ti, we have
Xi ways of assigning coalitions to the other tasks t1, ..., ti−1, ti+1, ..., tm. Following
this argument, there are exactly Xi solutions in SP for which any coalition C with
|C| = pi is the ith coalition. Based on this and (3), we can calculate the arithmetic
mean of VP := {

∑m
i=1 v(Ci, ti) : 〈C1, ..., Cm〉 ∈ SP }, i.e. the set of the values of the

solutions in SP , as follows:

VP =
1

|SP |

m∑
i=1

∑
C∈Cpi

Xi · v(C, ti)

=

m∑
i=1

∑
C∈Cpi

Xi

|SP |
· v(C, ti)

=

m∑
i=1

∑
C∈Cpi

1

|Cpi
|
· v(C, ti)

=

m∑
i=1

1

|Cpi
|

∑
C∈Cpi

v(C, ti)

=

m∑
i=1

Avg(pi, ti)

From this and (2), we conclude:
m∑
i=1

Avg(pi, ti) ≤ max
〈C1,...,Cm〉∈SP

{
m∑
i=1

v(Ci, ti)}
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Since the performance measure for each coalition-to-task assignment is assumed
to be known, the bounds can, in practice, be calculated without having to enumerate
or generate any solution. For instance, by enumerating all coalition-to-task values, the
lower bounds can be calculated using a moving average.

3.3 Searching for Solutions using Branch-and-Bound

We search for solutions by searching one partition (subspace) at a time, and discard
partitions that only contain suboptimal solutions (i.e. a partition is discarded when its
upper bound is lower than the value of the best solution found so far). With this in
mind, consider the following observation: Finding a better solution than the best that
we have found can potentially make it possible to discard (additional) partitions, and
thus reduce execution time by decreasing the search space that we need to consider.
To potentially take advantage of this observation, we design a mechanism, based on
defining a precedence order that dictates the order for which we search partitions, that
ultimately makes it possible to find better solutions more quickly, and use heuristics to
guide search.

Note that the efficiency induced by any search order depends on the problem that
is being solved. In our case, we assume that there exists no a priori knowledge in re-
gards to the domain, except for the coalition-to-task utility function v 7→ R, and we
instead have to take advantage of domain-independent information (e.g. partitions and
their bounds). It is possible to utilize potential domain-specific information when it is
available, which is likely a more efficient strategy for solving many real-world prob-
lems. In any case, the domain-independent order of precedence for searching partitions
that we use is defined as follows:

P1 ≺ P2 if uP1 + lP1 > uP2 + lP2

where P1 ≺ P2 denotes that the partition represented by the multiset permutation
P1 ∈M3 is searched before the partition represented by P2 ∈M3. uP and lP are de-
fined as in the previous subsection.

We use Algorithm 1 and Algorithm 2 to search a subspace SP (represented by the
multiset permutation P ∈ M3) for argmaxS∈SP V (S). If interrupted before termina-
tion, these algorithms return the best feasible solution found so far, denoted S′. Note
that we use a notation based on brackets to indicate an element at a specific position of
a list or a vector. For example, the notation S[j] corresponds to the coalition Cj ∈ S,
and the notation A[i] corresponds to the agent ai ∈ A.

Algorithm 1 : InitAndStartSearchSubspace(A, T , P , S′, uP )
Initializes and starts the search procedure defined in Algorithm 2, thus searching SP .
1: if S′ is uninitialized then
2: S′ ← ∅|T | . S′ is initialized to a list of m = |T | empty coalitions.
3: end if
4: return SearchSubspace(A, T , P , uP , 1, ∅|T |, 0.0, S′)
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Algorithm 2 : SearchSubspace(A, T , P , u, i,
−→
S , −→v , S′)

Recursively searches the subspace SP represented by the multiset permutation P .

1: if i > |A| then . All agents have been assigned to a coalition in
−→
S .

2: return
−→
S

3: end if
4: for j = 1, ..., |T | do
5: if |

−→
S [j]| 6= P [j] then

6:
−→
S [j]←

−→
S [j] ∪ {A[i]} . Assign agent A[i] to the coalition

−→
S [j].

7: if |
−→
S [j]| = P [j] then . Update the intermediary values.

8: −→v ← −→v + v(
−→
S [j], T [j])

9: u← u−M(P [j], T [j])
10: end if
11: if S′ = ∅|T | or −→v + u > V (S′) then . Check if a better solution is possible.
12: S′′ ← SearchSubspace(A, T , P , u, i+ 1,

−→
S , −→v , S′)

13: if S′ = ∅|T | or V (S′′) > V (S′) then
14: S′ ← S′′ . Update the best solution found so far.
15: end if
16: end if
17: if interrupt has been requested then
18: return S′

19: end if
20: if |

−→
S [j]| = P [j] then . Reset the intermediary values.

21: −→v ← −→v − v(
−→
S [j], T [j])

22: u← u+M(P [j], T [j])
23: end if
24:

−→
S [j]←

−→
S [j] \ {A[i]} . Remove agent A[i] from the coalition

−→
S [j].

25: end if
26: end for
27: return S′

To address the high memory requirements for generating and storing many multiset
permutations (required for generating the precedence order), it is possible to generate
and store multiset permutations in memory-bounded blocks (distinct sets of multiset
permutations). These blocks can sequentially be generated and searched during parti-
tioning. The more blocks we use, the less memory is required. In our case, we use each
set Q ∈ M2 generated in step 2 during the partitioning phase (described in Subsec-
tion 3.1) to represent a block. In other words, each disjoint group of distinct multiset
permutations in which all multiset permutations have the same members is searched in
sequence according to some criterion. The particular criterion that we use is defined as:

Q1 ≺ Q2 if wQ1
+ fQ1

> wQ2
+ fQ2

where Q1 ≺ Q2 denotes that the solutions represented by the group of multiset per-
mutations consisting of the members q1, ..., qm is searched before the solutions rep-
resented by the group of multiset permutations consisting of the members p1, ..., pm,
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where {q1, ..., qm} = Q1 and {p1, ..., pm} = Q2, with Q1 ∈ M2 and Q2 ∈ M2. wQ

and fQ are defined (similarly to the partition bounds), for all Q ∈M2, as follows:

• wQ :=
∑

q∈Q {maxi=1,...,m M(q, ti)}
• fQ :=

∑
q∈Q {

1
m

∑
i=1,...,m Avg(q, ti)}

wQ and fQ can, similarly to partition bounds, be computed without having to enumerate
or generate any solutions. Moreover, the algorithm can search these blocks in parallel
using separate processes. Also, the blocks can be partitioned into several smaller parts
to further decrease memory usage.

4 Evaluation and Results

A common approach to evaluating optimization algorithms is to use standardized prob-
lem instances for benchmarking. To our knowledge, no such instances exist for the si-
multaneous coalition structure generation and assignment problem. We therefore trans-
late standardized problem instances from a similar domain. More specifically, we ex-
tend established methods for synthetic problem set generation used for benchmarking
coalition structure generation algorithms. The extended methods are then used to gen-
erate difficult problem sets of varying distribution and complexity that we use to bench-
mark our algorithm against IBM ILOG CPLEX Optimization Studio—a commercial
state-of-the-art optimization software.

Larson and Sandholm [13] provided standardized synthetic problem instances for
the coalition structure generation problem by using normal and uniform probability dis-
tributions to generate randomized coalitional values. Following Rahwan et al. [21], we
denote these distributions NPD and UPD, respectively. To benchmark our algorithm, we
extend these distributions to our domain, so that we also take tasks into consideration.
In addition to NPD and UPD, we also extend and use NDCS, a distribution that was
proposed by Rahwan et al. [21] for benchmarking coalition structure generation algo-
rithms. Our extensions of these probability distributions, to our task-dependent domain,
are defined as follows:

– UPD: v(C, t) ∼ |C| · U(0, 1)
– NPD: v(C, t) ∼ |C| ·N (1, 0.12)
– NDCS: v(C, t) ∼N (|C|, |C|)

where N (σ, µ) and U(a, b) are the normal and uniform distributions, respectively,
given a coalition C ⊆ A and a task t ∈ T .

The results of our experiments that were based on these distributions, and from
applying the algorithm to a commercial strategy game, are presented in Subsection 4.2,
and Subsection 4.3, respectively.

4.1 Implementation and Hardware

Our algorithm was implemented in C++11, and all synthetic problem sets were gener-
ated using the random number generators normal distribution (for NDCS and
NPD) and uniform real distribution (for UPD) from the C++ Standard Li-
brary. All tests were conducted using Windows 10 (x64), an Intel 7700K 4200MHz
CPU, and 16GB of 3000MHz DDR4 memory.
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4.2 Results of the Synthetic Experiments

The result of each experiment was produced by calculating the average of the result-
ing values (i.e. time measurements and numerical values of solution quality) from 50
generated problem sets per probability distribution and experiment. Also, to compete
on equal terms, both CPLEX and our algorithm were only allowed to use a single CPU
thread during all tests (even though both approaches support parallel computing). Fur-
thermore, the algorithms did not have any a priori knowledge of the problems that they
were given to solve.

Note that we, throughout this section, use the abbreviation MP (short for multiset
permutation) to denote our algorithm.

The execution time to find an optimal solution for 8 tasks is plotted using a loga-
rithmic scale in Figure 1, in which we benchmark MP against CPLEX with different
numbers of agents, using problem sets generated with UPD, NPD and NDCS.
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Fig. 1: Execution time for solving synthetic problems with 8 tasks. The values for the coalition-
to-task assignments were generated using UPD (top), NPD (middle) and NDCS (bottom).

The results in these graphs show that our algorithm (MP) is considerably faster (by
many orders of magnitude) than CPLEX for almost all distributions and problem sets.
When there are more than 16 agents, CPLEX has difficulty finding optimal solutions
within a reasonable time, especially for NPD and NDCS, as can be seen in the graphs
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above. MP, however, manages to find optimal solutions for all problems (at least up to
20 agents) within a reasonable time. In these logarithmic graphs, MP is clearly linear,
while CPLEX is not. Furthermore, MP is clearly sensitive to the distribution of utility
values. A potential reason for this is that the efficiency of MP depends on its ability
to discard partitions. Naturally, this ability is affected by the distribution of the utility
values in the problem being solved.

We plot the execution time to find an optimal solution for 16 agents in Figure 2, and
instead look at how the number of tasks (2 to 12) affect performance. We used 16 agents
in these tests, since CPLEX didn’t manage to find optimal solutions within a reasonable
time for problems with more agents.

As can be seen in Figure 2: CPLEX demonstrates inconsistent behaviour for prob-
lems when varying the number of tasks. This includes increased execution time in easier
problems with few (2 to 4) tasks. With this in mind, our algorithm is considerably faster
for most problem sets, except for those with many (8 to 12) tasks generated by NDCS. A
reason could be that, when we increase the number of tasks, MP consequently generates
larger integer partitions. As a consequence, the blocks generated by MP also becomes
much larger, since the number of possible multiset permutations grows exponentially in
the number of tasks. These multiset permutations take a considerable time to generate,
even if (or when) MP discards the entire partitions that they represent.
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Fig. 2: Execution time to solve synthetic problems with 16 agents. Generated using UPD (top),
NPD (middle) and NDCS (bottom).
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In Figure 3, we look at the quality of the anytime solutions generated by MP. We
used 12 agents and 8 tasks for this purpose, and interrupted the algorithm during search
by only allowing it to evaluate a fixed number of solutions. The total number of possible
solutions for 12 agents and 8 tasks is 812 ≈ 7× 1010. We show the value Vanytime of
the best solution that our algorithm has found after a number of evaluated solutions,
divided by the value Vopt of an optimal solution, on the y-axis. In this experiment, all
utility values were generated using NDCS.
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Fig. 3: The quality of anytime solutions when our algorithm is interrupted prior to finishing a
complete search for problem sets based on NDCS with 12 agents, 8 tasks and 812 ≈ 7× 1010

possible solutions.

In this experiment, MP’s execution time is roughly the same for evaluating any
subsequent 1000 solutions, and was measured to 0.34± 0.27 seconds. Also, finding an
optimal solution took 3.07±1.75 seconds. This means that, after roughly 0.34 seconds,
MP manages to find close to 90% efficient solutions, and after approximately 1 second,
MP often manages to find 99% efficient solutions. For this execution time, CPLEX fails
to find any solution at all.

4.3 Applying the Algorithm to Europa Universalis 4

To empirically show that the algorithm can be used to coordinate agents in a real-world
scenario, we applied it to improve the coordination skills of computer-based players
in Europa Universalis 4 (EU4)—a very complex strategy game, in which agents are
required to act and reason in real-time. This game is very popular, with many thousands
of active players, and was developed and released commercially by the Swedish game
development company Paradox Development Studio. Note that there are many reasons
to why strategy games are ideal for empirically evaluating and testing AI algorithms,
and other authors have discussed these reasons in earlier publications, see e.g. [2].

In a session of EU4, hundreds of simulated countries, both computer- and human-
controlled alike, face off against each other, and have to coordinate themselves to defeat
their opponents—they have to form alliances, coordinate armies, handle diplomacy, and
wage war. To play this dynamic (and partially observable) game successfully, the play-
ers have to continuously solve simultaneous coalition structure generation and assign-
ment problems by assigning their armies to different regions. Previously, the computer-
based players in EU4 used an ad hoc anytime search algorithm to do so—a highly spe-
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cialized algorithm designed for the context of EU4, inherently based on expert knowl-
edge and heuristics.

In collaboration with the game’s developers, we benchmarked our algorithm against
theirs. To do so, we used the same problem sets (generated by the game) and utility func-
tion (based on expert knowledge and defined by the developers) for both algorithms. We
ran both algorithms while the game was playing, measured the algorithms’ execution
time, and compared the values of the solutions that the two algorithms generated. The
following constraints held for all EU4 problem sets: n ∈ [1, 8] and m ∈ [1, 35]. How-
ever, there were at most 308 ≈ 6.56 · 1011 solutions for the largest problem sets that
were generated by the game (i.e. problems with n = 8 armies and m = 30 regions).

The results from these experiments show that applying the algorithm to EU4 was a
great success in terms of improving the computer-based players’ performance (i.e. an
increase of solution quality) and computational efficiency (i.e. reduction of execution
time). In fact, our algorithm managed to find an optimal solution for all problems in
less time than a game’s frame (approximately 1/20 ≈ 0.05 seconds)—and compared to
the developer’s algorithm, our algorithm decreased the execution time to, on average,
0.24% of theirs. Our algorithm also increased the numerical quality of solutions by, on
average, 565% over theirs, and their algorithm seldom managed to find an optimal solu-
tion. These are the results from solving, in total, 13922 problem sets that were generated
while playing the game during 3 separate simulated sessions. Note that these results are
not only promising in terms of performance, but also on the basis of generalization:
If the utility functions that are used in EU4 were to change (e.g. due to environment
alterations), the ad hoc algorithm might have to be altered. This is not the case for our
algorithm, since it does not make any assumptions on coalitions’ utility functions, or
the game’s rules. Therefore, our algorithm is potentially cheaper and easier to main-
tain. Finally, note that EU4’s environment is not superadditive: Adding an agent to a
coalition does not necessarily increase its value, since the regions’ have supply-based
limitations that can reduce larger coalitions’ values.

5 Conclusions

In this paper, we presented an anytime algorithm that solves the simultaneous coalition
structure generation and assignment problem by integrating assignment into the forma-
tion of coalitions. We are, to the best of our knowledge, the first to study and solve this
problem in a formal context.

Moreover, to benchmark the presented algorithm, we extended established methods
for benchmarking coalition structure generation algorithms to our domain, and then
used synthetic problem sets to empirically evaluate its performance. We benchmarked
our algorithm against CPLEX, due to the lack of specialized algorithms for the simul-
taneous coalition structure generation and assignment problem.

Our results clearly demonstrate that our algorithm is superior to CPLEX in solv-
ing synthetic instances of the simultaneous coalition structure generation and assign-
ment problem. Also, our algorithm does not have to search for very long before it can
find high-quality solutions—even when interrupted prior to finishing a complete search.
This is beneficial in many real-time systems (e.g. real-world multi-agent systems), in
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which feasible solutions must be available fast, but optimality is not necessarily re-
quired. Apart from these properties, our algorithm is able to give worst-case guarantees
on solutions.

By using our algorithm to improve the coordination of computer-based players in
Europa Universalis 4, we demonstrated that it can be used to solve a real-world simul-
taneous coalition structure generation and assignment problem more efficiently than
previous algorithms.

For future work, it would be interesting to investigate other approaches to solving
this problem, including dynamic programming and greedy algorithms. We also intend
to analyze the algorithm’s parallel computing performance, and look at the problem of
simultaneous coalition structure generation and assignment with overlapping coalitions.
Finally, it would be interesting to see if machine learning could be applied to solve large-
scale simultaneous coalition structure generation and assignment problems, or increase
our algorithm’s performance by improving its search heuristics.
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ture generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–
238 (1999)

[24] Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial intelligence 101(1-2), 165–200 (1998)
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