An Algorithm for Simultaneous Coalition
Structure Generation and Task Assignment

Fredrik Prantare, Ingemar Ragnemalm, Fredrik Heintz

Linkoping University, 581 83 LINKOPING, Sweden

Abstract. Groups of agents in multi-agent systems may have to cooper-
ate to solve tasks efficiently, and coordinating such groups is an important
problem in the field of artificial intelligence. In this paper, we consider
the problem of forming disjoint coalitions and assigning them to indepen-
dent tasks simultaneously, and present an anytime algorithm that effi-
ciently solves the simultaneous coalition structure generation and task as-
signment problem. This NP-complete combinatorial optimization prob-
lem has many real-world applications, including forming cross-functional
teams aimed at solving tasks. To evaluate the algorithm’s performance,
we extend established methods for synthetic problem set generation, and
benchmark the algorithm using randomized data sets of varying distri-
bution and complexity. Our results show that the presented algorithm
efficiently finds optimal solutions, and generates high quality solutions
when interrupted prior to finishing an exhaustive search. Additionally,
we apply the algorithm to solve the problem of assigning agents to re-
gions in a commercial computer-based strategy game, and empirically
show that our algorithm can significantly improve the coordination and
computational efficiency of agents in a real-time multi-agent system.

Keywords: coalition formation, task allocation, multi-agent system,
artificial intelligence, optimal assignment

1 Introduction

An important research challenge in the domain of artificial intelligence and multi-
agent systems is to solve the problem of how to organize and coordinate agents
to improve their efficiency and capabilities when solving problems. Many par-
tial solutions to this problem have already been suggested, including methods
for task allocation, and algorithms based on the formation of organizations (e.g.
coalitions, teams, hierarchies) [2,9,12]. For example, coalition formation is a
technique that has been used to enable cooperation among agents in multi-agent
environments by forming coalitions of agents. This technique involves evaluating
different coalition structures, and forming the coalitions in the coalition structure
that has the highest performance measure (utility value). The formed coalitions
may then be used to perform tasks that require several agents to be accom-
plished efficiently. Optimal coalition structure generation is NP-complete, and

many algorithms have been presented that solves this problem, including algo-
rithms based on dynamic programming, evolutionary approaches, and branch-
and-bound [6-8,13].

The optimal assignment problem is an important optimization problem in
which the goal is to assign workers to tasks to maximize the overall performance
measure [3]. In certain settings this problem can be solved in polynomial time
(e.g. using the Hungarian algorithm) [4].

In this paper, we consider the simultaneous (or combined) coalition structure
generation and task assignment problem. This problem can be solved by first
forming coalitions, and then assigning them to tasks. However, this approach
may generate suboptimal solutions — even if the coalition structure generation
and task allocation algorithms in themselves are optimal, since the generated
coalitions may not be the best coalitions for the tasks at hand. The reason
for this is that, during the generation of coalition structures, the performance
measure of a coalition is given by its members, and not by the task that the
coalition is potentially assigned to. Perhaps even worse is the consequence that
any generated solution could potentially be arbitrarily worse than the optimal
solutions. Additionally, this approach would generally require two different util-
ity functions: one for each of the two subsequent steps, since coalition structure
generation algorithms do not consider the tasks that each coalition is to be as-
signed to. This is disadvantageous, since it may not be a simple task to create
good utility functions (or to generate realistic performance measures), and it
could potentially be hard to predict how the two utility functions affect the
quality of the generated solutions.

To address these issues, we present an efficient anytime algorithm that in-
tegrates task assignment into the formation of coalitions. We accomplish this
by generating coalition structures where each coalition is assigned to exactly
one task. Our algorithm can thus be used to create structured collaboration
in multi-agent systems by utilizing task allocation. Furthermore, our algorithm
only requires one utility function, has the ability to prune large subspaces of the
search space, can give worst-case guarantees on generated solutions, and always
generates optimal solutions when run to exhaustion.

To evaluate the algorithm’s performance, we extend established methods for
synthetic problem set generation provided by Sandholm and Larson [5], and
benchmark our algorithm against simple brute-force and branch-and-bound im-
plementations, since there are no algorithms that solves the problem under our
assumptions that we can compare to. Such experiments can be replicated by
anyone, and are conducted to deduce whether the presented algorithm can han-
dle difficult data sets efficiently. Additionally, we apply our algorithm to solve
the problem of assigning groups of agents to regions in the commercial strat-
egy game Furopa Universalis 4, and empirically show that our algorithm can
be used to optimally solve real-world simultaneous coalition structure genera-
tion and task assignment problems efficiently. Apart from solving problems that
exist in strategy games, our algorithm can potentially be used to solve many
important real-world problems. It could, for example, be used to form optimal

cross-functional teams aimed at solving a set of problems, to assist in the or-
ganization and coordination of subsystems in an artificial entity, or to allocate
tasks in multi-robot systems.

We begin by formalizing the simultaneous coalition structure generation and
task assignment problem in Section 2. Then, in Section 3, we give a presentation
of our algorithm. In Section 4, we evaluate our algorithm, and present results
from our experiments. In Section 5, we conclude with a summary of our results.

2 Problem Formalization

The simultaneous coalition structure generation and task assignment problem is
formalized as:

Input: A set of agents A = {ay,...,a,}, a set of tasks T = {¢1,...,t;n }, and
the performance measure v(C, t) for assigning a coalition C C A to a task t € T.
Output: A set of coalitions {C1, ..., Cy, } that maximizes the sum Y ;" | v(C;, t;),
such that C; C A, C;NC; =0 for all i # 4, and ;- C; = A.

3 Algorithm Description

To solve this problem, we propose an anytime algorithm based on branch-and-
bound, a novel representation of the search space, and a guided sequential search
for solutions. By using branch-and-bound, our algorithm can generate both op-
timal solutions, and high-quality anytime solutions with worst-case guarantees.
The algorithm consists of the following three steps:

I. Partitioning of the search space.

To discard unnecessary parts of the search space that only contain subopti-
mal solutions, we first partition the search space into disjoint subspaces.

II. Calculation of the upper and lower bounds for the partitions.
We cannot know whether a subspace can be discarded if we don’t have a
way to deduce whether the best possible solution in that subspace can be
discarded (if we want to be able to guarantee the optimality of our solutions).

III. Searching for the optimal solution.
We search for the best solution by sequentially searching the partitions, and
discarding unnecessary suboptimal subspaces using branch-and-bound.

3.1 Partitioning of the Search Space

Before we describe how our partitioning scheme works, note that an integer
partition of & € N is a way of writing k as a sum of positive integers [1]. Now,
given a set of agents A = {aq,...,a,}, and a set of tasks T = {t1, ..., t;n }, we use
the following three steps to partition the search space:

1. First, generate sets from all of the possible distinct integer partitions of the
number |A| = n that has |T'| = m or fewer addends. For example, if we have
that |A| =4 and |T'| = 3, we generate {4}, {3,1},{2,2} and {2,1,1}.

2. Insert zeros to the sets that we generated during step 1 until they have
as many members as there are tasks. For example, given the sets from the
example in step 1, we generate {4,0,0},{3,1,0},{2,2,0}, and {2,1,1}.

3. Let each possible multiset permutation of each of the sets generated during
step 2 represent a partition (subspace) of the search space by letting each
number represent a task. For example, the permutation (4,0, 0) corresponds
to assigning 4 agents to ¢1, 0 agents to t2, and 0 agents to t3, while (0,4, 0)
corresponds to assigning 0 agents to t1, 4 agents to t2, and 0 agents to t3.

The multiset permutations in step & can efficiently be generated using the algo-
rithm based on tree-traversal proposed by Takaoka [10], or the algorithm based
on loopless generation proposed by Williams [11].

The reason to why the generated partitions cover the whole search space is
the fact that any coalition structure with n agents can be directly mapped to
one of the possible distinct integer partitions of the integer n (for proof, see [8]).
For instance, {{a;,a;}, {ax}} can be mapped to {2,1}, and {{a;, a;,ar}} to {3}.
In step 1, we generate the partitions that correspond to these mappings. We
then remove unnecessary coalition structures in step 2, so that we only look at
coalition structures that can represent valid solutions. Finally, in step 3, we refine
the representation of the search space generated by step 2, by taking advantage
of the fact that we are only interested in bijections of coalitions to tasks.

3.2 Calculation of the Upper and Lower Bounds for Partitions

To calculate the bounds for partitions, let A, = (X C A:|X| = p), and define:
o M(p,t) =max{v(C,t):C € A,}

o Avg(p,t) = @ Y {v(Ct): C e Ay}

Now, given a multiset permutation P = (py, ..., pn,) that represents a partition
(subspace) of the search space, we can calculate an upper bound Up for the
partition that corresponds to P as the sum Up = 27;1 M (p;, t;). This is a valid
upper bound for the partition that corresponds to P, since given a set of tasks
T = {t1,...,tm}, and any possible solution Sp = {C1, ..., Cy, } induced by P with
the performance measure V(Sp) = >, v(C;, t;), then v(Ci,t;) < M(|Cy|,t;),
of which V(Sp) < Up follows.

Similarly, we can calculate a lower bound Lp for the partition that corre-
sponds to P as the sum Lp = Y ." | Avg(p;,t;), with the intuition that a solution
that has a value that is as good as the arithmetic mean of the solutions induced
by P is always worse than or equal to the optimal solution induced by P.

3.3 Searching for the Optimal Solution

To search for the optimal solution, we expand one partition at a time, and
base the precedence order for expanding partitions on the upper bound of the
partitions: Up, > Up, = P; < P;, where P; < P; denotes that partition P;

should be expanded before partition P;. If two partitions have the same upper
bound, we use a second ordering criterion based on the lower bound of the
partitions: Up, = Up, and Lp, > Lp, = P; < P;.

Now, given this order of precedence for the expansion of partitions, we sequen-
tially search through each expanded partition using branch-and-bound. When
a partition has an upper bound that is lower than or equal to the value of the
best solution that we have found so far, simply discard the entire partition and
terminate the search. Due to using our order of precedence, it is possible to
terminate the search and still guarantee optimality.

To address the high memory requirements for generating and storing many
multiset permutations (required for generating the precedence order), we can
generate and store multiset permutations into blocks. These blocks can sequen-
tially be generated and searched during partitioning. The more blocks we use,
the less memory is required. In our case, we use each set generated in step 2
during the partitioning phase to represent a block. In other words, each possi-
ble group of multiset permutations that has the same members is searched in
sequence according to the aforementioned order of precedence.

4 Evaluation

A common approach to evaluating the performance of search algorithms is to use
standardized problem instances for benchmarking. In the case of simultaneous
coalition structure generation and task assignment, no such standardized prob-
lem instances exist. Therefore, we look at standardized problem instances from
a similar domain. More specifically, we translate standardized problem instances
used for benchmarking coalition structure generation algorithms to the domain
of simultaneous coalition structure generation and task assignment.

Larson and Sandholm [5] provided standardized synthetic problem sets for
the optimal coalition structure generation problem by using normal and uni-
form probability distributions to provide randomized coalition (utility) values.
Following Rahwan et al. [8], we denote these NPD and UPD, respectively. Since
our algorithm’s performance depends on its ability to discard suboptimal sub-
spaces of the search space, it is important that we benchmark it using problem
sets with different characteristics. As such, we suggest using NPD and UPD for
benchmarking our algorithm. In addition to NPD and UPD, we also use NDCS,
a probability distribution that was proposed by Rahwan et al. [8] for bench-
marking coalition structure generation algorithms, since both NPD and UPD
generate biased results. Translating these probability distributions to our do-
main is simple, and the translations are presented below, where v(C,t) denotes
the performance measure of assigning a coalition C to a task t:

— NPD: v(C,t) ~ |C| x N(p, 02), where o = 0.1 and p = 1.
— NDCS: v(C,t) ~ N(u, 02), where 0 = /|C| and pu = |C].
— UPD: v(C,t) ~ |C| x U(a, b), where a = 0 and b = 1.

Furthermore, the result of each experiment is produced by calculating the aver-
age of the resulting values (e.g. time measures or utility values) from 100 gener-

ated problem sets per probability distribution and experiment. We deem this to
be sufficient to give a clear indication of the behavior of the algorithm. Finally,
we compare our algorithm to simple brute-force and branch-and-bound imple-
mentations, since there are no existing algorithms that solves the problem under
our assumptions that we can compare to. However, this is not possible when
there are many agents and tasks, since simple algorithms based on brute-force
and branch-and-bound are too slow.

4.1 Implementation and Equipment

The algorithms were implemented in C++11 using the C++ standard library.
All probability distributions were generated using the random number distri-
bution generator std: :random: :normal _distribution<double> for NDCS and
NPD, and std: :random: :uniform real distribution<double> for UPD. The
tests were conducted using a computer with Windows 10 (x64), an Intel 7700K
4200MHz CPU, and 16GB of DDR4 memory (3000MHz CL15).

4.2 Results

The execution time to find an optimal solution for the fixed number of 8 tasks
is plotted using a logarithmic scale in Figure 1. Plots of the search times for
the plain branch-and-bound (denoted pBNB) and brute-force algorithms are
used as a comparison to the presented algorithm (denoted iBNB). In Figure 2,
we fix the number of agents to 10, and look at how the number of tasks affect
performance. Finally, in Figure 3, we look at the quality of the anytime solutions
generated by our algorithm. We used 12 agents and 8 tasks for this purpose, and
interrupted the algorithm during search by only allowing it to evaluate a fixed
number of solutions. The total number of solutions for 12 agents and 8 tasks is
812 ~ 7 x 10'°. On the y-axis, we show the performance measure (utility value)
U of the solutions that our algorithm had found on interruption, divided by the
value Uy, of an optimal solution.

107 B ‘ | | —@— Brute-force
— —@— pBNB (NDCS)
g --@-- pBNB (NPD)
: e .-® - pBNB (UPD)
g i “.® | |-e- iBNB (NDOS)
2 10 :
5 —@ - iBNB (NPD)
2, i J .. 4+ iBNB (UPD)
g
Q
o
2 10'f)
o
£
E -
pe
10~2 L ! ! ! ! ! ! ! ! !]

7 8 9 10 11 12 13 14 15
Ne of agents

Fig. 1. The execution time to find an optimal solution in problems with 8 tasks.

a ‘ ‘ —@— Brute-force
g /. » —®— pBNB (NDCS)
;’ . » ‘g' B _';.»‘ --§-- pBNB (NPD)
3 10° [L. ".'..-""‘ 1 |--® - pBNB (UPD)
E « R _:)é;“ - @- iBNB (NDCS)
g‘ J "‘ _—:f;:.i" —@ - iBNB (NPD)
S 102 | "' _ ,.—."" Y | |- e iBNB (UPD)
° & P 2 {,'.3"
P L e
< & >
SEESTILY B S :

| | | | | |

5 10 15 20 25 30

Ne of tasks

Fig. 2. The execution time to find an optimal solution in problems with 10 agents.

1+ I I | T Lt S ‘..; _‘.__.._,_,‘._,b.._’ —9
v 4 —&—-0-;3'—'-'3:'0"""’ -7
- "_.0---0"__ B
SR & o _,_o—-O--O—0——0—0——0—0-—0-—0--0-—0--0--0-0—-0 *
~ y ’,0‘ .. @+ iBNB (UPD)
D ’ —@ - iBNB (NPD)
0'6‘;’ - @- iBNB (NDCS) | |
| | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ne of solutions evaluated

Fig. 3. The quality of anytime solutions when the algorithm is interrupted prior to
finishing an exhaustive search when solving synthetic problem sets with 82 ~ 7 x 10°
possible solutions.

4.3 Applying the Algorithm to Europa Universalis 4

The algorithm was also applied to Europa Universalis 4 — a commercial strategy
game in which agents are required to act and reason in real-time. We used the
presented algorithm to solve the problem of assigning agents to regions. By
doing so, it was possible to test our algorithm in a real-world multi-agent system
with high computational requirements, and compare its performance to a Monte
Carlo algorithm that was specifically designed (and previously used) to solve a
particular instance of the simultaneous coalition structure generation and task
assignment problem.

The problem sets that were generated by Europa Universalis 4 each consisted
of up to 8 agents and 35 regions (tasks). As such, the problem sets were rather
small, with |A| € [2,8] and |T| € [2,35]. In total, 13922 problem sets were
generated, each reflecting a problem instance from the game. With this in mind,
our algorithm managed to increase both the quality of the solutions, and the
performance of the computer-based players, compared to using the specialized
Monte Carlo algorithm that was developed and designed by the developers of the
game. The quality of the solutions was increased by, on average, 565%, and the
search time for the best possible solution was improved by, on average, 422%.

4.4 Discussion

As empirically shown, our algorithm is considerably faster (by many orders of
magnitude) than both brute-force and plain branch-and-bound — for all prob-
lem sets and distributions. The reason is that our algorithm discards huge por-
tions of the search space, and almost always terminates searches before it gen-
erates unnecessary solutions, even when solving extremely difficult problem sets
(NDCS). For the same reasons, and due to our order of precedence for expand-
ing partitions, it doesn’t take our algorithm many evaluations before it finds
close-to-optimal solutions for any of the three probability distributions.

The presented algorithm solves problem sets generated by UPD the fastest,
followed by the sets generated by NPD, and then NDCS. This is not surpris-
ing, since it is reasonable to expect that our algorithm exhibits performance
characteristics that are similar to those exhibited by similar algorithms used
for coalition structure generation. In the case of 8 tasks, 8 agents, and problem
sets generated by UPD, our algorithm is, on average, roughly 2416 times bet-
ter than brute-force (i.e. it takes approximately 0.041% of the time to find the
optimal solution). As the number of agents increases, this factor also increases.
For example, in the case of 8 tasks and 12 agents and UPD, our algorithm is,
on average, 280882 times better than brute-force (i.e. it finds optimal solutions
in approximately 0.00035% of the time it takes for the brute-force algorithm).
As such, if we increase the number of tasks or agents, the relative gains in
performance increases considerably, which is also true in comparison to plain
branch-and-bound.

5 Conclusions

In this paper, we presented an anytime algorithm that efficiently solves the
simultaneous coalition structure generation and task assignment problem by in-
tegrating task assignment into the formation of coalitions. To benchmark our al-
gorithm, we extended established methods for benchmarking coalition structure
generation algorithms to our domain, and then used synthetic problem sets to
empirically evaluate its performance. We used brute-force and plain branch-and-
bound algorithms for comparison, since we didn’t find any specialized algorithms
that solves the problem under the same assumptions as we do.

Our results clearly demonstrate that our algorithm is far superior to brute-
force and plain branch-and-bound, and that our algorithm doesn’t have to search
for very long before it can find good solutions. This is beneficial in many real-
time systems (e.g. real-world multi-agent systems), in which optimal solutions
are not always required. Apart from these properties, our algorithm is also able
to give worst-case guarantees on anytime solutions due to taking advantage of
branch-and-bound. Finally, by using our algorithm to improve agent-to-region
assignment in Europa Universalis 4, we demonstrated that our algorithm can be
used to efficiently solve a common real-world simultaneous coalition structure
generation and task assignment problem.

References

9.

. Andrews, G., and Eriksson, K. “Integer partitions”. Cambridge University Press.

(2004)

. Bryan, H., and Lesser, V. “A survey of multi-agent organizational paradigms”. In:

The Knowledge Engineering Review. (2004)

. Gerkey, B. P., and Matari, M. J. “A formal analysis and taxonomy of task allocation

in multi-robot systems.” In: The International Journal of Robotics Research 23.9,
p- 943. (2004)

. Kuhn, H. W. “The Hungarian method for the assignment problem”. In: Naval re-

search logistics quarterly 2.1-2. (1955)

. Larson, K. S., and Sandholm, T. W. “Anytime coalition structure generation: an

average case study”. In: Journal of Experimental & Theoretical Artificial Intelligence
12.1. (2000)

. Rahwan, T., Jennings, N. R. “An improved dynamic programming algorithm for

coalition structure generation”. In: Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems - Volume 3. International
Foundation for Autonomous Agents and Multiagent Systems. (2008)

. Rahwan, T., Michalak, T. P., Wooldridge, M., Jennings, N. R. “Coalition structure

generation: A survey”. In: Artificial Intelligence 229. (2015)

. Rahwan, T., Ramchurn S. D., Jennings, N. R., Giovannucci, A. “An anytime algo-

rithm for optimal coalition structure generation”. In: Journal of Artificial Intelli-
gence Research 34. (2009)

Shehory, O., and Kraus, S. “Methods for task allocation via agent coalition forma-
tion”. In: Artificial intelligence. (1998)

10. Takaoka, T. “An O(1) time algorithm for generating multiset permutations”. In:

International Symposium on Algorithms and Computation. Springer. (1999)

11. Williams, A. “Loopless generation of multiset permutations using a constant num-

ber of variables by prefix shifts”. In: Proceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Math-
ematics. (2009)

12. Yamada, T., and Nasu, Y. “Heuristic and exact algorithms for the simultaneous

assignment problem”. In: European Journal of Operational Research 123.3. (2000)

13. Yang, J., Luo, Z. “Coalition formation mechanism in multi-agent systems based

on genetic algorithms”. In: Applied Soft Computing 7.2. (2007)

