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Abstract. This paper describes an overview of a generic framework for collab-
oration among humans and multiple heterogeneous robotic systems based on the
use of a formal characterization of delegation as a speech act. The system used
contains a complex set of integrated software modules that include delegation
managers for each platform, a task specification language for characterizing dis-
tributed tasks, a task planner, a multi-agent scan trajectory generation and region
partitioning module, and a system infrastructure used to distributively instantiate
any number of robotic systems and user interfaces in a collaborative team. The
application focusses on 3D reconstruction in alpine environments intended to be
used by alpine rescue teams. Two complex UAV systems used in the experiments
are described. A fully autonomous collaborative mission executed in the Italian
Alps using the framework is also described.
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1 Introduction

Emergency Informatics is an emerging multi-disciplinary scientific field that “addresses
the information processes (real-time collection, analysis, distribution and visualization)
for the prevention, preparedness, response and recovery from emergencies” [1]. In this
context, emergencies range from local events to large scale catastrophes. An impor-
tant and essential aspect of emergency informatics is collaboration and cooperation,
where people interact with technical systems either directly or remotely, people interact
with people through technical systems, and people interact with remote environments
through technical systems such as ground or aerial robots.

This discipline targets highly complex problems characterized by multiple informa-
tion interdependencies, temporal and spatial scales and latencies, nonlinear behavior
and the rarity of optimal solutions to the many problems involved. Consequently, an
integrated systems of systems approach to the development of technical systems inter-
acting with emergency responders with the goal of saving lives becomes paramount.

The purpose of this paper is to present an overview of an integrated system of systems
of heterogeneous autonomous unmanned aerial vehicles that collaborate with each other
and with human responders at a high-level of autonomy with the specific application
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goal of generating 3D models of operational environments. These models serve as the
basis for the initial level of a dynamic information system through which additional
semantic information about the operational environment can be dynamically added and
used by first responders. The framework is more general, but the focus in this paper will
be on a particular application.

The major components in the system that will be described in this paper are:

– A Delegation Framework – This is a speech act based system allowing agents and
humans to collaborate by delegating tasks to each other, one-to-one and recursively.

– Task Specification Trees – This is the basic construct for representing complex
tasks, both declaratively for formal analysis and procedurally as part of the imple-
mentation of the delegation framework.

– A Planning Module – This module contains a task planner and includes specialized
modules associated with the scanning applications that include a scan trajectory
generation module and a region partitioning module for distributed scanning.

Each component will be described at an adequate level of detail, both formally and prag-
matically, and additional focus will be placed on the integration of these components
into a system of systems showing how human responders interact with this technology.
Although this paper is applied in nature, emphasis will also be placed on the formal
foundations for each of the components. The system itself has been deployed using
real UAV (unmanned aerial vehicle) platforms and can be used for relatively complex
scanning missions, not only for 3D surface reconstruction, but also for search and res-
cue. For this paper, we will focus on using a rotor-based and a fixed-wing UAV, but
the system is general enough to be used on most any robotic system. The prototype
software instantiation of these components is currently being developed for use in the
EU project SHERPA ([2], www.sherpa-project.eu). which focuses on the use of hetero-
geneous robot teams that assist alpine rescuers in the Italian alps in search and rescue
missions.
Paper outline. Section 2 begins by describing the basic collaborative mission cycle
between humans and robotic systems. Section 3 provides an overview of the complex
collaborative 3D reconstruction mission that will be the focus of this paper. Addition-
ally, the two UAV platforms used in the mission will be described. Section 4 describes
the delegation framework itself. This section also includes a description of Task Speci-
fication Trees. Section 5 provides an overview of task planning and its integration with
the delegation system. Section 6 then describes the application-specific scan trajectory
algorithms in addition to a region partitioning algorithm. Section 7 provides the exper-
imental results generated for the collaborative scanning mission described in the paper.

2 Basic Collaborative Mission Cycle

In any emergency response situation, rescue operators will have access to static inter-
faces such as ground stations consisting of laptops or stationary PCs in addition to more
portable systems such as touch screen devices or smart phones that can be used any-
where in the field. Such devices are set up to provide cognitively efficient multi-modal
interfaces to human-robot teams involved in the emergency response. For example, in
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the scanning mission described below, the goal is to rapidly provide 3D reconstructions
of salient regions by setting up missions through such interfaces.

An operator should be able to request help from its team by simply marking a region
on a map in the interface and stating that a 3D re-construction of the region is required.
From the operator perspective, it is not important how that is accomplished nor what
or how many robotic systems are involved. What is important is that this can be done
efficiently within a reasonable span of time and in the right format so that the rest of the
team can use the mission output to make better decisions and save lives.

Fig. 1 shows the mission process which begins with an operator specifying a 3D
reconstruction mission. Internally, this high-level request is transformed into a goal
request in the form of a Task Specification Tree (TST, Section 4) representing the goal.
This transformation can be achieved dynamically using automated planning techniques,
or by using generic TST templates that can be instantiated appropriately.

The setup and execution of the mission represented by the goal request TST should
now be delegated to one or more participating team members. The TST is therefore
given to the local Delegation Module, which initiates a distributed delegation process
(Section 4.2) where agents interact through their delegation modules (Fig. 2) using in-
teraction protocols based on speech acts. The process recurses through the tree, filtering
potential contractors for each node relative to their capabilities and setting up auctions
to determine the platform most fit to be delegated each node. Both mission require-
ments and platform capabilities can be represented as constraint formulas, and a con-
straint problem corresponding to the TST and its allocation to agents is incrementally
constructed and solved during delegation. Systems may also call other internal func-
tionalities such as motion planners to determine if they can successfully contribute to
the goal in question. The net result of the distributed delegation process, if successful, is
a new TST representing the collaborative scanning plan resulting from successful dele-
gation. This plan can be sent back to the original human operator for final confirmation,
or it can be executed directly as all systems involved have their parts scheduled.

During the mission, the robotic systems involved could stream sparse 3D models to
ground stations for real-time visualization or store these models locally for access in a

Fig. 1: Mission Process.
A goal request is
broadcast via the
Delegation Module.
Platforms with available
capabilities reply and a
delegation process ensues
among each of the
platforms’ delegation
modules. If successful,
the net result is a joint
plan to execute. Upon
execution, raw and
processed data can be
stored locally or globally.
During the mission or
upon its completion the
human operator can
access the results via
specialized interfaces.
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Fig. 2: Overview of the Distributed Delegation Process.

Fig. 3: (a) Part of the operational environment of interest depicted in an older photo. (b) Sub-region of
interest in the second leg of the mission overlayed on an orthophoto generated in the first leg of the mission.

distributed semantic map structure called a Dynamic Cognitive Map (DCM) [2]. The
intent is that during the progression of a rescue operation, additional geo-tagged infor-
mation could be added to this distributed knowledge structure which could be queried
by team members for both static and dynamic information related to the operation in
progress.

3 A Collaborative 3D Reconstruction Mission

We will now provide additional details regarding the collaborative 3D reconstruction
experiment mentioned above. Imagine that an alpine rescue team, consisting of a num-
ber of human operators and robotic systems, has been tasked to provide a first-view of
an area where some summer hikers may be injured or lost. The first requirement given
is to construct a 3D model of the area and then to incrementally refine this model with
geographically tagged semantic information. This data and information would be stored
in the Dynamic Cognitive Map (DCM) for further use during ongoing rescue missions.

Initially, the team only has a low resolution image of the area, possibly out of date.
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Fig. 4: (a) The senseSoar solar-powered UAV, developed at ETH Zurich. (b) Modular sensor pod for
onboard processing and visual-inertial sensing.

The team first wants to get an initial larger overview of the operational environment
(Fig. 3a) by rapidly generating a sparse 3D map and orthophotos of this area. The mis-
sion operator marks this larger region on a touchpad device and denotes it as R1. This
is leg 1 of the mission, which will be executed by the autonomous fixed-wing sense-
Soar UAV developed at ETH Zurich (Fig. 4). Additionally, the rescue team would like
a more detailed 3D map of a subregion dense with interesting physical structures based
on the orthophoto generated in leg 1. The mission operator marks the desired region
on the touchpad device overlayed on the newly generated orthophoto (Fig. 3b), and
denotes this region as R2. This is leg 2 of the mission, which will be executed by an
autonomous Yamaha RMAX helicopter developed at Linköping University (Fig. 5).

Below, we describe the robotic systems that will be used in the mission tests in detail:

senseSoar. A hand-launchable, solar-powered, fixed-wing UAV developed in the Au-
tonomous Systems Lab (ASL) at ETH Zurich as a versatile platform for long-endurance
sensing and mapping missions (Fig. 4a). The senseSoar is 5kg, with a 3.1m wingspan
and an inverted V-tail configuration. Light-weight sensors and avoinics are coupled with
a Pixhawk Autopilot for fully autonomous attitude stabilization and waypoint naviga-
tion. A modular sensor pod containing forward-oblique and nadir facing visible light
cameras, a visual-inertial sensor, and an onboard processing unit is integrated in the
fuselage for vision-based 3-D mapping (Fig. 4b).

RMAX. The helicopter platform is based on a slightly modified unmanned RMAX he-
licopter manufactured by the Yamaha Motor Company (Fig. 5). The RMAX has a rotor
diameter of 3.1 meters, a 21 horsepower engine, a maximum take-off weight of 94 kg
and a payload capability of about 30 kg. It includes a customized avionics system devel-
oped at Linköping University. The avionics box includes two Intel NUC i7 computers,
a 2.4GHz WiFi data link, and an Ethernet video server.

The basic sensor suite used for autonomous navigation includes a fiber optic tri-axial
gyro system and a tri-axial accelerometer system, an RTK GNSS positioning system
and an infrared altimeter used for automatic landing. Additionally, a color and a ther-
mal video camera, as well as a class 1 SICK LMS511 PRO 2D laser scanner, are inte-
grated on board the platform. The laser scanner’s maximum range is 80 meters and the
maximum scanning field of view is 190◦.

In the remaining sections, the generic components in our delegation framework will be
described in the context of this mission in order to provide concrete insight into the
proposed framework, its theoretical basis and its real-life implementation. We will also
describe functionalities specific to 3D reconstruction missions.
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Fig. 5: The RMAX
helicopter platform with
the avionics box attached
below the platform and
the laser scanner facing
downward mounted on a
vibration isolated support
placed under the
helicopter nose. The
color and thermal video
cameras are mounted on
a pan/tilt unit below the
avionic box. The GNSS
antenna is mounted on
the helicopter tail boom.

4 The Delegation Framework

The experimental mission must be delegated to suitable participants. Castelfranchi and
Falcone [3,4] provide an informal discussion about delegation as a social concept build-
ing on a BDI model where agents have beliefs, goals, intentions, and plans [5]. The
Delegation Framework discussed in [6] extends these ideas with a formal characteriza-
tion of delegation in terms of speech acts [7,8] and interaction protocols that implicitly
update the belief states of the delegator and contractor. It also supports a concrete del-
egation process using Delegation Modules for each participating agent in a team, re-
sulting in a software architecture for specifying, generating and executing collaborative
multi-agent plans to achieve complex goals such as those of the mission above.

The delegation process is based on a recursive algorithm that conceptually sends
speech act requests of the type Delegate(A, B, Task, Context), where agent A wants to
delegate Task to agent B given a Context specified as a set of constraints. This could
include temporal constraints, restrictions on flight altitudes and velocities, required res-
olution intervals for various sensors, etc. Agents can be humans or robots. Tasks and
missions to delegate are represented as Task Specification Trees (TSTs). While TSTs
are declaratively specified, platforms participating in their execution must provide a
procedural counterpart capable of interpreting and executing this specification. Internal
nodes represent control statements such as sequential and concurrent execution, while
leaf nodes can represent domain-specific tasks such as scanning a region.

The current implementation of the Delegation Module (DM, Fig. 6) is based on ROS,
Robot Operating System. The TST Factory is used for creating TST nodes and linking
them to ancestors and descendants across agents. The TST Executor Factory provides
all platform-specific functionality for a node and is consequently instantiated differ-
ently for each platform type. It also provides declarative constraints for each node type
supported by a platform, representing execution conditions required by the platform it-
self as opposed to those imposed by a mission. For example, a constraint may define
the maximum take-off time for a platform or specify that it can only generate point
clouds of a certain resolution. The Delegation Manager is responsible for managing the
distributed delegation process and consequently also communicates with other agents.
Finally, a constraint solver is used to generate concrete parameter bindings and to verify
that all tasks are allocated to platforms capable of executing them.
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Fig. 6: The Delegation Module

4.1 Task Specification Trees

Task Specification Trees provide a very expressive means of declaratively specifying
tasks to be delegated to a team of collaborating agents. Inner tree nodes can specify
standardized control structures such as sequences (S), concurrency (C), conditionals
(IF) and loops (WHILE), which are directly supported by the Delegation Module. Leaf
nodes specify potentially domain-specific tasks to be executed. Such tasks are viewed
as elementary and indivisible from the point of view of a delegator, but contractors can
choose to elaborate and expand them into subtasks through calls to general task planners
or problem-specific functionalities during the delegation process.

Every node has a set of named parameters, such as the destination of a fly-to task.
Parameters can be given specific values or can be subject to constraints in a general
constraint language [6]. Such constraints represent the GOP’s mission requirements.
Mission Example. The delegation process requires a goal request TST. For the 3D
reconstruction mission we choose to represent this at a high level of abstraction us-
ing scan-map tasks intended to be elaborated with further detail by the agents involved.
This allows scan trajectory generation to be adapted to each type of platform in a decen-
tralized manner. Therefore the following small and deceptively simple goal request TST
shown in Fig. 7 is generated by the user interface, defining a sequence (S) of scan-map
tasks, one for each of the regions (R1 and R2) in the mission. Parameters to these tasks
include the desired result (3D point clouds, visual images, object identification, . . . ),
resolution requirements, and requirements for information streaming and storage.
Formal Semantics. TSTs, including control structures and constraints, are given a strict
formal semantics through composite actions in TALF, Temporal Action Logic with Fix-
points [9]. Temporal composite actions have the following syntactic form:

S

scan-map(R1) scan-map(R2)

Fig. 7: Goal Request TST
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C-ACT ::= [τ,τ ′]with x̄ do TASK where φ

TASK ::= [τ,τ ′]ELEMENTARY-ACTION-TERM | [τ,τ ′]COMPOSITE-ACTION-TERM |
(C-ACT; C-ACT) | (C-ACT || C-ACT) |
if [τ]ψ then C-ACT else C-ACT | while [τ]ψ do C-ACT

Here, “with x̄ do TASK where φ” declares a (possibly empty) sequence of variables x̄
for use in a constraint formula φ related to the given TASK. Such formulas range over
all variables in the scope of the formula, which corresponds directly to those parameters
and variables that are declared in a given TST node and all of its ancestors. The task
must be executed during the given temporal interval [τ,τ ′]. For inner nodes, τ and τ ′

are bounded by constraints relating subtask parameters to subtask durations. The agent
executing a task is specified as a parameter to each action term. Before task allocation,
this can be an unconstrained agent variable. Note that ELEMENTARY-ACTION-TERM
represents a call to an elementary task such as fly-to(uav,x,y), whose preconditions,
effects and constraints can also be modeled in TALF. COMPOSITE-ACTION-TERM, in
contrast, represents a call to a named composite action. Semicolon represents sequenc-
ing, while || represents potentially concurrent execution.

Task Specification Tree structures can be translated directly to composite actions
in TALF, which in turn can be translated to formulas in a fixpoint logic [9] whose
expressivity is above that of first-order logic yet allows relatively efficient inference
techniques. We emphasize that this translation is mainly used to provide a formal task
semantics, and the actual implementation does not require theorem proving.

4.2 The Delegation Process

When a Task Specification Tree has been generated, the user interface can call its local
Delegation Manager to initiate the distributed delegation process. This process imple-
ments the conceptual Delegate(A, B, Task, Context) speech act through an interaction
protocol with two phases [6]: First, tasks are provisionally allocated to agents capable
of performing them while satisfying all mission constraints. Second, the task allocation
and a corresponding constraint solution is accepted or rejected by the operator.

First Phase. The root node of a TST is always a control node and can be handled by
any agent. For simplicity we will assume this is delegated to the agent initiating the
delegation process. The interaction protocol therefore begins by sending a CALL-FOR-

PROPOSAL speech act to this agent [10], indicating the task to be delegated together
with the constraint context. From the contractor’s point of view, the remainder of the
first phase of the protocol can be characterized using the DELEGATE-FIRST-PHASE pro-
cedure below. A concrete example will follow.

1: procedure DELEGATE-FIRST-PHASE(task T , constraint set C)
2: if basic capabilities for root(T ) are missing then reply REFUSE

3: Add constraints and parameters specified in root(T ) to C
4: Add platform-specific constraints for root(T ) to C
5: if C is inconsistent then reply REFUSE

6: if root(T ) is a leaf and this platform wants to expand it then
7: Expand root(T ), adding new children
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8: for every child ci of root(T ) corresponding to a subtree Ti do
9: Broadcast a REQUEST to find P = potential contractors with capabilities for ci

10: Perform auction for ci among P, and sort P accordingly
11: nondeterministically choose p ∈ P :
12: (T ′i ,C)← p.DELEGATE-FIRST-PHASE(Ti,C)
13: replace Ti with T ′i in T
14: Provisionally commit to the delegation
15: reply PROPOSE(T,C)

An agent can only be allocated a tree T if it can execute the root of T . The agent
therefore begins by verifying that it has the necessary fundamental capabilities: All
agents can coordinate a sequence (S), while only some are able to fly. If capabilities are
missing, the agent immediately responds using a REFUSE speech act.

The agent must also verify that it can execute the task given the specified parameters
and constraints. The currently accumulated set of constraints C is therefore augmented
with (1) any mission constraints specific to root(T ), corresponding to a where clause,
(2) a constraint for each node parameter that was given a specific value outside of the
constraints, and (3) any platform-specific execution constraints that this agent has for
the given node type, retrieved from the local TST Executor Factory. For example, dif-
ferent UAV platforms have different flight envelopes which must be consistent with
mission requirements. If the resulting constraint set is inconsistent, the agent cannot
accept the delegation and must reply REFUSE. Otherwise delegation may be possible,
contingent on the successful delegation of all children. These children may already ex-
ist or may be generated dynamically through a potentially platform-specific expansion
procedure provided by the TST Executor Factory.

For each child ci, associated with a subtree Ti, a REQUEST for potential participants will
be broadcast. This request is accompanied by a specification of the required capabilities
for ci, which allows replies (sent as INFORM speech acts) to be filtered. An auction
process is then initiated where each potential contractor is REQUESTed to bid for the
task in question. Each bid is also returned through an INFORM speech act.

Bids are used to prioritize potential contractors, but backtracking may be needed if
a choice that is good for one part of the TST has negative consequences for other parts
of the tree. For brevity we describe this backtracking using the standard notion of non-
deterministic choice, where each such choice point is in fact a point to which the algo-
rithm can backtrack in case of future failures. However, note that agents are called in the
order determined by the auction. In this context, failures are reported through REFUSE

speech acts, both in the cases discussed above and in case all possible contractors for a
child node REFUSE a delegation attempt.

When a child has been provisionally delegated, its subtree may contain expanded
nodes, and the nodes of the resulting tree are associated with execution constraints
defined by the contractor(s) that were allocated parts of this tree. The expanded tree and
updated set of constraints are returned in line 15 and the corresponding values returned
from a recursive delegation call are handled in lines 12–13.

When the first phase of delegation succeeds (line 14), the platform also provisionally
commits to the delegated task before it PROPOSEs a solution to the caller. The commit-
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S

scan-map(R1)

S

take-off
/fw0

scan-map-single
/fw0

scan-map(R2)

Fig. 8: TST after initial expansion in the senseSoar system.

ment is provisional both because we may backtrack over the commitment and because
no delegation is final until the original delegator has received a proposed solution and
accepted it. This allows a ground operator to determine whether a mission instantiation
is acceptable or whether an alternative needs to be sought.

Second phase. If the mission is accepted, an ACCEPT speech act is distributed to all
callers, also specifying a concrete constraint solution to be used during execution. Al-
ternatively, if the mission is rejected, a REJECT speech act is distributed.

Mission Example. In the example, the goal TST is provided as input to the ground
operator’s delegation module, which starts by attempting to delegate the top node to
itself through CALL-FOR-PROPOSAL initiating a call to DELEGATE-FIRST-PHASE.

The delegation process then searches for agents capable of handling the unallocated
children of the root. The GOP’s delegation module makes a broadcast to acquire all
scan-map-capable agents on the team in the GOP’s communication range. Two agents
respond, the RMAX and the senseSoar. An auction is set up to determine a suitable
contractor for scan-map(R1). The cost function for this node type is based on a com-
bination of time requirements and fuel usage. The senseSoar is equipped with visual
cameras and scans an area quickly, but the time required for 3D reconstruction rises
quickly with the desired resolution. The RMAX uses a laser scanner, and while it flies
somewhat more slowly, the results are processed quickly even at higher resolutions.
As scan-map(R1) specifies a large area to be scanned, but the resolution required is
comparatively low, the senseSoar returns the best bid.

The delegation module therefore first tries to delegate scan-map(R1) to the sens-
eSoar. This node allows a team of platforms to be assigned to the same area and can
partition scan regions according to the capabilities of those platforms (Section 6). Parti-
tioning must be performed during delegation rather than execution, to ensure that each
platform involved can verify its ability to scan the subregion it is assigned. After this,
the scan-map node can expand to specify the concurrent execution of several scanning
sub-mission. In this particular mission the team was limited to one member and parti-
tioning was not necessary. Nevertheless the senseSoar expands the node to a sequence
of actions suitable for scanning using a single platform, as shown in Fig. 8.

The expanded TST is then recursively delegated. Constraints generated during ex-
pansion ensure that the same platform will both take off and perform the single plat-
form scanning task. In the general case, generated subtasks can also be delegated to
additional agents that can assist in achieving the overall goal of the expanded node.
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Fig. 9: Fully expanded collaborative plan TST.

While the RMAX can take off autonomously, the light-weight senseSoar requires
human assistance. Therefore, when delegated a take-off node, the senseSoar expands
this to an assist-take-off node that can only be executed by human agents (included in
Fig. 9). When this node is recursively delegated, the auction gives the highest priority
to the fixed-wing operator, who has a personal Delegation Module running on a user
interface device. Delegation to an operator always asks for confirmation that the human
is willing and able to take on the task at the desired time. Modeling take-off as a poten-
tially expandable node ensures that only the platform itself needs to know whether it is
capable of taking off autonomously, or under which conditions this is possible.

Verifying the ability to scan a region using scan-map-single requires generating a
scan trajectory (Section 6.1) and verifying through constraints that this trajectory can
be flown in the desired manner. Then, an agent can choose to expand the node into a
subtree including a sequence of flight actions or to provide a more complex trajectory-
following implementation for the scan-map-single node itself. The latter option results
in greater freedom to make choices during execution and was chosen for this mission.

Once the first subtree is successfully provisionally delegated, a similar process ensues
for the rightmost leaf node, scan-map(R2). Here the operator desires a high-resolution
scan of a smaller area and the auction results in the RMAX being at the top of the list.
The GOP’s delegation module therefore tries to delegate scan-map(R2) to the RMAX.

As both delegations succeed, the net result is that an expanded collaborative plan
TST (Fig. 9) where all nodes are allocated to participating agents is proposed to the
GOP’s delegation module. The GOP can view and approve the plan, after which the
approval is transmitted to the participating agents, which then store the TST structures
and their associated constraint instantiations and commit to executing the TST at the
desired time. Each system will execute its part of the mission TST relative to timing
and other constraints that have been checked for consistency in the delegation phase.
The results will be shown in Section 7.

5 The Planning Module: Motion and Task Planning

When using unmanned aerial or ground vehicles, motion planning is essential for suc-
cessful execution and is used in several ways. First, when a motion-related TST node
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is delegated, the contractor’s platform-specific constraints for this task require the exis-
tence of a feasible motion plan that is collision-free relative to available obstacle infor-
mation. A motion planner must then be called to verify feasibility. Moreover, the gen-
erated motion plan must be analyzed in order to generate bounds on execution times.
For the RMAX, bounds can be generated either through a fast estimation algorithm
or through simulated step-by-step execution of the low-level control system. When the
TST node is executed, the generated motion plan must be followed.
Though the 3D reconstruction mission was generated through template-based expan-
sion, general automated task planning can also be essential for many mission types.
Task planning is integrated through the use of a goal node specifying a planning do-
main and problem instance to be solved. Such goal nodes can occur at any point in a
TST, allowing missions to be partly pre-specified and partly generated through plan-
ning. These nodes can be handled in one of two ways.
Planning First. As TSTs are sufficiently expressive to represent the output of most
automated planners, existing single- or multi-agent planners can easily be integrated.
When a goal node is reached, a planner capable of handling the given planning domain
language is called and its output is converted into a subtree attached under the goal
node. The delegation module then proceeds to recursively delegate the new TST nodes.
Planning Integrated. By adapting a planner to the use of delegation, new actions can
be integrated and delegated as soon as they are generated. This has the advantage of
immediately testing the feasibility of each action and can therefore reduce the need for
backtracking due to plans that cannot be delegated. At the same time, any backtracking
caused by the planner itself will trigger backtracking in delegation. Therefore this op-
tion is mainly feasible for planners that only cause a limited amount of backtracking.
The RMAX uses the planner TFPOP [11,6] for this purpose. TFPOP is a knowledge-
rich multi-agent planner whose search algorithm can be guided through additional do-
main information provided by domain experts. This type of approach has proven orders
of magnitude faster than standard planners in many domains, and is particularly appro-
priate given the need to communicate with other agents when backtracking occurs.

6 Collaborative Scanning and Region Partitioning

Partitioning. Though not used in the example mission, scan-map may specify a team
of agents that should collaborate to scan a single region. The contractor coordinates this
task, partitioning the region according to the team members’ capabilities.

The relative size of each subregion can be calculated by determining approximately
how large an area can be scanned by each participant in any given period of time. The
most significant parameters involved in this calculation can be summarized as follows:

– How quickly can and should the participant fly? This depends on the physical flight
envelope of the platform, but also on the characteristics of the sensors being used as
well as the desired density and quality of the scan results. For example, a LIDAR
sensor may produce a certain number of scan lines per second, and the faster an
aircraft flies, the longer the distance between two such lines on the ground. The
desired scan quality then restricts the range of permitted air speeds.
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Fig. 10: How to generate one scan strip along the longest edge of a polygon P.

– How wide are the “strips” that can be covered by the sensors in question during
a single flight? This depends on field of view restrictions but also on resolution
requirements and the range of possible altitudes, which can in turn depend on other
mission constraints.

If each team member i can scan an area of ai per time unit, then it should be assigned a
partition whose proportional size is ai/∑k ak of the area of the entire polygon. We then
apply a polygon decomposition algorithm [12] to generate subpolygons of this size,
anchored in locations calculated from the starting position of each participating UAV.

The expansion of scan-map for multiple participants is very similar to the one shown
in Fig. 8, the only difference being that scan-map is followed by a concurrency (C)
node whose children consist of one sequence subtree for each platform involved. The
scan-map-single node in each such subtree specifies the same mission parameters as the
original scan-map node except that the team consists of one specific participant and the
scan region is set to its subregion. Consequently each individual member will first take
off and then scan its specific partition.

6.1 Scan Trajectory Generation

Scan trajectories can follow patterns such as spirals, expanding squares and lawnmower
patterns. For 3D reconstruction, flying in straight lines generally yields more uniform
results. It is also important to reduce the number of turns, especially when using fixed-
wing aircraft, as turns do not contribute to data collection. We therefore define a tra-
jectory generator that in each step generates a flight line along the longest side of the
remaining region to be scanned. For rectangles, this results in a lawn mower pattern.
Notation. A polygon P is defined in terms of a sequence of vertices 〈P1...Pn〉 ∈ Rn.
Fig. 10 shows two examples with n = 5 vertices. We introduce the following notation:
By k, we mean ((k−1) mod n)+1. Thus, assuming n = 5, we have Pn+1 = P1, ensuring
that indexes can “wrap around”. Li is the infinite line going through the points Pi and
Pi+1. Fig. 10 shows a finite segment of each line. di = dist(Pi,Pi+1) is the linear distance
between Pi and Pi+1. For example, d5 is the distance between P5 and P6 = P1.
Algorithm. Trajectories are generated by a recursive algorithm generate-trajectory(P)
that returns a list of flight line coordinates.
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(1) Select the scan direction to be parallel to a longest segment Ls of the polygon P ,
so that ∀i.di ≤ ds. In both polygons in Fig. 10, line L4 is the unique longest segment.

(2) Let ~us be a vector perpendicular to Ls, pointing toward the interior of the poly-
gon P (see Fig. 10). Let d be the desired distance between flight lines, taking into
account the need for overlap, and let the infinite line L′s be the translation of Ls in the
direction ~us by the distance d. Then Ls and L′s provide two of the edges for the “ef-
fective” (non-overlapping) part of a scan strip as highlighted in Fig. 10. Let LW be the
translation of Ls in the direction ~us by the distance d

2 . A finite segment of this line will
be followed by the UAV while scanning.

(3) We now want to find two waypoints Wj and Wj+1 representing the start and end
of the new flight line. As illustrated for Wj = W4 and Wj+1 = W5 in Fig. 10, these can
be situated the border of P , to ensure that no part of the polygon is missed.

(3a) Suppose L′s intersects P in two points, P′s and P′s+1, as is the case for L′4, P′4
and P′5 in Fig. 10. We can always find Wj+1 by considering the “leftmost” point among
Ps+1, P′s+1 and any polygon vertices that may intervene between these two points on the
polygon (in this case none). A similar situation applies at P′s , the other end of L′s, where
P3 intervenes between P4 and P′4 and is the rightmost of these points.

We therefore take the set of all such points, project them orthogonally onto Ls, and se-
lect two maximally distant points as Wj and Wj+1 defining a new flight line [Wj,Wj+1].
When the flight line is flown, a strip corresponding to the rectangle of width d high-
lighted in blue will be effectively covered, while information is received from a wider
rectangle to ensure overlap and compensate for any lack of precision in following the
flight line. The rectangle of width d should now be removed from the polygon P ,
resulting in a new polygon P ′ representing the region that remains to be covered.

P ′ is created by removing all the vertices in Ps→s+1, replacing them with P′s and
P′s+1. The first polygon of Fig. 10 then becomes 〈P1,P2,P3,P′4,P

′
5〉, while the second

polygon becomes 〈P1,P2,P′4,P
′
5〉, having fewer vertices than before. Then generate-

trajectory is called for the new polygon (unless it is empty).
(3b) Suppose instead that L′s has less than two intersections with the polygon P .

Then the remaining part of the polygon will be completely covered after generating this
last scan strip. In this case, all vertexes from P are projected onto LW , after which the
two most distant points are selected as endpoints for the new flight line.
This procedure generates a set of flight lines {(W0,W1), ...(Wm−1,Wm)}, which the air-
craft can cover in any order. Typically, a helicopter would follow them in the order they
are defined, but for a fixed wing it might be better to skip a flight line and then come
back to it later in order to accommodate a need for a larger turning radius.

7 Experiment Results: Collaborative 3D Reconstruction

Our experiments took place in Isollaz, Italy, in the region depicted in Fig. 3, at an
altitude of 800 meters. One of the missions tested and executed has been described
in detail in previous sections of this paper together with the integrated functionalities
required to do such a complex mission. For both legs of the mission, the delegation,
planning, TST generation, and flight executions were fully autonomous. The intent was
to generate 3D models of various resolutions for input into the Dynamic Cognitive
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Fig. 11: 3D view
of the generated
scan pattern for
the RMAX and
Region 2. The
green lines
represent the
region to scan.
The purple lines
indicating the
lawnmower
pattern are
marked with
differing
altitudes.

Map where the models and data could then be used to support alpine rescue teams.
Additionally, orthophoto mosaics, individual images and partial semantic classification
of the operational environment were also generated from the raw data collected by the
two UAVs. The missions tested were part of an evaluation demonstration for the EU
project SHERPA (www.sherpa-project.eu).

Since this is an application overview paper, we only summarize the experimental re-
sults here, focusing on the integrated framework required for such missions and less
on the sensor and fusion aspects. The companion paper [13] presents several collabo-
rative UAV flights from two different locations with diverse terrain (Motala, Sweden
and Isollaz, Italy). The distributed reconstructions generated from the optical camera of
the fixed-wing and the Lidar of the rotary-wing UAV reveal a relative geo-referencing
offset in the range of up to few meters and a slight rotational misfit. Consequently, the
companion paper focuses on minimizing the rotational and translational misalignment
of the point-clouds. In particular, the performance of classical point-cloud alignment
methods such as Iterative Closest Point (ICP) variants [14,15,16,17] are compared to
a novel probabilistic data association approach (PDA) [18] that was designed to reg-
ister dense to sparse point-clouds: In contrast to ICP, PDA associates a point in the
source point cloud with a set of points in the target cloud and, in simulation, demon-
strated lower misalignment errors [18]. For quantitative results concerning convergence
of initial configurations and misalignment errors in the real-world experiments we refer
to [13].

Fig. 11 depicts the scan trajectories generated for the RMAX to scan Region 2 in
the second leg of the mission. Similar patterns used by the senseSoar and its internal
path planner are also generated to scan Region 1 in the first leg of the mission. Each
platform uses its own motion planning system. The lawn mower pattern generated by
the RMAX is specific to the mission constraints and optimizes paths relative to the
sensor constraints of the platform. The objective is to provide 100% coverage of an
allocated region at a required resolution. Fig. 12 shows the first strip of the point-cloud
generated by the laser scanner mounted on the RMAX. Fig. 13 shows the point-cloud
generated by the optical camera of the senseSoar using Pix4D software (pix4d.com).

One of the challenges of these missions is in their distributed nature where different
robotic platforms collect different types of data using different sensors with different
resolutions for data collection. For such diverse models and data, different fusion and
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Fig. 12: The first
strip of the
point-cloud
generated by the
laser mounted
on the RMAX.

Fig. 13: Part of the point-cloud
generated by the RGB camera mounted
on the senseSoar using Pix4D software;
the points are colored by pixel
intensities.

association techniques would be required at many different levels of abstraction to pro-
vide a consistent model in the dynamic cognitive map. For instance, Fig. 14 shows
a point cloud strip collected by the RMAX. This has to be fused and aligned with
the pointcloud generated by the senseSoar from its collection of images, as shown in
Fig. 15 which is generated using Pix4D software. Queries now made to the DCM for
3D models of regions could then be done seamlessly, where consistently aligned com-
binations of low and high resolution data would be output. Once raw data and DEM
models are generated and stored in the DCM, one could then begin to build seman-
tically tagged abstractions on top of these 3D models. For instance, using LAStools
(http://www.cs.unc.edu/∼isenburg/lastools/), the semantic classifications shown in
Fig. 16 and Fig. 17 were generated for region 2.

8 Conclusions

This paper has presented a multi-purpose multi-agent/robotic infrastructure that has
been deployed and field tested for collaborative 3D mapping applications. It includes a
great variety of specific functionalities studied formally in the multi-agent community.
The novelty here is that many of these functionalities, although grounded formally, have
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Fig. 14: First Strip of Point-cloud generated by the Laser mounted on the RMAX,
including some trees. The pointcloud is colored by height.

Fig. 15: RMAX strip of point-cloud aligned with the senseSoar point-cloud using
Pix4D software.

Fig. 16: Color coded semantic classification: Vegetation:Green, Terrain:Brown,
Gray:Unclassified

Fig. 17: Filtered semantic classification: Vegetation:Green

been instantiated procedurally in a highly complex, integrated, scalable, collaborative
framework for interacting robotic systems. Although only two robots and two humans
have been used in the experiment, one can easily add additional robotic systems to a
team in a modular and transparent manner. There is much additional research to do
in terms of extending the current functionalities and in ensuring the robustness of the
infrastructure. The system here can be described as a mature prototype with great po-
tential to push state-of-the-art in multi-agent systems.
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