
LTHs 7:e Pedagogiska Inspirationskonferens, 30 augusti 2012

Abstract—We claim that competitive elements can improve the

quality of programming and algorithms courses. To test this, we
used our experience from organising national and international
programming competitions to design and evaluate two different
contests in an introductory algorithms course. The first contest
turned lab assignments into a competition, where two groups ran
competitions and two were control groups and did not compete.
The second, voluntary, contest, consisting of 15 international
programming competition style problems, was designed to
support student skill acquisition by providing them with
opportunities for deliberate practise. We found that competitive
elements do influence student behaviour and our main
conclusions from the experiment are that students really like
competitions, that the competition design is very important for
the resulting behaviour of the students, and that active students
perform better on exams.

We also report on an extra-curricular activity in the form of a
semester long programming competition as a way of supporting
student's deliberate practise in computer programming.

Index Terms—Computer science education, Programming
competitions, Skill acquisition, Deliberate practise

I. INTRODUCTION
riting computer programs is a craft. Academic courses
in computer programming teach basic concepts and

fundamentals, but to become a good programmer a great deal
of time dedicated to training with an emphasis on quality has
to be invested by the student. There are studies indicating that
it takes around ten years to transform a programming novice
into an expert [8]. This view is supported by Ericsson et al.,
according to whom, approximately 10000 hours of deliberate
practise is required to become an expert in an area [3]. Our
experience from organising programming competitions at
local, national, and international levels is that such
competitions stimulate and inspire students to solve
programming problems by themselves, thereby practising both
problem solving and programming. This increases the
students’ skills as programmers and problem solvers, which
substantially increases their employability – a fact which is
evidenced at the international level, where top students are
offered trainee positions at market leading companies, and at

This work was supported in part by the Pedagogical Development Group at

The Institute of Technology, Linköping University.
Fredrik Heintz, fredrik.heintz@liu.se, Department of Computer and

Information Science, Linköping University, Sweden.
Tommy Färnqvist, tommy.farnqvist@liu.se, Department of Computer and

Information Science.

the local level, where we have been contacted numerous times
about students participating in our competitions.

We have investigated two different ways of using
competitive elements for supporting student's deliberate
practise in computer programming: Extra-curricular activity in
the form of a semester long programming competition and as
parts of a Data Structures and Algorithms course.

A. Deliberate Practise
To become an expert it is necessary to engage in deliberate

practise, activities that are designed to lead to improvements
of specific aspects of performance [3]. These activities should
stretch an individual just beyond his or her current abilities,
provide immediate feedback, be repeated multiple times, and
require significant effort and full concentration.

A theory which supports the creation of appropriate
deliberate practises is the skill acquisition model of Dreyfus
and Dreyfus [1]. According to it, a student normally passes
through five developmental stages, designated novice,
competence, proficiency, expertise and mastery. In early
stages detailed instructions are required while in later stages a
tacit understanding of how to use the skill to achieve desired
results even in novel situations has been developed. This
implies that the type of activities and feedback changes when
progressing through the stages.

II. CASE STUDIES
There have been a considerable number of attempts in

higher education institutions to build applications for
automated assessment for different types of assignments. Due
to the specific nature of programming assignments, automated
evaluation of user submitted programs is fairly natural and has
been used for over forty years. In particular, such use not only
saves valuable instructor time, but also ensures impartial and
immediate feedback on programs submitted. For example,
Enström et al. [2] describe using automated assessment of lab
assignments. Guerreiro and Georgouli [5, 6] additionally used
automated judging for self-assessment purposes and Gárcia-
Mateos and Fernández-Alemán [4] tried out replacing the final
exam in a course with a series of activities involving a web-
based judge.

A. Local Championship in Algorithmic Problem Solving
To provide appropriate deliberate practise to all students we

have started a department championship in algorithmic
problem solving. To this end, we have created a web-based
system, interfacing the UVa Online Judge [7]. The current

Pedagogical Experiences of Competitive
Elements in an Algorithms Course

Fredrik Heintz and Tommy Färnqvist, Linköping University, Sweden

W

LTHs 7:e Pedagogiska Inspirationskonferens, 30 augusti 2012

competition is individual and runs the whole semester. Every
week each student receives three selected problems of varying
difficulty with a common theme. A student can also at any
time create a challenge of a particular difficulty, which means
that a problem of the desired difficulty is randomly selected
from a large database. To support feedback directly from other
students, the contest design encourages other students to solve
the same problems and discuss these in a forum. To support
detailed feedback on solutions, threads in the forum can be
locked to be viewable by only those that have solved the
problem being discussed. Students therefore both get
immediate feedback from an automatic judge and detailed
feedback from staff and other students. Multiple related
problems of increasing difficulty provide repetition and stretch
the students’ abilities. Since solving these problems require
intense effort and concentration all the conditions for
deliberate practise are satisfied by the competition.

Fig. 1. Overview of activity in department championship.

The design of the competition influences the student
activity, as Fig. 1 shows. When it only had 3 weekly problems,
the maximum number of problems solved was relatively
limited (spring and fall 2010). When challenges replaced
weekly problems (fall 2011) the number of problems
increased significantly, but the opportunities for discussion
were reduced as few students solved the same problem. When
challenges and weekly problems were combined (spring 2012)
the competition could get the best of both designs. Informal
feedback from the students also reinforce our perception that
the competition has evolved to become better balanced, both
in terms of difficulty and required effort as well as being able
to keep the interest up during a longer period of time.

B. Competitive Elements in a Data Structures and
Algorithms Course (DALG)
The DALG course is given at the start of the second year

for students from the three main Computer Science curricula
at our university, and is organised in traditional monolithic
form with weekly lectures, class room sized tutorials,
laboratory sessions, and a written final exam. The course
comprises 6 ECTS credits, and during fall 2011 there were
140 students enrolled. There is one failing grade “U”, and
passing grades are designated 3, 4, and 5.
TABLE I Average credits taken and average grades in
programming, math, and CS courses for different groupings

 All Group 1 Group 2 Group 3
Total credits 42.4 43.6 43.4 40.0
Prog. credits 11.0 10.9 11.1 11.0
Prog. grade 3.73 3.75 3.84 3.58
Math credits 15.0 16.2 16.1 12.4
Math grade 3.61 3.57 3.65 3.60
CS credits 15.1 14.6 14.8 16.0
CS grade 3.78 3.75 3.84 3.74

1) Lab Assignment Contests
To compare different designs for the lab assignment contest

we had four different groups. The first group competed based
on speed (days from start of the course) and correctness (+3
penalty days for incorrect submissions). The second group
competed based on quality (cyclomatic complexity and
instruction count) and efficiency (runtime and memory
consumption). The third and fourth groups were control
groups and did not compete. Table I gives various background
statistics about the groups at the start of the course. We have
performed extensive statistical testing and found that the only
significant difference (at the 5% level) between any groupings
in Table I concerns math credits taken for Group 1 and Group
3, where both the means as well as the entire populations are
significantly different. Group 4 consisted of students from our
IT programme, while the other groups contained a mixture of
students from our two other main CS programmes. The IT
students take a rather different set of courses compared to our
other CS students, and also incorporate problem based
learning in an essential way, making it nonsensical to include
their results from the first year in the comparison.

Fig. 2. Submission activity for the four groups on the four lab
assignments in the DALG course.

All groups had to submit their labs to an online system as
soon as they thought they were ready. We found that both
competing groups were influenced by our competitions, with
the strongest effect being that the submission pattern for the
groups differs dramatically. This is shown in Fig. 2, where
group 1 worked very fast and group 2 slightly faster than the
control groups (group 3 and group 4).

In particular, the lectures did not go through the material for
the first lab assignment until week two of the course, so the
submission pattern of group 4 is more like what you would
expect during a year with no competitions. We believe that
since group 3 consisted of students from the same programmes
as the competing groups the thrill of competition more easily

LTHs 7:e Pedagogiska Inspirationskonferens, 30 augusti 2012

spilled over to group 3 than to group 4. There were also large
variations in the quality of the code between the groups.

2) Voluntary Contest
We have used our system, mentioned in II.A, to provide a

voluntary contest in the DALG course. After each lecture the
students enrolled in the contest received a challenge with a
programming problem to solve. The problems were selected to
either reinforce and repeat a topic just addressed in the lecture
or to stretch the students’ abilities by demanding use of deeper
knowledge. The online judge used provides immediate
feedback and since the contest requires students to solve
challenges as quickly as possible due to time penalties
otherwise incurred, it should prove to be an intensive
experience. All together this contest also satisfies the
conditions for deliberate practise.
TABLE II Average passing grade on final exam for different
groupings.

Student group Total
number

Took
exam

Passed
exam

Average
grade

All 140 118 95 3.36
Answered questionnaire 79 74 62 3.47

Completed all labs 76 73 62 3.47
Registered for voluntary contest 30 29 27 3.56

Solved at least one task in contest 15 15 15 3.6
Table II shows that 30 students registered for the voluntary

contest and that 15 solved at least one task. The tendency that
the average grade rises with rising commitment to our extra
activities is not strong enough to be significant if we only look
at the averages. However, the distribution of grades for
students either enrolled in the voluntary contest and/or solving
at least one task in the contest is significantly different (at the
10% level) from the grade distribution of all students.
TABLE III Average credits taken and average grades in
programming, math, and CS courses for different groupings

 All Answered
questionnaire

Completed
all labs

Reg. for
contest

Solved at
least one task

Total credits 42.4 45.7 46.2 45.4 50.0

Prog. credits 11.0 11.4 12.1 12.6 13.5
Prog. grade 3.73 4.00 3.83 4.00 4.27

Math credits 15.0 16.5 16.1 15.8 16.9
Math grade 3.61 3.68 3.70 3.68 3.89

CS credits 15.1 15.6 16.4 16.9 18.4
CS grade 3.78 4.06 3.89 4.04 4.26

Inspecting Table III, it would seem that an explanation for
students enrolled in the voluntary contest performing better on
the final exam could be that they are already stronger students,
based on their past performance. Indeed, the average number
of total credits taken by students solving at least one task is
significantly larger (at the 5% level) than the average number
of total credits over all students. The same holds for credits
from programming courses for students registered for the
contest and/or solving at least one task when compared to all
students, as well as for CS credits for students solving at least
one task. The average programming grade for students solving
at least one task is significantly different from the average
programming grade of all students (at the 10% level). No other
such explanatory significant differences were found. It would

seem that, statistically, the whole effect of students performing
better on the final exam if they were enrolled in the voluntary
contest cannot be explained by the stronger background of
these students.

3) Questionnaire
At the end of the course we asked the students to fill out a

questionnaire containing different questions depending on
their involvement in different course activities. 79 out of 140
students responded. With respect to the background variables
in Table III, the only difference between students answering
the questionnaire and all students was that they have
significantly different average CS grades (at the 10% level).

We posed both multiple choice questions as well as
questions allowing free text answers. Due to space constraints
we are only able to relate a few of the more important ones
here. On the question “What is your general attitude towards
the DALG contests”, 22% answered very positive, 35% fairly
positive, 30% neutral, 11% fairly negative, and 0% very
negative, reinforcing the feeling of the course assistants and
the authors that our experiments were received well in general.
It might seem strange that so many students were positive
towards competitive elements in courses while relatively few
of them actually participated actively in the activities
proffered. The explanation for this can be found in the answers
to the free text questions, where students cite lack of time and
/or lack of incentive in form of credits or points on the exam
as the main reason for not participating actively. We also want
to mention that general student satisfaction with the course, as
evaluated by university central instruments, remained at the
same (high) level as previous years.

III. CONCLUSION
Our main conclusions are that students enjoy competitive

elements in programming courses and that the competition
design highly influences the student behavior. We will
continue studying how to design competitions to achieve
particular goals such as increasing the number of students that
pass the final exam in the DALG course.

REFERENCES
[1] Dreyfus, S. E. and Dreyfus, H. L, “A five-stage model of the mental

activities involved in directed skill acquisition”. Technical report, 1980.
[2] Ensröm, E., Kreitz, G., Niemelä, F., Söderman, P., and Kann, V., “Five

years with Kattis – using an automated assessment system in teaching”.
In Proc. of the IEEE Frontiers in Education Conference (FIE), 2011.

[3] Ericsson, A., Nandagopal, K., and Roring, R., “Toward a science of
exceptional achievement: Attaining superior performance through
deliberate practice”. Annals of New York Academy of Science, 2009.

[4] Gárcia-Mateos, G. and Fernández-Alemán, J., “A course on algorithms
and data structures using on-line judging”. In Proc. of the 14th annual
ACM SIGCSE conference on Innovation and Technology in Computer
Science Education (ITiCSE), pp. 45–49, 2009.

[5] Guerreiro, P. and Georgouli, K., “Combating anonymousness in popu-
lous CS1 and CS2 courses”. In Proc. of the SIGCSE conference on Inn-
ovation and Technology in Computer Science Education (ITiCSE), 2006.

[6] Guerreiro, P. and Georgouli, K., “Enhancing elementary programming
courses using E-learning with a competitive attitude”. International
Journal of Internet Education, pp. 38–46, 2008.

[7] UVa Online Judge, 2012. http://uva.onlinejudge.org/
[8] Winslow, L. E., Programming pedagogy - a psychological overview.

ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17–22, 1996.

