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Abstract

For logical artificial intelligence to be truly useful,
its methods must scale to problems of realistic size.
An interruptible algorithm enables a logical agent
to act in a timely manner to the best of its knowl-
edge, given its reasoning so far. This seems nec-
essary to avoid analysis paralysis, trying to think
of every potentiality, however unlikely, beforehand.
These considerations prompt us to look for alterna-
tive reasoning mechanisms for filtered circumscrip-
tion, a nonmonotonic reasoning formalism used
e.g. by Temporal Action Logic and Event Calcu-
lus. We generalize Ginsberg’s circumscriptive the-
orem prover and describe an interruptible theorem
prover based on abduction that has been used to
unify planning and reasoning in a logical agent ar-
chitecture.

1 Introduction
The world around us is uncertain. In fact, we have to
cope with “pervasive ignorance”[Pollock, 2008] about most
things. This is possible by reasoning defeasibly rather than
purely deductively. But the world is also dynamic. Even
when wedo have all the relevant knowledge, we may not
have time to think through all its consequences before the
changing circumstances make our conclusions obsolete. This
is most evident when planning our actions. Unless there is
great risk involved, we most often carry out our plans after
considering only a small subset of their consequences.

If we want to build logical agents that act autonomously to
solve real world problems, we have to equip them with sim-
ilar mechanisms to cope. Moving from simple benchmark
problems to problems of realistic size has proven difficult due
to the intractability of logical reasoning. An interruptible al-
gorithm enables an agent to act in a timely manner, to the
best of its knowledge given its reasoning so far. This seems a
necessary feature of any nonmonotonic reasoning mechanism
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aimed to scale towards solving real world problems involving
very large knowledge bases.

These considerations prompt us to look for alternative
reasoning mechanisms for filtered circumscription, a non-
monotonic logic formalism for reasoning about action and
change used e.g. by Temporal Action Logic (TAL). Regular
theorem provers are not directly applicable to TAL’s second-
order circumscription axiom. This hinder has usually been
overcome by applying predicate completion[Doherty and
Kvarnstr̈om, 2007] to produce a first-order equivalent the-
ory. But predicate completion involves a potentially costly
computation applied to the entire knowledge base before any
reasoning can begin. Moreover, the transformation must be
recomputed whenever the agent’s beliefs change, even e.g.
when considering the effects of an action while planning. Fi-
nally, the reasoning involved is not interruptible. Predicate
completion works by turning defeasible reasoning into de-
ductive proof. These proofs must consider all potential ob-
jections to a defeasible conclusion before any answer can be
given.

We extend Ginsberg’s circumscriptive theorem prover
[1989] to filteredcircumscription. This forms the basis for an
interruptible theorem prover based on abduction that operates
on the Temporal Action Logic formulas directly, without any
compilation step. We show how the same reasoning mecha-
nism can be used to perform abductive planning, providing a
unified planning and reasoning framework in a logical agent
architecture. Such an agent could act in an any-time man-
ner, using tentative answers based on defeasible assumptions
if forced to act quickly, while still considering all potential
objections given sufficient time for deliberation.

2 Preliminaries
While the results in this paper should be interesting for other
logics of action and change, such as the Event Calculus, we
focus on Temporal Action Logic and hence give a brief intro-
duction to it. Similarly, while different proof systems could
be used, our work implements the natural deduction system
introduced below.

2.1 Temporal Action Logic
Temporal Action Logic is a highly expressive logic for rea-
soning about action and change. The origins of TAL are
found in Sandewall’s Features and Fluents framework[1994].



Sandewall classified different variants of non-monotonic rea-
soning according to the types of reasoning problems for
which they are applicable. TAL is a stand-alone logic based
on one of the most general variant of these.

A central concept in TAL isocclusion. It is introduced
as a flexible way to deal with the frame problem and re-
lated problems. The basic idea is to make fluent values,
given byHolds(time, f luent,value), persist over time by min-
imizing their opportunities for change. A predicateOc-
clude(time,fluent)represents the possibility of a fluent chang-
ing its value. This is a key difference from earlier attempts
to use circumscription to minimizechangerather thanpoten-
tial for change. Negated occlusion is then the property of a
fluent not being able to change its value from the previous
time point, i.e. persistence. A fluentf ’s default persistence
at all time points (assuming unbound variables are implicitly
universally quantified) is then axiomatized by:

¬Occlude(t +1, f ) → (Holds(t, f ,v) ↔ Holds(t +1, f ,v))

Detailed control over fluent persistency can be exercised
by adding similar persistence formulas, collectively denoted
by Tper.

Situations that are known to cause a fluent’s value to
change must also occlude that fluent. E.g., actions must
explicitly occlude affected fluents. We do not wish, how-
ever, to enumerate all situations in which a fluent isnot oc-
cluded. The assumption is that, by default, things do not
change without a reason. The Features and Fluents frame-
work usedpreferential entailmentto enforce this. Logical
consequence is defined only w.r.t. models in which the exten-
sion ofOccludeis minimal. Action occurrences, specified by
the Occurs(timestart, timeend,action) predicate, must also be
minimized to prevent occlusion by spurious actions. But the
question of how to compute the intended consequences was
left open.

TAL provides asyntacticcharacterization using a form
of circumscription calledfiltered circumscription[Doherty
and Lukaszewicz, 1994], also referred to asforced separa-
tion [Shanahan, 1997]. Circumscription is used to minimize
OccludeandOccurs, while fixing Holds, but Tper is forcedly
separated from the rest of the theoryT, outside the scope of
the circumscription:

Circ(T;Occlude,Occurs)∧Tper

If the persistence formulasTper had been included in the
circumscription, then the extensions ofOccludehad not been
made any smaller. To see this, note e.g. that the contra-
positives of formulas inTper would have said that fluent
change isby itself a reason for occlusion. Removing these
formulas from the circumscription leaves only occlusion with
someexplicitcause, such as being occluded by an action’s ef-
fects. The filtering occurs when we addTper to the minimized
theory, removing all models in which a fluent changes despite
not being occluded.

This short introduction to TAL is intended to aid under-
standing of the rest of this paper. A more detailed presenta-
tion with a complete list of TAL’s features is available else-
where[Doherty and Kvarnstr̈om, 2007].

2.2 Natural Deduction
Example proofs will be presented in Suppes’ style natural
deduction[Pelletier, 1999]. Each proof row consists of a
premise set, a row number, the formula, and a list of row
numbers identifying the previous proof rows used by the cur-
rent inference step (or empty for given input formulas). The
premise set is a convenient bookkeeping device that keeps
track of the assumptions that a formula depends on. This is
important, not only for natural deduction’s ability to construct
proofs using temporary assumptions, but also during abduc-
tive proofs to label formulas by the set of ground instances
of abducibles required. An assumption depends only on itself
and thus its premise set only contains its own row number.
Inference rules then combine their premises’ dependency sets
to form the conclusion’s premise set, usually by taking the set
union.

Another useful device is an explicit notation for proof
goals. We writeShow Pwhen we adopt an interest in proving
P, either because it is given as the overall proof goal, or as the
result of reasoning backwards from the proof goal. Both de-
vices are illustrated by the following simple abductive proof,
where the conclusion is allowed to depend on a consistent set
of ground instances of the abducible¬Ab(x):

{1} 1 Bird(x)∧¬Ab(x) → Flies(x)
{2} 2 Bird(tweety)
{} 3 Show Flies(tweety)
{} 4 Show¬Ab(tweety) 1,2,3
{5} 5 ¬Ab(tweety) 4
{1,2,5} 6 Flies(tweety) 1,2,5

3 Predicate Completion
TAL’s syntactic characterization in terms of filtered circum-
scription produces a second-order theory to which regular
theorem provers are not applicable. Fortunately, by placing
certain syntactic restrictions on the TAL formulas one can
ensure that the second-order circumscription formula can be
compiled into an equivalent first-order characterization[Do-
herty, 1996]. The transformation is equivalent to Clarke’s
predicate completion[1978].

To see how it works, consider the Yale Shooting Problem
formulated in TAL. There is an action for loading the gun, an
action for firing the gun and killing Fred the turkey just in case
the gun was loaded, the observation that Fred is initially alive,
and a narrative consisting of the load and fire actions with a
small wait in between. Note how the actions explicitly release
the affected fluents from persistence by occluding them:

Occurs(t1, t2, load) →
Occlude(t2, loaded)∧Holds(t2, loaded, true)

Occurs(t1, t2, f ire) →
Holds(t1, loaded, true) →

Occlude(t2, loaded)∧Holds(t2, loaded, f alse)∧
Occlude(t2,alive)∧Holds(t2,alive, f alse)

Holds(0,alive, true)
Occurs(1,2, load)
Occurs(3,4, f ire)

Without saying anything about when fluents arenot oc-
cluded, the above formulas do not predict the value ofalive



at time points other than 0, even if we add the persistence for-
mulasTper. We must first perform the predicate completion
transformation step, minimizing fluent change by extending
the above theory with additional formulas that correspond to
the circumscription ofOccludeandOccurs:

Occlude(t, f ) ↔
f = loaded∧
∃t1[Occurs(t1, t, load)∨

Occurs(t1, t, f ire)∧Holds(t1, loaded, true)]∨
f = alive∧
∃t1[Occurs(t1, t, f ire)∧Holds(t1, loaded, true)]

Occurs(t1, t2,action) ↔
t1 = 1∧ t2 = 2∧a = load∨
t1 = 3∧ t2 = 4∧a = f ire

The new theory makes it possible to derive non-occlusion
deductively. Adding theTper filter results in the intended con-
sequences, e.g.¬Holds(4,alive, f alse).

This transformation works well for research benchmark
problems. But the methodology has undesirable properties
from the point of view of scalability. The transformation is
applied to most of the entire knowledge base and is invali-
dated whenever some parts of the knowledge base change. A
logical agent in a dynamic environment could have even sim-
ple queries stymied by potentially expensive computations.

Moreover, while the theorem prover can be used to rea-
son about the consequences ofgivenactions, it is not directly
applicable to the more fundamental problem of reasoning
about which actions to do in the first place. Even consider-
ing whether to do an action would require adding that action
occurrence to the theory and repeating the transformation.

TALplanner [Kvarnstr̈om, 2005] avoids this problem by
using special purpose planning algorithms to generate action
occurrences. TAL is still used as a semantics for the finished
plans, but the planningprocessis metatheoretical. In contrast,
the next section will introduce an alternative abductive infer-
ence mechanism that naturally extends to planning, resulting
in a unified planning and reasoning system without the need
for a special purpose planning algorithm.

4 Abduction and Filtered Circumscription
Ginsberg[1989] presents acircumscriptive theorem prover
(CTP) with properties conducive to scalability. The algorithm
makes it possible to compute the logical consequences of a
circumscribed theory without constructing the second-order
circumscription axiom or compiling the theory beforehand.
Of course, since circumscription is not even semi-decidable
in the general case, some restrictions apply:

1. All formulas are universal, i.e. all its axioms can be writ-
ten in the form∀~x P(~x) whereP is quantifier free.

2. The theory includes unique names and domain closure
axioms.

3. The circumscription policy does not fix predicates.

4. The entire theory is circumscribed.

In the rest of the paper we assume that the theories we are
interested in satisfy Restrictions 1 and 2, including only fi-
nitely many objects and time points.

Restriction 3 is not satisfied by TAL’s circumscription pol-
icy as defined in Section 2.1. This, however, is not as trou-
blesome as it might seem. As de Kleer and Konolige have
shown[1989], any predicateP can be fixed by simultaneously
minimizing bothP and¬P. Along with their proof they pro-
vide the intuition that this works since any attempt to make
P smaller will automatically make¬P larger, and vice versa.
In the end, therefore, the extension ofP remains fixed. Using
this equivalence we can eliminate the fixation of theHolds
predicate from TAL’s circumscription policy:

Circ(T;Occlude,Occurs,Holds,¬Holds)∧Tper

Unfortunately, Restriction 4 is not as easily remedied. The
formulas belonging toTper were kept outside the scope of the
circumscription for a reason. They were not to affect the min-
imization ofOccludeandOccurs, while still acting as a filter
to remove models in which fluents change without being oc-
cluded.

4.1 Filtered Circumscription
In order to extend Ginsberg’s method to a filtered circum-
scriptive theorem prover (FCTP) we first note that we can
simplify the formulas to which it is applied.

Lemma 1. Regular theorem proving can be used to reserve
the FCTP for proving negative literals of minimized predi-
cates, without loss of generality.

Proof. Let T denote a theory andM the set of predicates to
be minimized. According to Restriction 1 above, any proof
goalG must be universal. If the theory is first put in negation
normal form, the following serves as an example of a set of
logical equivalences that can be used to reduce the filtered
circumscriptive proof goalG to a literal:

F,Circ(T;M) � ∀xP(x) ⇔ F,Circ(T;M) � P(c)

Where c does not occur in P(x) nor
any premise that P(c) depends on.

F,Circ(T;M) � P↔ Q ⇔

{

F,Circ(T;M) � P→ Q
F,Circ(T;M) � Q→ P

F,Circ(T;M) � P∧Q ⇔

{

F,Circ(T;M) � P
F,Circ(T;M) � Q

F,Circ(T;M) � P∨Q ⇔ F,Circ(T;M) � ¬P → Q

F,Circ(T;M) � P→ Q ⇔ F,Circ(T;M),P � Q

The only remaining case is whenG is a literal(¬)P. Propo-
sition 12 in [Lifschitz, 1994] tells us that if(¬)P is pos-
itive w.r.t. M (or is not one of the predicates inM), then
Circ(T;M) � (¬)P iff T � (¬)P, in which case we can con-
tinue using regular first-order theorem proving. Thus we need
only resort to the FCTP when trying to prove literals that are
negations of minimized predicates.

While Ginsberg’s implementation is based on an
assumption-based truth maintenance system[de Kleer,
1986], the CTP algorithm can now be formulated in terms of
abduction. LetT denote our theory,M be the set of predicates



to be minimized, and the goal formulaG be the negation of
a predicate in M. The CTP then corresponds to the following
algorithm[Brewkaet al., 1997]:

1. Let the set of abducibles be negations of predicates inM.

2. Abduce an explanationE for the goalG.

3. Check that there is no counter-explanation ofE, i.e. that
there is no explanationCE for ¬E.

This can be reformulated in terms of an inference rule. Ex-
planationsE and counter-explanationsCEare conjunctions of
ground abducible literals from Step 1 of the abductive algo-
rithm. (Since they are the result of abductive proof, we always
require them to be consistent with the theoryT.) Step 2 of the
algorithm is represented by the rule’s premise, Step 3 by the
rule’s qualification, and the fact that the algorithm computes
circumscription is stated by the rule’s conclusion:

T,E � G
CTP

Circ(T;M) � G

Where there is no CE consistent
with T such that T,CE� ¬E.

Ginsberg[1989] shows this sound and complete for cir-
cumscription. Furthermore, as we prove next, the only expla-
nation we need is the goal itself.

Lemma 2. When G is the negation of a predicate in M, the
CTP can use E= G without loss of generality.

Proof. Constraining the set of explanationsE does not affect
soundness. Let us consider completeness. Using a stronger
explanation thanE = G would gain us nothing since it can
only decrease the applicability of the CTP. Assume a weaker
explanationT,E′

� G. ThenT � E′ → G and (becauseG = E)
T � E′ → E. SinceE′ is weaker thanE, we knowE→ E′, and
consequentlyT � E↔ E′.

We want to extend this to filtered circumscription, which
adds afilter formula F. Since the filter is outside the scope
of circumscription, it should not invalidate any conclusion
drawn from the original theory by the inference rule above.
However, it might allow us to draw new conclusions. As
an intermediate step, we reformulate the CTP so that any
counter-explanations consistent withT are listed explicitly in
the conclusion.

Lemma 3. The following inference rule is sound and com-
plete for circumscription:

T,E � G
T,CE1 � ¬E
...
T,CEn � ¬E

Circ(T;M) � ¬CE1∧·· ·∧¬CEn → G

Where CE1, . . . ,CEn are all minimal
counter-explanations consistent with T.

Proof. Completeness follows since if the CTP can be used to
proveG, there are no consistent counter-explanations, and the
implication antecedent collapses to true. To prove soundness,
assume that we can use the above rule to proveG. It must
be the case thatCirc(T;M) � ¬CE1∧ ·· ·∧¬CEn. Since each
¬CEi is a disjunction of minimized predicates, and circum-
scription never makes the extension of a minimized predicate
larger, we haveT � ¬CEi . But the rule assumes everyCEi
consistent withT. This is only possible ifn = 0, in which
caseG follows from the original CTP.

Note that it suffices to consider minimal counter-
explanations. Suppose thatCEi ⊂CE′

i . If we can prove¬CEi ,
then we can also prove the weaker condition¬CE′

i .

The new rule makes it clear that when thereare counter-
explanations consistent withT, these could become inconsis-
tent after adding the filterF, and the implication used to con-
cludeG after all. A näıve implementation could simply add
all (finitely many) implications produced by the above proof
rule toT, creating a first-order equivalent1 of Circ(T;M), and
appendF. By running a sound and complete theorem prover
one could deriveG using Modus Ponens on the implications
whose antecedent counter-explanations are inconsistent with
this new filtered circumscriptionF,Circ(T;M):

Circ(T;M) � ¬CE1∧·· ·∧¬CEn → G

F,Circ(T;M) � ¬CE1∧·· ·∧¬CEn
MP

F,Circ(T;M) � G

It would, however, be very inefficient to add all implica-
tions when we only care about those implications that are rel-
evant in a proof ofG. Instead, we can get exactly the same
result by adding an FCTP inference rule that allows us to con-
clude G directly, whenever all counter-explanations consis-
tent withT are inconsistent with the filtered circumscription
F,Circ(T;M):

T,E � G
T,CE1 � ¬E
...
T,CEn � ¬E
F,Circ(T;M) � ¬CE1
...
F,Circ(T;M) � ¬CEn

FCTP
F,Circ(T;M) � G

Where CE1, . . . ,CEn are all minimal
counter-explanations consistent with T.

Theorem 1. The FCTP inference rule is sound and complete
for filtered circumscription.

1It is always possible to construct a first-order equivalent of
Circ(T;M) given Ginsberg’s assumption of universal theories with
unique names and domain closure axioms.



Proof. Each proof produced by the naı̈ve algorithm corre-
sponds to a proof using the FCTP rule, obtained by replacing
applications of Modus Ponens on one of the added implica-
tions by an application of the FCTP rule. Likewise, any ap-
plication of the FCTP rule can be replaced by an implication
and an application of Modus Ponens of the naı̈ve algorithm.

5 Examples
Let us use some TAL reasoning problems to illustrate the use
of the FCTP. The proofs are abbreviated compared to the
output of the implementation described in Section 6. E.g.,
we use the same (incremental and interruptible) consistency
checking mechanism as Poole’s THEORIST[1991] but do
not display these steps below. All of the examples refer to the
following filter formula asF :

¬Occlude(t +1, f ) → (Holds(t, f ,v) ↔ Holds(t +1, f ,v))

Consider first the simplest case of fluent persistency
throughF . The fluentaliveshould persist from 0 to 1:

{1} 1 Holds(0,alive, true)
{} 2 Show Holds(1,alive, true)

The only way to show this is to use the filterF’s persistence
axiom:

{} 3 Show¬Occlude(1,alive) F,1,2

While none of the given formulas entail non-occlusion, we
can apply the FCTP. First,¬Occlude(1,alive) can be used as
its own explanation:

{4} 4 ¬Occlude(1,alive) 3

Next, we must find all counter-explanations consistent with
T, i.e. all abductive explanations ofOcclude(1,alive) usingT:

{} 5 Show Occlude(1,alive) 3

Given the theoryT consisting of Row 1, it is impossible to
proveOcclude(1,alive). Consequently there are no counter-
explanations and the proof succeeds:

{1,4} 6 Holds(1,alive, true) F,1,4

The following example illustrates how the simultaneous
minimization of Holds and ¬Holds can provide counter-
examples that prevent credulous conclusions in the case of
incomplete information ofloadedin the initial state:

{1} 1 Holds(0,alive, true)
{2} 2 Holds(0, loaded, true) →

Occlude(1,alive)
{} 3 Show Holds(1,alive, true)
{} 4 Show¬Occlude(1,alive) F,1,3
{5} 5 ¬Occlude(1,alive) 4
{} 6 Show Occlude(1,alive) 4
{} 7 Show Holds(0, loaded, true) 2,6
{8} 8 Holds(0, loaded, true) 7
{2,8} 9 Occlude(1,alive) 2,8

Since any attempt to apply FCTP recursively to prove
Holds(0, loaded, f alse) fails, we have a consistent Row 8 that

counter-explains Row 5, and the proof fails. In other words,
since it is possible that the gun is loaded, it is not safe to rely
on the persistence of alive.

Here is an example in which Ginsberg’s CTP does not give
the expected result due to TAL’s filtered circumscription:

{1} 1 Holds(0,alive, true)
{2} 2 Holds(0, loaded, f alse)
{3} 3 Holds(1, loaded, true) → Occlude(2,alive)
{} 4 Show Holds(2,alive, true)

The goal follows if alive is not occluded. The first
invocation of FCTP comes up with the explanation for
¬Occlude(2,alive) in Row 6, but also a potential counter-
explanation forOcclude(2,alive) consistent withT in Row 9:

{} 5 Show¬Occlude(2,alive) F,1,4
{6} 6 ¬Occlude(2,alive) 5
{} 7 Show Occlude(2,alive) 5
{} 8 Show Holds(1, loaded, true) 3,7
{9} 9 Holds(1, loaded, true) 8

A recursive invocation of FCTP attempts to disprove
the counter-explanation by showing that its negation
(where¬Holds(t, f , true) ↔ Holds(t, f , f alse)) follows from
F,Circ(T;M):

{} 10 Show Holds(1, loaded, f alse) 8
{} 11 Show¬Occlude(1, loaded) F,2,9
{12} 12 ¬Occlude(1, loaded) 11
{} 13 Show Occlude(1, loaded) 11
{2,12} 14 Holds(1, loaded, f alse) F,2,12

This proof succeeds in Row 14 since the explanation in
Row 12 is not counter-explained. Row 9 is thus not consistent
with the filtered circumscription and the original conclusion
follows after all:

{} 15 Show¬Occlude(1,alive) F,1,4
{16} 16 ¬Occlude(1,alive) 15
{} 17 Show Occlude(1,alive) 15
{1,16} 18 Holds(1,alive, true) F,1,16
{1,2,6,12,16} 19 Holds(2,alive, true) F,6,18

Finally, let us consider a disjunctive example. Suppose that
activating a lamp either causes a change to the bulb’s lit state
or its broken state:

{1} 1 Occurs(t1, t2,activate) →
Occlude(t2, lit )∨Occlude(t2,broken)

{2} 2 Occurs(0,1,activate)

Predicate completion requires that the theory can be put in
the formΦ(t, f )→Occlude(t, f ) whereΦ(t, f ) does not con-
tain occurrences ofOcclude. But this is not possible given the
above disjunctive action effect. TAL’s predicate completion
has been applied to actions with non-deterministic effects,
but never when the occlusion itself is non-deterministic. The
FCTP, however, has no problems proving e.g. that one of the
fluents will not be occluded:



{} 3 Show¬Occlude(1, lit )∨
¬Occlude(1,broken)

{4} 4 Occlude(1, lit ) 3
{4} 5 Show¬Occlude(1,broken) 3
{4,6} 6 ¬Occlude(1,broken) 5
{4} 7 Show Occlude(1,broken) 5

The equivalences in Section 4.1 reduce the problem using
the assumption in Row 4 and the new goal in Row 5, which
has an explanation in Row 6.

From the action and its occurrence in Row 1 and 2 we know
that one of the fluents are occluded. A counter-explanation to
Row 6 is therefore¬Occlude(1, lit ):

{1,2} 8 Occlude(1, lit )∨Occlude(1,broken) 1,2,7
{4} 9 Show¬Occlude(1, lit ) 7,8

However, the assumption in Row 4 is not part of the abduc-
tive explanation. It was introduced by the previous goal re-
duction and is still in force when trying to prove the counter-
explanation. Consequently, assuming¬Occlude(1, lit ) would
be inconsistent, the only counter-explanation fails, and the
conclusion follows:

{1,6} 10 ¬Occlude(1, lit )∨¬Occlude(1,broken) 3,6

Given the same action specification and action occurrence,
one of the fluents has to be occluded at time 1. Attempting to
prove both not occluded fails:

{} 3 Show¬Occlude(1, lit )∧
¬Occlude(1,broken)

{} 4 Show¬Occlude(1, lit ) 3
{5} 5 ¬Occlude(1, lit ) 4
{} 6 Show Occlude(1, lit ) 4
{1,2} 7 Occlude(1, lit )∨Occlude(1,broken) 1,2,6
{} 8 Show¬Occlude(1,broken) 6,7
{9} 9 ¬Occlude(1,broken) 8
{1,2,9} 10 Occlude(1, lit ) 7,9

This time ¬Occlude(1,broken) is a consistent counter-
explanation to Row 5 since there is no way to prove that its
negation follows. The proof of the conjunction fails since the
proof of the first conjunct fails. The failure would repeat if
trying to prove the second conjunct first.

6 Unified Planning and Reasoning
Let us turn now to the task of implementing a planning and
reasoning system based on the theory presented above. A
commonly used implementation tool is logic programming.
Indeed, earlier work with TAL made planning and reason-
ing possible through a compilation of TAL formulas into
Prolog programs[Magnusson, 2007]. Proofs werededuc-
tive and instantiated a plan variable, similarly to the instan-
tiation of the situation term in deductive Situation Calculus
planning. Other work extends Prolog’s inference mechanism
to abductionby means of a meta-interpreter. This has been
the de facto standard in work on abductive planning in Event
Calculus, e.g. in[Shanahan, 2000; Deneckeret al., 1992;
Missiaenet al., 1995].

6.1 Pattern-Directed Inference System
We have explored a different avenue with a theorem prover
based onnatural deduction, inspired by similar systems by
Rips[1994], Pelletier[1998], and Pollock[2000]. This is an
interesting alternative to the more common resolution method
used by most theorem provers, including Prolog. A nat-
ural deduction prover works with the formulas of an agent’s
knowledge base in their “natural form” directly, rather than
first compiling them into clause form. This fits perfectly with
the algorithm in Section 4 that has already eliminated the
need for a compilation step for nonmonotonic reasoning.

The system uses pattern-directed inference similar to For-
bus and de Kleer’s fast tiny rule engine[1993]. To see how
this works let us look at the inference rules. Applicable rules
are added to a queue. By controlling which rule applica-
tion the prover selects next we can implement e.g. depth-first,
breadth-first, or best-first search.

Rules are divided into forward and backward rules. For-
ward rules are triggered whenever possible. They are there-
fore designed to be convergent, so as not to generate new
inferences forever. An example is the modus ponens rule,
which concludesQ whenever bothP andP→ Q are present
in the knowledge base. The results in this paper general-
izes our previous work that relied on forward rules to im-
plement an incomplete consistency check[Magnusson, 2007;
Magnusson and Doherty, 2008a; 2008b]. By explicitly trying
to counter-explain abductive assumptions we no longer have
to rely on forward rules being strong enough to detect incon-
sistent assumptions.

Backward rules, in contrast, are used to search backwards
from the current proof goal and thus exhibit goal direction.
An example is the goal chaining rule, which addsShow Pas
a new goal whenever bothShow QandP→ Q are present in
the knowledge base.

Combining forward and backward rules results in a bidi-
rectional search for proofs that is pattern-directed sincethe
prover’s current goals are explicitly represented (byShowfor-
mula “patterns”) in the knowledge base. This further con-
tributes to the incremental nature of the reasoner. Inference
can be interrupted at any time and later resumed since the
knowledge base keeps track of what the prover was about to
do.

6.2 Abductive Planning
The same reasoning mechanism can be used for abductive
planning. Instead of reasoning about the effects of a given
narrative, we reason about what narrative would have the de-
sired effects.

Given a domain, we define a planning goalG as a conjunc-
tion of groundHolds literals. A plan forG is then a setTocc
of ground atomicOccursformulas such that:

Tper∧Circ(T ∧Tocc;Occlude,Occurs,Holds,¬Holds) � G

where the left hand side is consistent.
To generateTocc we simply addOccurs to the set of ab-

ducibles for the proof goal. (Note however that we do not
add Occurs as an abducible to explanations and counter-
explanations. Doing so would amount to planning to thwart
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Figure 1: A logical agent architecture.

our own plans!) The soundness of this planning method fol-
lows directly from the soundness of the FCTP. Its imple-
mentation is already implicit in the theorem prover described
above.

6.3 Logical Agents
Using the same reasoning mechanisms for many problems
faced by autonomous agents results in a particularly sim-
ple agent architecture, as illustrated by Figure 1. The agent
is equipped with a knowledge base containing formulas en-
coding knowledge about actions, world laws, and memory
of recent events and percepts. The knowledge is used by
the pattern-directed inference system (PDIS), with the help
of natural deduction (ND) and the abductive algorithm from
Section 4, to plan its actions.

But when plans meet the World they often fail. Executing
a plan will achieve the goal only if the plan’s assumptions
hold up. The agent can detect some failures early through
execution monitoring. In particular, persistence assumptions
are represented in the plan by non-occlusion assumptions and
can be continually evaluated. When a failure is perceived,
that percept constitutes a counter-explanation to the assump-
tion. Neither the assumption nor the planning goal derived
from it are justified conclusions given the new percept. This
immediately makes the pattern-directed goal-chaining infer-
ence rules applicable in trying to find an alternative proof of
the goal. The result is an automatic plan revision and fail-
ure recovery process as the agent uses abductive planning to
reestablish goals that lost their justification and executean
alternative plan.

7 Discussion
Predicate completion and the filtered circumscriptive theorem
prover (FCTP) are two methods for automated reasoning in
logics that use filtered circumscription. E.g., they both sat-
isfy the circumscriptive characterization of TAL and produce
the same end result, given the restrictions in Section 4. But
in practical problem solving we believe the FCTP to have a
number of desirable properties and advantages.

7.1 Abductive Planning and Reasoning
The FCTP uses abductive proof methods to reason with the
original TAL formulas directly. As noted by Brewka, Dix,
and Konolige[1997]:

Abduction offers several benefits from a knowl-
edge representation viewpoint. It does not require
the assumption of complete knowledge of causa-
tion, and it is not necessary to assert the explanatory

closures (which can lead to inconsistency and is
computationally discouraging since it is performed
globally on the theory).

Since the method does not presume complete knowledge
of action occurrences, applications in planning open up. We
exemplified this by using the reasoner for abductive planning.
Furthermore, this unification of planning and reasoning forms
the basis of a logical agent architecture that is highly capable
despite its simplicity.

7.2 Reasoning Without Compilation
Predicate completion works by compiling the theory into a
first-order equivalent with which reasoning proceeds. Lif-
schitz[1994] comments:

But it should be observed that this approach to the
automation of circumscription is not the only one
possible. In fact, it may be unattractive, in view of
the fact that it requires preprocessing the circum-
scription in a manner that is not related in any way
to the goal formula.

The FCTP reasons with the TAL formulas directly, with-
out first transforming the theory. Its efforts are spent only
on those formulas of the knowledge base that are potentially
relevant to the goal. The resulting proofs are also easier to
comprehend since they refer directly to the formulas that were
given to the system as input. Comprehension is also improved
by the mechanism’s similarity to argumentation and thereby
to human reasoning. It would be interesting to further investi-
gate the relation between FCTP and argumentation-theoretic
systems.

7.3 Doubly Defeasible Reasoning
Finally, let us adopt a long term view and consider logical
agents with commonsense knowledge. With the manual de-
velopment or automated learning of very large knowledge
bases, which are presumably needed for commonsense rea-
soning, it will be impractical or even impossible to search
through all conceivable counter-explanations to a defeasible
inference before taking action. It becomes necessary to con-
sider what Pollock[2008] refers to as “doubly defeasible”
reasoning. Not only can the reasoner change its mind with
new information, it can also change its mind with more time
to reason with its current information.

Predicate completion forces the agent to prove conclusions
deductively in a first-order equivalent to the circumscribed
theory. There is no way to interrupt the reasoning and act to
the best of one’s current knowledge. The incremental nature
of the FCTP makes this possible. If counter-explanations are
tested in the order of their likelyhood, it implements, in effect,
an any-time algorithm that is always able to respond with the
current best answer.

8 Conclusion
We are interested in building logical agents that use knowl-
edge and reasoning to achieve goals. Observing that the
world is both uncertain and dynamic motivates our choice of
reasoning mechanisms that are incremental in nature. The



computational effort of pondering a question should be re-
lated to the extent of relevant knowledge and the time avail-
able, not the total size of the knowledge base nor a potentially
unbounded time requirement. Only then will the technology
have the potential to scale up to very large knowledge bases.

One step in this direction is reported here in our inves-
tigation of Temporal Action Logic and its application in a
logical agent architecture. By extending Ginsberg’s circum-
scriptive theorem prover we have made it applicable to logics
defined in terms of filtered circumscription. The abduction-
based filtered circumscriptive theorem prover reasons directly
with the input formulas, removing the need for a compilation
step involving the entire knowledge base. Its interruptible na-
ture enables an agent to act to the best of its knowledge given
only limited time for reasoning. Finally, its double duty asan
abductive planner makes possible a particularly simple agent
architecture.

An agent architecture based exclusively on logical reason-
ing will necessarily suffer somewhat in efficiency compared
to less general methods, despite being designed with scalabil-
ity in mind. But achieving satisfactory performance in certain
domains is already possible. E.g., we have applied the archi-
tecture to the control of computer game characters that re-
quire real-time interaction[Magnusson and Doherty, 2008b].
We believe computer games to be an excellent domain for em-
pirical studies of logical agents on the road from tiny bench-
mark problems towards larger real world applications.
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