
Logical Agents that Plan, Execute, and Monitor Communication∗

Martin Magnusson and David Landén and Patrick Doherty
Department of Computer and Information Science, Linköping University, Sweden

{marma,davla,patdo}@ida.liu.se

Abstract

Real and simulated worlds that involve cooperation between
several autonomous agents create highly dynamic conditions.
An individual agent can not hope to rely on fixed behaviors,
but needs to plan both physical actions and communication
actions that enlist other agents to help achieve the goal. We
present a logical agent that plans regular actions and speech
acts, monitors their execution, and recovers from unexpected
failures. The architecture is based on automated reasoning in
a formal logic and is grounded in a physical robot platform in
the form of an autonomous helicopter. We apply the system
to a knowledge gathering goal and illustrate how it deals with
the complexities of the task.

Introduction
Imagine the chaotic aftermath of a natural disaster. Teams of
rescue workers search the afflicted area for people in need
of help, but they are hopelessly understaffed and time is
short. Fortunately, they are aided by a small fleet of un-
manned aerial vehicles (UAVs) that can be requested to carry
out tasks autonomously. The UAVs help quickly locate in-
jured by scanning large parts of the area from above using
infrared cameras and communicating the information to the
command and control center (CCC) in charge of the emer-
gency relief operation.

Complex tasks like these occur frequently in real world
situations as well as in training simulations and computer
games. Achieving their goals requires the cooperation of
many independent agents. Each agent faces an environment
that can change in response to actions by other agents in ad-
dition to its own. It is unrealistic to assume that such an
agent could be made autonomous by equipping it with fixed
behaviours for all possible situations that might arise. In-
stead, the agent must automatically construct plans of action
adapted to the situation at hand. These multi-agent plans
involve other agents’ mental states and communicative acts
to affect them. In addition, assumptions made during plan-
ning must be monitored during execution so that the agent
can autonomously recover from failures, which are prone to
happen in any dynamic environment. These are significant
challenges for any proposed planning formalism.

∗This work is supported in part by the Swedish Foundation
for Strategic Research (SSF) Strategic Research Center MOVIII,
the Swedish Research Council Linnaeus Center CADICS, and
CENIIT, the Center for Industrial Information Technology.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We extend Temporal Action Logic (Doherty and Kvarn-
ström 2007), a first-order language with a well-developed
methodology for representing actions that has previously
been used for planning (Magnusson 2007), with syntactic
operators that express the modalities of belief and commit-
ment. This makes it possible to formalizeinform and re-
questspeech acts, and to plan both physical and communica-
tive actions in a multi-agent setting. Automation is provided
by a natural deduction theorem prover that integrates plan-
ning, execution, monitoring, and plan revision. The result-
ing physical actions are executed (in simulation) by a del-
egation framework (Doherty and Meyer 2007), built using
the Java agent development framework1 (JADE), and com-
municative actions are realized as standardized FIPA ACL
(Foundation for Intelligent Physical Agents 2002) speech
acts. We describe this agent architecture and its use in solv-
ing the above scenario.

Related Work
Early planning research tended to ignore any processes that
occur before or after the planning phase, and many classical
planning algorithms depended crucially on a global closed
world assumption. Agent programming languages provide
interesting alternatives that often incorporate execution and
monitoring, but move planning to a less prominent role or
eliminate planning altogether, which might result in some
sacrifice of flexibility in unforeseen situations.

Modern planning research tries to relax the classical
restrictions while keeping the planning process in focus.
Shanahan’s agent architecture (Shanahan 2000) based on the
Event Calculus seamlessly integrates planning and plan revi-
sion. Though it has not been applied in multi-agent settings,
and its implementation as an abductive logic program is not
sufficiently expressive to represent communicative acts con-
veniently.

Searle’sspeech acts(1969) characterize natural language
utterances as actions with conditions upon their execution
and effects on the mental states of others. Speech acts form
a basis for expressing communicative acts as planning oper-
ators, as is done by Perrault, Allen, and Cohen (1978). They
generate plans that involve both regular actions and speech
acts, but the implementation uses limited versions of speech
acts in the form of STRIPS-like planning operators.

Speech acts have also been adopted by research on soft-
ware agents (Genesereth and Ketchpel 1994). This body of

1http://jade.tilab.com/

work depends fundamentally on agent communication lan-
guages (ACL), which are standardized sets of speech acts
that ensure interoperability in agent to agent communica-
tion. The widely used FIPA ACL is based on speech act the-
ory and has a logical semantics defined using multi-modal
BDI logic. But there is no integration of speech acts within
a more general framework of action and change that would
facilitate planning of speech acts together with other actions
to achieve goals. This is reflected by architectures that use
the FIPA ACL-based JADE framework in robotic applica-
tions. Their focus is not planning but rather the interoper-
ability that is gained from using a standardized ACL and the
ease of developing agents using JADE.

In contrast, Morgenstern (1988) offers an integrated the-
ory of both types of actions using asyntacticfirst-order
logic that includes quotation. Davis and Morgenstern (2005)
provide an alternative integration using regular first-order
logic. The two theories’ semantics cover both speech acts
and their content, however their use has so far been limited
to a STRIPS-like planner in the case of the former theory,
and as a specification for future implementations in the case
of the latter.

Temporal Action Logic
Reasoning about both physical and communicative actions
is only possible in a highly expressive formalism. We have
chosen one such formalism as a foundation, the Temporal
Action Logic (TAL), and extended it with a representation
of belief and commitment.

The origins of TAL are found in Sandewall’s model-
theoretic Features and Fluents framework (1994). Doherty
(1994) selected important concepts, such as an explicit time
line and the use of occlusion (discussed below), to form TAL
and gave it a proof-theoretic first-order characterization. Do-
herty and Kvarnstr̈om (2007) provide a detailed account of
the logic, but the version presented below includes further
extensions that make TAL suitable for applications in multi-
agent planning and reasoning.

TAL usesfluentsto model properties and relations that
may change over time. A fluentf is a function of time, and
its value at a time pointt is given by (valuet f). An agent
carrying out actiona during time interval (t1 t2] is speci-
fied by a predicate (Occursagent(t1 t2] a). But the most
important feature of TAL is itsocclusionconcept. A flu-
ent that is persistent by default is permitted to change its
value when occluded, but must retain its value during time
intervals when not occluded. The following formula (with
free variables implicitly universally quantified and in prefix
form to make the representation of the quoted formulas in-
troduced below more convenient) relates a fluentf ’s value
at the start and end time points of a time interval:

(→ (¬ (Occlude (t1 t2] f)) (= (valuet1 f) (valuet2 f)))

By assuming that fluents are not occluded unless otherwise
specified, one is in effect making the frame assumption that
things usually do not change. Exceptions are made explicit
by occluding affected fluents in action specifications and de-
pendency constraints. E.g., if the UAV flies between two lo-
cations, its location fluent (location uav) would be occluded

during any interval with a non-empty intersection with the
movement interval. By exercising fine-grained control over
occlusion one gains a flexible tool for dealing with important
aspects and generalizations of the frame problem.

Syntactic Belief
Previous accounts of TAL lack a representation of agents’
mental states and beliefs. Introducing asyntacticbelief op-
erator that takes aquotedformula as one of its arguments
provides a simple and intuitive notion of beliefs. E.g., the
fact that the UAV believes, at noon, that there are five sur-
vivors in grid cell 2,3 of the area map can be expressed by
the following formula (where 12:00 is syntactic sugar for a
Unix time integer):

(Believes uav 12:00 ’(= (value 12:00 (survivors (cell 2 3))) 5))

We use the quotation notation from KIF (Genesereth and
Fikes 1992), which is a formal variant of Lisp’s. An expres-
sion preceded by a quote is a regular first-order term that
serves as anameof that expression. Alternatively one may
use a back quote, in which case sub-expressions can beun-
quotedby preceding them with a comma. This facilitates
quantifying-inby exposing chosen variables inside a back
quoted expression for binding by quantifiers. E.g., we can
use quantifying-in to say that there is some number that the
UAV believes to be the number of survivors:

(∃ n (Believes uav 12:00
‘(= (value 12:00 (survivors (cell 2 3))) ’,n))) (1)

Note that it is not the existentially quantified number itself,
but thenameof the number, that should occur as part of the
quoted third argument of Believes. The quote preceding the
comma ensures that whatever valuen is bound to is quoted
to produce that value’s name.

However, if expressed as above, Formula 1 would be sat-
isfied if the UAV believes all tautologies of the formx = x.
To see this, simply replacen by the term (value 12:00 (sur-
vivors (cell 2 3))) and apply existential generalization. We
need to add the requirement that the UAV’s belief is not
merely a tautology, but that it reallyidentifiesthe number
of survivors.

Moore (1980) suggests the use ofrigid designatorsand
Morgenstern (1987) modifies this suggestion slightly in her
requirement thatstandard identifiersare known. We follow
Morgenstern and use the syntactic predicate (Idx) to sin-
gle out the namex as a standard identifier, adding the back-
ground knowledge that integers are standard identifiers. Itis
convenient to introduce a two argument predicate asserting
that the second argument is a standard identifier for the first:

(↔ (Id ‘’, x ‘’, y) (∧ (= x y) (Id ‘’, y)))

Note the interaction between back quote and quote in ‘’,x
and ‘’,y to make sure that the arguments of Id arenames
of the expressions. The initial back quote turns the follow-
ing quote into the name of a quote, leaving the variablesx
andy free for binding. The resulting expression denotes the
quoted version of whatever the variables are bound to rather
than quoted variables that can not be bound at all. The use

of quoted expressions as arguments to the Id predicate pre-
vents substitution of identicals, as is required by opaque be-
lief contexts.

If the UAV can identifythe number of survivors we say:

(∃ n (Believes uav 12:00
‘(Id ’(value 12:00 (survivors (cell 2 3))) ’’,n)))

Here, the occurrence of the Id predicate is nested in a belief
predicate, necessitatingdoublequotes on the variablen.

Speech Acts
Speech acts can be used to communicate beliefs to, and to
incur commitment in, other agents. The extensions intro-
duced above make it possible to reformulate Allen’s speech
acts (1988) in TAL using syntactic belief and commitment
predicates. The type of information we will be interested in
is beliefs about what a particular value is. This is straight-
forwardly communicated by standard identifiers. E.g., if the
UAV wishes to inform the CCC that it is in the map’s grid
cell 2,3 at noon, it may plan an action of the following form:

(inform ccc ’(Id ’(value 12:00 (location uav)) ’(cell 2 3))) (2)

However, this is complicated when the CCC wishes toask
the UAV what its location is. Hintikka (1978), and many
others, suggests viewing questions as requests for informa-
tion. The CCC should thus request that the UAV perform
the inform action in Formula 2. But since the CCC does
not know where the UAV is, which is presumably the reason
why it is asking, it can not know what action to request.

Again we follow Allen’s directions and introduce an in-
formRef action designed to facilitate questions of this type.
The informRef action does not mention the value that is un-
known to the CCC, which instead performs the following
request:

(request uav ’(Occurs uav (b e]
(informRef ccc (value 12:00 (location uav)))))

The informRef preconditions require that the informing
agent holds a belief about what the value that is being in-
formed about is and the effects assert the existence of a stan-
dard name that the hearer believes the value has. Note that
an agent that commits toexecutingthe action schedules an
inform procedure call, plugging in the sought value. In con-
trast, an agent that onlyreasonsabout the effects of the in-
formRef action, as in the question example above, knows
that it will come to hold a belief about the value, but need
not yet have such a belief.

Automated Natural Deduction
The theory presented so far needs to be complemented with
an automated reasoner. Earlier work with TAL made deduc-
tive planning possible through a compilation of TAL formu-
las into Prolog programs (Magnusson 2007). But Prolog’s
limited expressivity makes it inadequate for our present pur-
poses. Instead, our current work utilizes a theorem prover
based onnatural deduction, inspired by similar systems by
Rips (1994) and Pollock (1999).

Natural deduction is an interesting alternative to the
widely used resolution method. A natural deduction prover

works with the formulas of an agent’s knowledge base in
their “natural form” directly, rather than first compiling them
into clause form. The set of proof rules is extensible and eas-
ily accommodates special purpose rules that make reasoning
more efficient. E.g., we incorporate specialized inference
rules for reasoning with quoted expressions and beliefs. This
works well, though the quoted expressions in our examples
are simple atomic formulas. Whether the approach will scale
to an effective method of reasoning with more general uses
of quotation is an open question.

Rules are divided intoforward andbackwardrules. For-
ward rules are triggered whenever possible and are designed
to converge on a stable set of conclusions so as not to con-
tinue generating new inferences forever. Backward rules,
in contrast, are used to search backwards from the current
proof goal and thus exhibits goal direction. Combined, the
result is a bi-directional search for proofs.

Nonmonotonic reasoning and planning is made possible
through an assumption-based argumentation system. The set
of abduciblesconsists of negated occlusion, action occur-
rences, temporal constraints, and positive or negative holds
formulas, depending on the current reasoning task. These
are allowed to be assumed rather than proven, as long as
they are not counter-explained or inconsistent.

For some restrictions on the input theory we are able
to guarantee completeness of the nonmonotonic reasoning
(Magnusson, Kvarnström, and Doherty 2009). But in the
general case, when one cannot guarantee completeness of
the consistency checking, we might conceivably fail to dis-
cover that one of the assumptions is unreasonable. However,
this would still not be a cause ofunsoundness, since we are
using the sound system of natural deduction that keeps track
of all assumptions and the formulas that follow from them.
But it might result in plans and conclusions that rest on im-
possible assumptions. A conclusionΦ depending on an in-
consistent assumption would in effect have the logical form
⊥→ Φ, and thus be tautological and void. This is to be ex-
pected though, due to the uncomputability of consistency
checking. The most one can hope for is for the agent to
continually evaluate the consistency of its assumptions, im-
proving the chances of them being correct over time, while
regarding conclusions as tentative (Pollock 1995).

Agent Architecture
Solving the scenario in the introduction requires a system
with a tight coupling between planning, execution, and mon-
itoring. Our architecture achieves this through logic-based
planning that results in abductive frame assumptions (about
the persistence of certain parts of the world) that are moni-
tored during plan execution, as described below.

Planning
Planning is the result of proving a goal while abductively
assuming action occurrences that satisfy three kinds of pre-
conditions. The action must be physicallyexecutableby an
agent during some time interval, the agent must have a belief
thatidentifiesthe action, and the agent must becommittedto
the action occurring, at the start of the time interval:

(→ (∧ (Executableagent(b e] action)
(Believesagent b‘(ActionId ’’, action ’,actionid))
(Committedagent b‘(Occurs ’,agent(’,b ’,e] ’, action)))

(Occursagent(b e] action))

Executability preconditions are different for each actionand
are therefore part of the specifications of an action.

The belief precondition is expressed by a single axiom:

(→ (∧ (Primitive name) (Id arg1 id1) · · · (Id argn idn))
(ActionId ‘(,name,arg1 · · · ,argn) ‘(,name,id1 · · · ,idn)))

This captures Moore’s (1980) insight that knowing identi-
fiers for the arguments of a primitive action is knowing that
action. This condition prevents e.g. a stock market agent
from planning to get rich by buying “the stock that will in-
crease in value.” While theoretically correct, the plan is of
no practical value unless the agent can identify some partic-
ular stock that will increase in value.

The time point at which an action is executed is also crit-
ically important. One would not want the agent to gener-
ate a plan to buy a particular stock “when it is lowest” and
sell it “when it is highest.” Without additional information
about when these events occur this plan is equally useless.
However, it seems overly restrictive to require that the agent
holds beliefs thatidentify the action occurrence time points.
Actions that do not depend on external circumstances can be
executed whenever the agent so chooses, without deciding
upon an identifiable clock time in advance. Actions that do
depend on external circumstances can also be successfully
executed as long as the agent is sure to know the correct
time point when it comes to pass. This is precisely what the
concept ofdynamic controllabilitycaptures. Following Vi-
dal and Fargier (1999) we denote time points controlled by
the agent byb and time points over which the agent has no
control bye. The temporal dependencies between actions
form a simple temporal network with uncertainty (STNU)
that can be checked for dynamic controllability to ensure an
executable plan.

Finally, the commitment precondition can be satisfied in
one of two ways. Either the agent adds the action to its own
planned execution schedule (described below), or it uses the
request speech act to delegate the action to another agent,
thereby ensuring commitment.

Execution

Scheduled actions are tied to the STNU through the explicit
time points in TAL’s Occurs predicate. An STNUexecution
algorithm propagates time windows during which these time
points need to occur (Morris and Muscettola 2000). Time
points that arelive andenabledwith respect to the time win-
dows are executed, i.e. they are bound to the current clock
time and action occurrences scheduled at those time points
are proveddispatchedusing the following axiom:

(→ (∧ (ActionId ‘ ’, action ‘ ’, id)
(ProcedureCall self (b e] id))

(Dispatch self (b e] action))

The ProcedureCall predicate is the link between the auto-
mated reasoner and the execution sub-system in that the
predicate is proved by looking up the procedure associated
with the given action and calling it. Note that it is the ac-
tion’s identifier that is used in the procedure call. This guar-
antees that only integers, strings, and other standard iden-
tifiers are passed as arguments to procedures, and is neces-
sary since the action’s arguments might depend on informa-
tion gathering actions whose results were not available at
the time of planning. Invoking automated reasoning on the
above axiom, rather than simply performing the procedure
call, allows the full power of theorem proving to be applied
in finding standard identifiers for the procedure call argu-
ments. This could be necessary in order to apply background
knowledge to convert the arguments into the standard for-
mat, or if the arguments are only implicitly represented as a
deductive consequence of explicit knowledge.

Monitoring

Executing the plan will satisfy the goal as long as fluent per-
sistence assumptions hold up. But the real world is an unpre-
dictable place and unexpected events are sure to conspire to
interfere with any non-trivial plan. To detect problems early
we continually evaluate all assumptions that are possible to
monitor.

When a persistence assumption (in the form of a non-
occlusion formula) fails it produces an occlusion percept
that is added to the agent’s knowledge base. A truth main-
tenance system removes assumptions that are contradicted
by observations and unchecks goals that were previously
checked off as completed but that include a failed assump-
tions among their dependencies. This immediately gives rise
to a plan revision and failure recovery process as the theorem
prover tries to reestablish those goals.

If the proof of the unchecked goals succeeds, the revision
will have had minimal effect on the original plan. A failed
proof means that the current sub-goal is not viable in the
context of the execution failure, and the revision is extended
by dropping the sub-goals one at a time. This process con-
tinues until a revision has been found, or the main goal is
dropped and the mission fails.

UASTech Delegation Framework

Procedure calls are carried out by the UASTech Delegation
Framework (Doherty and Meyer 2007). But the actions are
often still too high-level to be passed directly to the low-level
system. An example is the action of scanning a grid cell us-
ing the infrared camera. This involves using a scan pattern
generator, flying the generated trajectory, and applying the
image processing service to identify humans in the video
footage (as described in (Doherty and Rudol 2007)). The
assumption is that, while not a primitive action in the low-
level system, the scanning of a grid cell will always proceed
in the manner just described so there is no need to plan its

sub-actions. Such macro-actions are coordinated by special-
ized modules, in this case the scan coordinator.

The Delegation Framework implementation uses the Java
agent development framework (JADE) and encapsulates the
agent so that all communication is channeled through a stan-
dardized interface as FIPA ACL speech acts. Human oper-
ators, like those in the CCC, communicate through an in-
terface like any other agent but use a graphical user inter-
face that displays a map subdivided into grid cells through
which they can ask questions, position no-fly zones or other
constraints, and delegate requests to other agents. The re-
sulting multi-agent system can consist of widely differing
agents that are able to interact through standardized speech
acts to help each other achieve complex goals.

Scenario Solution
We have implemented this theorem proving based agent ar-
chitecture and applied it to the scenario described in the in-
troduction. If the UAV’s knowledge base was initialized at
12:00 and the CCC requests having information of the sur-
vivor count in map grid cell 2,3 at 13:00 the UAV produces
the following plan (in addition to an STNU that relates qual-
itative time points):

(Schedule uav (b1 e1] (fly (cell 2 3)))
(Schedule uav (b2 e2] (scan (cell 2 3)))
(Schedule uav (b3 e3]

(informRef ccc ’(value 13:00 (survivors (cell 2 3)))))

The success of the plan depends on two abductive assump-
tions that were made during planning and that can be moni-
tored during execution:

(¬ (Occlude (12:00b3] (radio uav ccc)))
(¬ (Occlude (e1 b2] (location uav)))

There is also an assumption of the persistence of the sur-
vivor count, though this is impossible for our UAV to moni-
tor since it can not see the relevant area all at once. If one of
the survivors runs off, then the plan will be modified to take
the resulting body count discrepancy into account when it is
discovered.

Suppose however that the large distance and mountainous
terrain causes a radio communication break down while the
UAV is scanning the area. The UAV perceives that the flu-
ent (radio uav ccc)wasoccluded and the truth maintenance
system successively removes incompatible assumptions and
sub-goals until a revised plan suffix is found:

(Schedule uav (b4 e4]
(informRef mob ’(value 13:00 (survivors (cell 2 3)))))

(Schedule uav (b5 e5]
(request mob

’(Occurs mob (b6 e6]
(informRef ccc ’(value 13:00 (survivors (cell 2 3)))))))

The new plan involves requesting help from another mobile
agent (mob). By communicating the survivor count to this
“middle man,” and requesting it to pass on the information to
the CCC, the UAV ensures that the CCC gets the requested
information.

Another set of assumptions now require monitoring:

(¬ (Occlude (oc 12:00b6) (radio mob ccc)))
(¬ (Occlude (oc 12:00b4) (radio uav mob)))

While the UAV is incapable of monitoring the other agent’s
radio communication, it will be monitored if that agent is
also running our agent architecture. Unless further failures
ensue, this concludes the successful completion of the given
knowledge gathering assignment.

Conclusions
We have described a scenario that involves planning com-
munication between agents, plan execution with monitoring,
and plan revision to recover from an unexpected communi-
cation failure. Our solution uses speech acts formalized in
an extension of Temporal Action Logic that includes syntac-
tic belief and commitment operators, which are made possi-
ble through the use of a quotation mechanism. Plan gener-
ation and revision is carried out using an automated natural
deduction theorem prover. The subsequent execution uses
an STNU execution algorithm to dispatch actions in accor-
dance with the plan’s temporal constraints. Finally, an action
dispatch mechanism links the automated reasoning system
and a delegation framework that coordinates the execution
of primitive actions on the physical robot platform.

Our framework makes extensive use of logic to meet the
challenges of dynamic environments. While the use of logic
as atheoretical foundation is relatively commonplace, we
have constructed apractical logical agent architecture that
uses theorem proving technology to plan and execute actions
in a multi-agent setting.

Much work remains before the technology is sufficiently
efficient and robust for larger scale applications. But there
is great potential for using logical agents in both real and
simulated worlds. This paper has explored a robotic search
and rescue scenario. Another paper uses the same tech-
nology in intelligent computer game characters (Magnusson
and Doherty 2008). We believe these and similar opportuni-
ties make continued effort worthwhile.

References
Allen, J. 1988. Natural Language Understanding. Red-
wood City, CA, USA: Benjamin-Cummings Publishing
Co., Inc.
Davis, E., and Morgenstern, L. 2005. A first-order theory
of communication and multi-agent plans.Journal of Logic
and Computation15(5):701–749.
Doherty, P., and Kvarnström, J. 2007. Temporal action
logics. In Lifschitz, V.; van Harmelen, F.; and Porter, B.,
eds.,Handbook of Knowledge Representation. Elsevier.
Doherty, P., and Meyer, J.-J. C. 2007. Towards a dele-
gation framework for aerial robotic mission scenarios. In
Cooperative Information Agents XI, 5–26.
Doherty, P., and Rudol, P. 2007. A UAV search and res-
cue scenario with human body detection and geolocaliza-
tion. In Australian Conference on Artificial Intelligence,
volume 4830 ofLecture Notes in Computer Science, 1–13.
Springer.

Doherty, P. 1994. Reasoning about action and change us-
ing occlusion. InProceedings of the 11th European Con-
ference on Artificial Intelligence, 401–405.

Foundation for Intelligent Physical Agents. 2002. FIPA
communicative act library specification.http://www.
fipa.org/specs/fipa00037/.

Genesereth, M. R., and Fikes, R. E. 1992. Knowledge in-
terchange format, version 3.0 reference manual. Technical
Report Logic-92-1, Computer Science Department, Stan-
ford University.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software
agents.Communications of the ACM37(7):48–53.

Hintikka, J. 1978. Answers to questions. In Hiz, H., ed.,
Questions. D. Reidel Publishing Company. 279–300.

Magnusson, M., and Doherty, P. 2008. Logical agents for
language and action. InProceedings of the 4th Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.

Magnusson, M.; Kvarnström, J.; and Doherty, P. 2009.
Abductive reasoning with filtered circumscription. InPro-
ceedings of the 8th Workshop on Nonmonotonic Reasoning,
Action and Change NRAC 2009. UTSePress. Forthcoming.

Magnusson, M. 2007. Deductive Planning and
Composite Actions in Temporal Action Logic. Li-
centiate thesis, Link̈oping University. http:
//www.martinmagnusson.com/publications/
magnusson-2007-lic.pdf.

Moore, R. 1980. Reasoning about knowledge and action.
Technical Report 191, AI Center, SRI International, Menlo
Park, CA.

Morgenstern, L. 1987. Knowledge preconditions for ac-
tions and plans. InProceedings of the 10th International
Joint Conference on Artificial Intelligence, 867–874.

Morgenstern, L. 1988.Foundations of a logic of knowl-
edge, action, and communication. Ph.D. Dissertation, New
York, NY, USA. Advisor: Ernest Davis.

Morris, P. H., and Muscettola, N. 2000. Execution of tem-
poral plans with uncertainty. InProceedings of the 17th
National Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial Intel-
ligence, 491–496.

Perrault, C. R.; Allen, J. F.; and Cohen, P. R. 1978. Speech
acts as a basis for understanding dialogue coherence. In
Proceedings of the 1978 workshop on Theoretical issues in
natural language processing, 125–132.

Pollock, J. L. 1995.Cognitive Carpentry: A Blueprint for
how to Build a Person. Cambridge, MA, USA: MIT Press.

Pollock, J. 1999. Natural deduction. Technical report, De-
partment of Philosophy, University of Arizona.http://
www.sambabike.org/ftp/OSCAR-web-page/
PAPERS/Natural-Deduction.pdf.

Rips, L. J. 1994.The psychology of proof: deductive rea-
soning in human thinking. Cambridge, MA, USA: MIT
Press.

Sandewall, E. 1994.Features and Fluents: The Represen-
tation of Knowledge about Dynamical Systems, volume 1.
Oxford University Press.
Searle, J. R. 1969.Speech Acts: An Essay in the Philoso-
phy of Language. Cambridge University Press.
Shanahan, M. 2000. Reinventing Shakey. InLogic-Based
Artificial Intelligence. Norwell, MA, USA: Kluwer Aca-
demic Publishers. 233–253.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical Ar-
tificial Intelligence11(1):23–45.

