
Robotics, Temporal Logic and Stream Reasoning

Patrick Doherty1∗, Fredrik Heintz1 and Jonas Kvarnström1

Linköping University, Department of Computer and Information Sciences, S-581 83 Linköping, Sweden
patrick.doherty@liu.se, fredrik.heintz@liu.se, jonas.kvarnstrom@liu.se

Abstract

The area of AI robotics offers a set of fundamentally challenging problems when attempting to
integrate logical reasoning functionality in such systems. The problems arise in part from the high de-
gree of complexity in such architectures which include realtime behaviour, distribution, concurrency,
various data latencies in operation and several levels of abstraction. For logic to work practically in
such systems, traditional theorem proving, although important, is often not feasible for many of the
functions of reasoning in such systems. In this article, we present a number of novel approaches to
such reasoning functionality based on the use of temporal logic. The functionalities covered include
automated planning, stream-based reasoning and execution monitoring.

1 Introduction
Logic has always played a central role in artificial intelligence. Robotics has been a central topic in
AI from its inception. AI robotics focuses specifically on developing robotic platforms that exhibit
intelligent behaviours. The basis for such behaviours is goal-directed and includes various forms of
reasoning, either explicit or implicit.

This paper focuses on a number of logic-based functionalities used in very complex autonomous
unmanned aircraft systems developed and deployed in the past decade [4]. The focus here will be
on a temporal-logic based automated planner, TALplanner; an execution monitoring system; and a
generic middleware component, DyKnow, for stream-based reasoning. Each functionality is based on
the explicit use of temporal logic either as a specification language or as a novel form of soft realtime
reasoner, or both.

The realtime nature of unmanned aircraft systems functioning in complex operational environments
brings with it a set of unique challenges in the use of logic in such systems. Unmanned aircraft systems
generally operate in both realtime and soft-realtime modes. Reasoning about both time and space are
essential for successful goal achievement in the majority of operational environments. These systems
are required to reason about their embedding environments, but also about their internal processes. The
software architectures required for such systems are highly complex. They are distributed systems in
terms of both hardware and software, and processes are concurrent and can be both synchronous and
asynchronous. Data flow in the system has both realtime and soft-realtime requirements in addition to
various latencies in the system.

If one is serious about designing and constructing robotic platforms that exhibit intelligent behaviour,
there are a number of fundamental, open challenges of both a pragmatic and theoretical nature that need
to be solved. Architecturally, such systems must combine realtime control behaviours, soft-realtime re-
active behaviours and deliberative behaviours in one integrated system where these different behaviours
∗This work is partially supported by The Swedish Research Council (VR) Linnaeus Center for Control, Autonomy, Decision-

making in Complex Systems (CADICS), the ELLIIT network organization for Information and Communication Technology, the
Swedish National Aviation Engineering Research Program NFFP6, SSF – the Swedish Foundation for Strategic Research (CUAS
Project) and the EU FP7 project SHERPA, grant agreement 600958.

1

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

operate concurrently. There is a continual trade-off between the use of reactive and deliberative be-
haviours and these operate in the context of a realtime control kernel which, in the case of a UAV (Un-
manned Aerial Vehicle), keeps it navigationally robust and in the air. Descriptions of such architectures
are covered elsewhere [7], but are the basis for supporting the functionalities described here.

A related issue of fundamental importance is the principled management of dataflow in such archi-
tectures. This issue is often overlooked, but is central to the ability of a system to reason at a high level
of abstraction in a semantically grounded and qualitative manner. Control, reactive and deliberative pro-
cesses each place requirements on the flow of data input into these processes and data output delivered
by these processes. Conceptually, such dataflow can be characterized as streams containing sequences
of time-stamped data objects delivered at various sampling rates and used by various processes. These
streams need to be specified, generated, merged, filtered and managed in many ways. Lurking here is a
generic middleware functionality which is a prerequisite to powerful uses of stream-based reasoning in
robotic architectures. In section 2 such a middleware service, DyKnow, is presented.

Another fundamental challenge is to close the gap between the low-level numeric data streams gener-
ated by sensors in a robotic platform and the high-level qualitative data streams required for deliberative
processes. The issue here is generating semantically grounded symbol structure streams from sensed
data. This is often called closing the sense-reasoning gap. It turns out that various processes require
data at various levels of abstractions and at various latencies. For example, suppose a UAV wants to
reason about vehicle behaviour on the ground using chronicle recognition systems and qualitative spa-
tial reasoning systems. How would movement in a video camera image be translated in real-time into
qualitative descriptions that can be used by deliberative components? In section 2, one approach to
doing this successfully is described.

One important area of knowledge representation is cognitive robotics. One of the principal tools used
to specify such systems is logics of action and change [5]. One such logic, TAL, is briefly described in
section 3. It is a nonmonotonic linear temporal logic based on the idea of features and fluents. A fluent
is a time indexed function returning the value of a particular feature at a point in time. A fluent is a
formal representation of a stream which is an approximation to that fluent. A model for a theory in TAL
is an aggregate of many fluents. This aggregate is equivalent to a stream of states. This is the central
idea which relates logics of action and change to streams generated using DyKnow. DyKnow provides
the ability to generate aggregates of streams in realtime. Such an aggregate is viewed as a model
representing aspects of the embedding environment of a robotic system, or the internal behaviour of the
robotic system itself. One can then base a realtime stream-based reasoning system on this connection
by querying such streams with temporal formulas using a progression algorithm.

Generating plans to achieve goals is a central aspect of intelligent behaviour. For a UAV system,
both task planning and motion planning is required to achieve goals. In section 3.1, a temporal logic
based planner, TALplanner, is discussed. It is formally specified using TAL. The input to the planner
is a logical theory in the form of a narrative. The output of the planner is an extended narrative that
achieves the goals in question. Although temporal logic is used as basis for the planner, it is one of the
most efficient task planners in existence. Plans themselves, whether partial or complete, can be reasoned
about logically since they are logical theories in TAL.

In dynamic environments, plans have a tendency to break down. Replanning has to be done contin-
ually due to changes in the predicted behaviour of the surrounding environment. In order to replan, the
planner must be made aware of the fact that something is wrong. In section 3.2, an execution monitoring
system based on the use of streams and temporal logic is described. Since a plan is a logical theory, the
incremental success of the plan’s execution can be checked by incrementally querying an aggregated set
of streams generated by DyKnow. The aggregated stream is a model which should satisfy the logical
theory representing the plan. If it does not, a problem is identified and can be dealt with. The central idea
is that DyKnow can generate temporal models on the fly and these models can be queried by checking

2

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

Knowledge Process

policy

policy

policy

policy

stream

stream

streams policy

policy

Stream
Generator

Figure 1: A prototypical knowledge process.

the satisfiability of a query specified as a temporal formula.
The functionality for querying temporal models is much more general. It can be viewed as a generic

stream-based reasoning system integrated in a robotic system. Various queries can be made, not only
for execution monitoring, but for querying in general. For example, safety and liveness conditions
associated with the robust behavior of the robotic system can be continually checked in realtime. Queries
to diagnose problems with the system can be represented as temporal formulas and checked against an
aggregate of streams generated by DyKnow for just that purpose. Descriptions and details for each of
these functionalities are presented in the remaining part of the paper.

2 DyKnow: Stream-Based Reasoning Middleware
The main purpose of DyKnow [10, 11] is to provide generic and well-structured middleware support
for the generation of state, object, and event abstractions for the environments of complex systems.
Such generation is done at many levels of abstraction beginning with low level quantitative sensor data
and resulting in qualitative data structures which are grounded in the world and can be interpreted as
knowledge.

DyKnow organizes the many levels of information and knowledge processing in a distributed robotic
system as a network of knowledge processes connected by streams of time-stamped data or knowledge
(Figure 1). Streams may for example contain periodic readings from sensors or sequences of query re-
sults from databases. Knowledge processes can use a semantic integration functionality to find streams
based on their semantics relative to a common ontology. They can then process the streams by applying
functions, synchronization, filtering, aggregation and approximation as they move to higher levels of
abstraction. They often provide stream generators producing new streams satisfying policies, declara-
tive specifications of desired stream properties. In this way, DyKnow supports conventional data fusion
processes, but also less conventional qualitative processing techniques common in artificial intelligence.

For modelling purposes, the environment of a robotic system is viewed as consisting of physical
and non-physical objects (such as the UAV, car37 and the entity observed by the camera), properties
associated with these objects, and relations between the objects. Properties and relations, such as the
velocity of an object and the distance between two car objects, are called features. Since each feature
can change values over time, it is associated a total function from time to value called a fluent.

Due to inherent limitations in sensing and processing, one cannot expect access to an actual fluent.
Instead a fluent stream is an approximation of a fluent, containing a stream of samples of feature values
at specific time-points. A collection of fluent streams corresponds directly to a temporal logical model.

A sample can either come from an observation of the feature or a computation which results in an
estimation of the value at the particular time-point, called the valid time. The time-point when a sample
is made available or added to a fluent stream is called the available time. A fluent stream has certain
properties such as start and end time, sample period and maximum delay. These properties are specified

3

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

Chronicle*

Recogni-on*

Qualita-ve*Spa-al*

Reasoning*

Qualita-ve*spa-al*rela-ons*

(close,*behind,*same_road,*…)*

Temporal*Logic*

Progression*

Geographical*

Informa-on*

System*
Car*objects*

Image*

Processing*

Vision*objects*

Vehicle*State*

Es-ma-on*

Camera*State*

Es-ma-on*

Vehicle*

state*

Camera*state*

GPS* PanH-lt*unit*

Color*camera*

Thermal*camera*

IMU*

Sensor'
processing'

Symbolic'reasoning' A' B' C'

D' E'

[0,*20]* [5,*10]*

[0,*10]*

[10,*10]*

[10,*20]*

Source*

Stream*

Computa-onal*

unit*

Anchoring*

Figure 2: Potential organization of the incremental processing required for a traffic surveillance task.

by a declarative policy which describes constraints on the fluent stream.
For example, the position of a car can be modeled as a feature. The true position of the car at

each time-point during its existence would be its fluent and a particular sequence of observations or
estimations of its position would be a fluent stream. There can be many fluent streams all approximating
the same fluent.

DyKnow also supports state generation, creating an approximation of the state at a given time using
the information that has propagated through the distributed system so far. For example, two streams
representing “speed of car1” and “position of car1” can be synchronized into a single fluent stream con-
taining 〈speed,position〉 tuples, called states, whose values one cannot necessarily necessarily measure
exactly simultaneously but must be estimated at a common timepoint.

A Traffic Monitoring Example. Figure 2 shows how part of the incremental processing required for a
UAV traffic surveillance task can be organized as a set of knowledge processes.

At the lowest level, a helicopter state estimator uses data from an inertial measurement unit (IMU)
and a global positioning system (GPS) to determine the position and attitude of the UAV. A camera state
estimator uses this together with the state of the pan-tilt unit on which the cameras are mounted. The
image processing component uses the camera state to determine where the camera is pointing. Video
streams from color and thermal cameras can then be analyzed to generate vision percepts representing
hypotheses about physical objects, including approximate positions and velocities.

Symbolic formalisms require a consistent assignment of symbols, or identities, to the physical ob-
jects being reasoned about and the sensor data received about the objects. Image analysis may provide
a partial solution, but changing visual conditions or objects temporarily being out of view lead to prob-
lems that image analysis cannot necessarily handle. The anchoring system therefore uses progression
of formulas in a metric temporal logic to incrementally evaluate potential hypotheses about the ob-
served objects [12]. The anchoring system also assists in object classification and in the extraction of
higher level attributes of an object. For example, a geographic information system can be used to de-
termine whether an object is currently on a road or in a crossing. Such attributes can in turn be used to
derive relations between objects, including qualitative spatial relations such as beside(car1,car2) and

4

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

close(car1,car2). Concrete events corresponding to changes in such attributes and relations allow the
chronicle recognition system to determine when higher-level events such as reckless overtakes occur.
Related Work. To the best of our knowledge there does not really exist any other system which provides
similar stream reasoning functionality. The KnowRob system [20] is probably the closest match with its
sophisticated and powerful knowledge processing framework. However, it does not support reasoning
over streaming information and the support for temporal reasoning is limited.

3 Temporal Action Logic
Temporal Action Logic, TAL, is a well-established non-monotonic logic for representing and reasoning
about actions [5, 8]. Here a limited subset of TAL is described and we refer to [5] for further details.

TAL provides an extensible macro language, L (ND), that allows reasoning problems to be speci-
fied at a higher abstraction level than plain logical formulas. The basic ontology includes parameter-
ized features f (x) that have values v at specific timepoints t, denoted by [t] f (x) =̂ v, or over intervals,
[t, t ′] f (x) =̂ v. Incomplete information can be specified using disjunctions of such facts. Parameterized
actions can occur at specific intervals of time, denoted by [t1, t2]A(x). To reassign a feature to a new
value, an action uses the expression R([t] f (x) =̂ v). Again, disjunction can be used inside R() to specify
incomplete knowledge about the resulting value of a feature. The value of a feature at a timepoint is
denoted by value(t, f).

The logic is based on scenario specifications represented as narratives in L (ND). Each narrative
consists of a set of statements of specific types, including action type specifications defining named
actions with preconditions and effects. The basic structure, which can be elaborated considerably [5],
has the form [t1, t2]A(v) (Γpre(t1,v)→ Γpost(t1, t2,v))∧Γcons(t1, t2,v) stating that if the action A(v) is
executed during the interval [t1, t2], then given that its preconditions Γpre(t1,v) are satisfied, its effects,
Γpost(t1, t2,v), will take place. Additionally, Γcons(t1, t2,v) can be used to specify logical constraints
associated with the action. For example, the following defines the elementary action fly-to: If a UAV
should fly to a new position (x′,y′) within the temporal interval [t, t ′], it must initially have sufficient
fuel. At the next timepoint t +1 the UAV will not be hovering, and in the interval between the start and
the end of the action, the UAV will arrive and its fuel level will decrease. Finally, there are two logical
constraints bounding the possible duration of the flight action.
[t, t ′]fly-to(uav,x′,y′) [t] fuel(uav)≥ fuel-usage(uav,x(uav),y(uav),x′,y′)→

R([t +1] hovering(uav) =̂ False)∧R((t, t ′] x(uav) =̂ x′)∧R((t, t ′] y(uav) =̂ y′)∧
R((t, t ′] fuel(uav) =̂ value(t, fuel(uav)− fuel-usage(uav,x(uav),y(uav),x′,y′)))∧
t ′− t ≥ value(t,min-flight-time(uav,x(uav),y(uav),x′,y′))∧
t ′− t ≤ value(t,max-flight-time(uav,x(uav),y(uav),x′,y′))

The translation function Trans
()

translates L (ND) expressions into L (FL), a first-order logical lan-
guage [5]. This provides a well-defined formal semantics for narratives in L (ND).

The L (FL) language is order-sorted, supporting both types and subtypes for features and values.
This is also reflected in L (ND), where one often assumes variable types are correlated to variable names
– for example, uav3 implicitly ranges over AVs. There are a number of sorts for values Vi, including
the Boolean sort B with the constants {true, false}. V is a supersort of all value sorts. There are a
number of sorts for features Fi, each one associated with a value sort dom(Fi) = V j for some j. The
sort F is a supersort of all fluent sorts. There is also an action sort A and a temporal sort T . Generally,
t, t ′ will denote temporal variables, while τ,τ ′,τ1, . . . are temporal terms. L (FL) currently uses the
following predicates, from which formulas can be defined inductively using standard rules, connectives
and quantifiers of first-order logic.

• Holds : T ×F ×V , where Holds(t, f ,v) expresses that a feature f has a value v at a timepoint t,

5

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

corresponding to [t] f =̂ v in L (ND).
• Occlude :T ×F , where Occlude(t, f) expresses that a feature f is permitted to change values at

time t. This is implicit in reassignment, R([t] f =̂ v), in L (ND).
• Occurs : T ×T ×A , where Occurs(ts, te,A) expresses that a certain action A occurs during the

interval [ts, te]. This corresponds to [ts, te]A in L (ND).

Trans
()

first generates the appropriate L (FL) formulas corresponding to each L (ND) statement. For
example, the translation of the action specification above is as follows, where semantic attachment is
used for greaterequals and minus and where Occlude formulas are generated by expanding the R macro.
∀t, t ′,uav,x′,y′[
Occurs(t, t ′,fly-to(uav,x′,y′))→ (

Holds(t,greaterequal(fuel(uav), fuel-usage(uav,x(uav),y(uav),x′,y′)))→
Holds(t +1,hovering(uav), false)∧Holds(t ′,x(uav),x′)∧Holds(t ′,y(uav),y′)∧
Holds(t ′, fuel(uav),value(t,minus(fuel(uav), fuel-usage(uav,x(uav),y(uav),x′,y′))))∧
t ′− t ≥ value(t,min-flight-time(uav,x(uav),y(uav),x′,y′))∧
t ′− t ≤ value(t,max-flight-time(uav,x(uav),y(uav),x′,y′))∧
∀u[t < u≤ t ′→ Occlude(u,x(uav))∧Occlude(u,y(uav))∧Occlude(u, fuel(uav))]∧
Occlude(t +1,hovering(uav)))]

Foundational axioms such as unique names and domain closure axioms are appended when required.
Logical entailment then allows the reasoner to determine when actions must occur. To ensure that they
cannot occur at other times than explicitly stated, filtered circumscription is used. This also ensures
that fluents can change values only when explicitly affected by an action or dependency constraint
[5]. Pragmatically, this is done by representing possible change using the Occlude relation and then
minimizing Occlude in a subset of the theory in question.

The structure of L (ND) statements ensures that the second-order circumscription axioms are re-
ducible to equivalent first-order formulas, allowing classical first-order theorem proving techniques to
be used [5]. For unmanned systems, however, the logic will primarily be used to ensure a correct seman-
tics for planners, execution monitors and mission specification languages and correlating this semantics
closely to the implementation. Using TAL neither requires nor excludes theorem proving on board.

3.1 Task Planning using TALplanner
TALplanner [15, 16] is a domain-independent concurrent temporal planner where the declarative se-
mantics for planning domains and problem instances is directly based on TAL. Inspired by TLplan [2],
it also supports the use of domain-specific control formulas in TAL. Such formulas act as requirements
on the set of valid solutions: A plan is a solution only if its final state satisfies the goal and all control
formulas are satisfied in the complete state sequence that would result from executing the plan, which
can be viewed as a logical model. This serves two separate purposes. First, it allows the specification
of complex temporally extended goals such as safety conditions that must be upheld throughout the
(predicted) execution of a plan. Second, the additional constraints on the final solution often allow the
planner to prune entire branches of the search tree – whenever it can be proven that every search node
on the branch corresponds to a state sequence that violates at least one control rule.

As an example, consider two simple control rules that could be used in an airplane-based logistics
domain. First, a package should only be loaded onto a plane if a plane is required to move it: If the goal
requires it to be at a location in another city. Regardless of which operator is used to load a package, one
can detect this through the fact that it is in a plane at time t +1, but was not in the same plane at time t.

∀t,obj,plane, loc.[t]¬in(obj, plane) ∧ at(obj, loc) ∧ [t+1] in(obj, plane)→
∃loc′ [goal (at(obj, loc′)) ∧ [t] city_of(loc) 6=̂ city_of(loc′)]

6

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

Second, if a package is at its destination, it should not be moved.
∀t,obj, loc.[t]at(obj, loc) ∧ goal (at(obj, loc))→ [t+1] at(obj, loc)

Surprisingly, such simple hints to an automated planner can often improve planning performance by
orders of magnitude given that the planner has the capability to make use of the hints.
Related work. Though a large variety of planners exist in the literature, most lack the ability to take
advantage of additional domain knowledge. Of those who do, most are based on Hierarchical Task
Networks [17–19], where the underlying idea is that every objective that one may like to achieve is
associated with a means of reducing it to more primitive objectives, until elementary actions are reached.
Compared to this approach, the use of domain-specific control formulas allows domain knowledge to be
added in a more incremental fashion while the planner still takes care of a larger proportion of the work
required to find a plan.

3.2 Execution Monitoring
The execution monitoring system described here is based on an intuition similar to the one underlying
the temporal control formulas used in TALplanner. As a plan is being executed, information about the
surrounding environment is sampled at a given frequency by DyKnow (section 2). Each new sampling
point generates a new state which provides information about all state variables used by the current
monitor formulas, thereby providing information about the actual state of the world as opposed to
what could be predicted from the domain specification. The resulting sequence of states corresponds
to a partial logical interpretation, where “past” and “present” states are completely specified whereas
“future” states are completely undefined.

Monitor formulas are expressed in a variation of TAL augmented with a set of tense operators similar
to those used in modal tense logics such as MTL [14]. This allows the expression of complex metric
temporal conditions and is amenable to incremental evaluation as each new state is generated. Violations
can then be detected as early and as efficiently as possible using a formula progression algorithm, while
the basis in TAL provides a common formal semantic ground for planning and monitoring.

Three tense operators have been introduced into L (ND): U (until), 3 (eventually), and 2 (always).
Like all L (ND) expressions, these operators are macros on top of the first order base language L (FL).

Definition 1 (Monitor Formula). A monitor formula is one of the following:

• τ ≤ τ ′, τ < τ ′, or τ = τ ′, where τ and τ ′ are temporal terms,

• ω ≤ ω ′, ω < ω ′, or ω = ω ′, where ω and ω ′ are value terms,

• f, where f is a boolean fluent term (state variable term),

• f =̂ ω , where f is a fluent term and ω is a value term of the corresponding sort,

• φ U[τ,τ ′] ψ , where φ and ψ are monitor formulas and τ and τ ′ are temporal terms,

• 3[τ,τ ′] φ , where φ is a monitor formula and τ and τ ′ are temporal terms,

• 2[τ,τ ′] φ , where φ is a monitor formula and τ and τ ′ are temporal terms, or

• a combination of monitor formulas using standard logical connectives and quantifiers.

The shorthand notation φ Uψ ≡ φ U[0,∞) ψ , 3φ ≡3[0,∞) φ , and 2φ ≡2[0,∞) φ is also permitted.

Tense operators use relative time, where each formula is evaluated relative to a “current” timepoint. The
semantics of these formulas satisfies the following conditions (see [6] for details):

• φ U[τ,τ ′] ψ (“until”) holds at time t iff ψ holds at some state with time t ′ ∈ [t+τ, t+τ ′] and φ holds
until then (at all states in [t, t ′), which may be an empty interval).

7

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

• 3[τ,τ ′] φ (“eventually”) is equivalent to trueU[τ,τ ′] φ and holds at t iff φ holds in some state with
time t ′ ∈ [t + τ, t + τ ′].

• 2[τ,τ ′] φ is equivalent to ¬3[τ,τ ′]¬φ and holds at t iff φ holds in all states at time t ′ ∈ [t+τ, t+τ ′].

Example 1. Suppose that a UAV supports a maximum continuous power usage of M, but can exceed
this by a factor of f for up to τ units of time, if this is followed by normal power usage for a period
of length at least τ ′. The following “global” (always active) monitor formula can be used to detect
violations of this specification:
2∀uav.(power(uav)> M→ power(uav)< f ·M U[0,τ]2[0,τ ′] power(uav)≤M)

Note that this does not cause the UAV to behave in the desired manner. The monitor formula instead
serves as a method for detecting the failure of the helicopter control software to function as required.

Example 2. The following monitor formula can be attached directly to the pickup-box action. Each time
a pickup-box action is executed, the formula will be instantiated with the uav and box parameters and
evaluation will begin.

3[0,5000]2[0,1000] carrying(uav,box)

Within 5000 ms, the UAV should detect that it is carrying the box, and it should detect this for at least
1000 ms. The latter condition protects against problems during the pickup phase, where the box may be
detected during a very short period of time even though the ultimate result is failure.

To promptly detect violations of monitor conditions during execution, a formula progression algorithm
is used [1]. By definition, a formula φ holds in the state sequence [s0,s1, . . . ,sn] iff Progress(φ ,s0) holds
in [s1, . . . ,sn]. In essence, this evaluates those parts of the monitor formula that refer to s0, returning a
new formula to be progressed in the same manner once s1 arrives.

If the formula ⊥ (false) is returned, then sufficient information has been received to determine that
the monitor formula must be violated regardless of the future development of the world. For example,
this will happen as soon as the formula 2speed < 50 is progressed through a state where speed ≥ 50.
This signals a potential or actual failure from which the system must attempt to recover. Recovery
procedures can be associated with specific monitor formulas and operators. For example, if a UAV fails
to take off with a certain cargo, it can adjust its assumptions about how much it is able to lift. This feeds
back information from the failure into the information given to the planner for replanning.

If > (true) is returned, the formula must instead hold regardless of what happens “in the future”. In
other cases, the state sequence complies with the constraint “so far”, and progression returns a new and
potentially modified formula that should be progressed again as soon as another state is available.

Definition 2 (Progression of Monitor Formulas). The following algorithm is used for progression of
monitor formulas. States are not first-class objects in TAL and are therefore identified by an interpre-
tation I corresponding to an entire state sequence and a timepoint τ identifying a state within that
sequence. Special cases for 2 and 3 can be introduced for performance.

1 procedure Progress(φ ,τ,I)
2 if φ = f (x) =̂ v
3 if I |= Trans

(
[τ] φ

)
return > else return ⊥

4 if φ = ¬φ1 return ¬Progress(φ1,τ,I)
5 if φ = φ1⊗φ2 return Progress(φ1,τ,I)⊗Progress(φ2,τ,I)
6 if φ = ∀x.φ return

∧
c∈X Progress(φ [x 7→ c],τ,I) // where x is a variable of sort X

7 if φ = ∃x.φ return
∨

c∈X Progress(φ [x 7→ c],τ,I) // where x is a variable of sort X
8 if φ contains no tense operator
9 if I |= Trans

(
φ
)

return > else return ⊥

8

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

10 if φ = φ1 U[τ1,τ2] φ2
11 if τ2 < 0 return ⊥
12 elsif 0 ∈ [τ1,τ2] return Progress(φ2,τ,I)∨ (Progress(φ1,τ,I)∧ (φ1 U[τ1−1,τ2−1] φ2))
13 else return Progress(φ1,τ,I)∧ (φ1 U[τ1−1,τ2−1] φ2)

The result of Progress is simplified using the rules¬⊥=>, (⊥∧α)= (α∧⊥)=⊥, (⊥∨α)= (α∨⊥)=
α , ¬> = ⊥, (>∧α) = (α ∧>) = α , and (>∨α) = (α ∨>) = >. Further simplification is possible
using identities such as 3[0,τ] φ ∧3[0,τ ′] φ ≡3[0,min(τ,τ ′′)] φ .

Empirical testing has been performed using common formula patterns exercising complex combinations
of time and modality, together with synthetic state inputs designed to exercise both the best and the worst
cases for these formulas. An example is 2(speed(uav)> T →3[0,1000]2[0,1000] speed(uav)≤ T): If the
UAV is flying too quickly, then within 1000 ms, there must begin a period lasting at least 1000 ms where
it is within the limits. Even with the worst case input and with new states arriving every 100 ms, 1500
formulas of this form could be progressed in parallel even using an on-board UAV computer with a
comparatively old 1.4 GHz Pentium M CPU. Similar results have been shown for formulas of different
forms, indicating the general feasibility of this approach even with limited computational power [6].
Related Work. The most common approach to execution monitoring uses a predictive model to deter-
mine what state a robot should be in, continuously comparing this to the current state as detected by
sensors [3, 9, 21]. However, the fact that one can detect a discrepancy between the current state and the
predicted state does not necessarily mean that this discrepancy has a detrimental effect on execution or
mission achievement. Thus, one must take great care to distinguish essential deviations from unimpor-
tant ones. Using explicit monitor formulas allows us to explicitly distinguish what is necessary from
what is merely predicted.

4 Conclusions
As Israel [13] points out, logic has played two very broad roles in AI:

(i) as a source of languages and logics for artificial reasoners;
(ii) most importantly, as a source of analytical tools and techniques; more broadly, as providing the

underlying mathematical and conceptual framework within which much of AI research is done.
(p. 2, [13])

As demonstrated in this paper, both these roles are fundamentally important in the development of highly
autonomous robotic systems. Due to the complexity of such systems, one requires a principled means
of controlling that complexity. The use of temporal logic as an analytical tool to provide the underlying
conceptual framework for many of the functionalities that make up an autonomous robotic system is
highly beneficial in this respect. The three functionalities described in this paper are formally grounded
in this manner. Since one requires soft real-time reasoning capabilities, one has to be somewhat more
creative in the use of logic as the basis for a reasoning component. The use of stream-based reasoning
techniques provides a novel use of logic as an online reasoner. The autonomous system has the capability
of dynamically generating temporal models and then querying these models in soft realtime. This
capability has been used with great success as a basis for efficient planning, execution monitoring,
diagnosis and as a constraint checker for safety and liveness conditions.

References
[1] F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Mathematics and Artificial

Intelligence, 22, 1998.

9

Robotics, Temporal Logic and Stream Reasoning Doherty, Heintz, Kvarnström

[2] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning. Artificial
Intelligence, 116:123–191, 2000.

[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. 5th International Conference on Artificial Intelligence
Planning Systems (AIPS-2000), pages 300–307, Breckenridge, Colorado, USA, April 2000. AAAI Press.

[4] P. Doherty. Advanced research with autonomous unmanned aerial vehicles. In Proc. International Conference
on Principles of Knowledge Representation and Reasoning (KR), 2004. Extended abstract for plenary talk.

[5] P. Doherty and J. Kvarnström. Temporal action logics. In The Handbook of Knowledge Representation,
chapter 18, pages 709–757. Elsevier, 2008.

[6] P. Doherty, J. Kvarnström, and F. Heintz. A temporal logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. J. of Autonomous Agents and Multi-Agent Systems, 19(3):332–377,
2009.

[7] P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz, and G. Conte. HDRC3: A distributed hybrid ar-
chitecture for unmanned aircraft systems. In Handbook of Unmanned Aerial Vehicles (forthcoming). Springer,
2014.

[8] Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas Kvarnström. (TAL) temporal action logics:
Language specification and tutorial. Electronic Transactions on Artifical Intelligence, 2(3-4):273–306, 1998.

[9] R. Fikes. Monitored execution of robot plans produced by STRIPS. In Proc. IFIP Congress (IFIP-1971),
pages 189–194, Ljubljana, Yugoslavia, 1971.

[10] F. Heintz. DyKnow: A Stream-Based Knowledge Processing Middleware Framework. PhD thesis, Department
of Computer and Information Science, Linköping University, 2009.

[11] F. Heintz and P. Doherty. DyKnow: An approach to middleware for knowledge processing. J. of Intelligent
and Fuzzy Systems, 15(1):3–13, 2004.

[12] F. Heintz, J. Kvarnström, and P. Doherty. Stream-based hierarchical anchoring. Künstliche Intelligenz,
27:119–128, 2013.

[13] David J Israel. The role(s) of logic in artificial intelligence. Handbook of Logic in Artificial Intelligence and
Logic Programming, 1:1–29, 1993.

[14] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4), 1990.

[15] J. Kvarnström. TALplanner and Other Extensions to Temporal Action Logic. PhD thesis, Department of
Computer and Information Science, Linköping University, 2005.

[16] Jonas Kvarnström and Patrick Doherty. TALplanner: A temporal logic based forward chaining planner. Annals
of Mathematics and Artificial Intelligence, 30:119–169, 2000.

[17] Dana S. Nau, T. C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wo, and F. Yaman. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research, 20:379–404, December 2003.

[18] Earl D. Sacerdoti. The nonlinear nature of plans. In Proc. Fourth International Joint Conference on Artificial
Intelligence (IJCAI-1975), pages 206–214, Tiblisi, Georgia, USSR, 1975.

[19] Austin Tate. Generating project networks. In Proc. Fifth International Joint Conference on Artificial Intelli-
gence (IJCAI-1977), pages 888–893, Cambridge, Massachusetts, USA, August 1977.

[20] Moritz Tenorth and Michael Beetz. KnowRob – A Knowledge Processing Infrastructure for Cognition-
enabled Robots. Part 1: The KnowRob System. Int. J. of Robotics Research, 32(5), 2013.

[21] R. Washington, K. Golden, and J. Bresina. Plan execution, monitoring, and adaptation for planetary rovers.
Electronic Transactions on Artificial Intelligence, 5(17), 2000.

10

	Introduction
	DyKnow: Stream-Based Reasoning Middleware
	Temporal Action Logic
	Task Planning using TALplanner
	Execution Monitoring

	Conclusions

