
Natural Language Understanding
using Temporal Action Logic

Martin Magnusson
Department of Computer and Information Science

Linköping University, SE-581 83 Link̈oping, Sweden
email: marma@ida.liu.se

www.phlai.com/nl1

Abstract

We consider a logicist approach to nat-
ural language understanding based on the
translation of a quasi-logical form into a
temporal logic, explicitly constructed for
the representation of action and change,
and the subsequent reasoning about this
semantic structure in the context of a back-
ground knowledge theory using automated
theorem proving techniques. The ap-
proach is substantiated through a proof-of-
concept question answering system imple-
mentation that uses a head-driven phrase
structure grammar developed in the Lin-
guistic Knowledge Builder to construct
minimal recursion semantics structures
which are translated into a Temporal Ac-
tion Logic where both the SNARK au-
tomated theorem prover and the Allegro
Prolog logic programming environment
can be used for reasoning through an in-
terchangeable compilation into first-order
logic or logic programs respectively.

1 Introduction

A complex and poorly understood area in com-
putational linguistics is the integration and use of
background knowledge to aid parsing, interpreta-
tion and understanding of natural language. There
is general agreement that background knowledge
is needed, e.g. to select between ambiguous in-
terpretations or to provide answers to questions,
and that without at least a partial understanding
of the world a system can never hope to approach
full natural language understanding. As artifi-
cial intelligence research moves closer to applica-
tions there is an increasing risk that too many nat-
ural language projects concentrate on the robust

performance that is required in real-world appli-
cations and that they, while realizing that back-
ground knowledge is important, tend to make its
role peripheral instead of a solid base on which to
build upon.

We describe a natural language understanding
system based on a logicist knowledge representa-
tion foundation that serves as a research platform
for experimentation with the interchange between
computational linguistics and knowledge repre-
sentation and reasoning. The focus is the rep-
resentational and inferential adequacy of the un-
derlying techniques, which have been selected for
generality and extensibility, rather than on imme-
diate applicability or the similarity with human di-
alogue characteristics. The techniques are brought
together in a simple and clear architecture that
holds great potential for development and experi-
mentation. A novel integration of natural language
technology, knowledge representation technology,
and automated reasoning technology in a proof-
of-concept question answering system, with the
working title NL1, has been implemented and is
available as open source1.

2 Temporal Action Logic

The Temporal Action Logic (TAL) is a non-
monotonic temporal logic developed specifically
for reasoning about actions and dynamical do-
mains. The logic has its origin in the Fea-
tures and Fluents framework developed by Sande-
wall (1994) but was given a new characterization
in terms of circumscription by Doherty (1994).
Many extensions since have turned TAL into a
very expressive language capable of represent-
ing, among other things, actions with durations,

1http://www.phlai.com/nl1

28 KRAQ06

per1 ∀t [Per(t, alive) ∧ Per(t, loaded)]
acs1 [t1, t2] Load R((t1, t2] loaded)
acs2 [t1, t2] Fire ([t1] loaded →

R((t1, t2] ¬alive ∧ ¬loaded))
obs1 [0] ¬loaded ∧ alive

occ1 [1, 2] Load

occ2 [3, 4] Fire

Figure 1: The Yale shooting scenario in TAL.

context-dependent and non-deterministic actions,
concurrency, and action side-effects. It also pro-
vides solutions to the frame, ramification and qual-
ification problems. For a more detailed introduc-
tion to TAL the reader is referred to (Doherty et
al., 1998).

2.1 TAL Narratives

Domains are described in TAL usingfluentsthat
represent properties of the world that change over
time. World laws governing the evolution of flu-
ents are expressed innarratives, which are high-
level descriptions of observations, action schemas,
and action occurrences. Narratives receive a se-
mantics through a translation to the base language,
which is an order-sorted classical first-order logic
together with a circumscription policy described
below. Figure 1 shows the well-known Yale shoot-
ing scenario expressed as a TAL narrative. A per-
sistence statement (labelledper1) constrains the
fluentsalive andloaded’s values to persist unless
they are affected by some action. Action schemas
(acs1 andacs2) use the reassignment operator
R to makeloaded true after performing theLoad

action and to make bothloaded andalive false af-
ter performing theFire action, but only ifloaded

was true when the action was initiated. An ob-
servation statement (obs1) initializes loaded and
alive to false and true respectively. Finally, the
two occurrence statements (occ1 andocc2) de-
scribe a world history in which theLoad action is
performed between time points 1 and 2, and the
Fire action is performed between 3 and 4.

2.2 Occlusion

The key to the solution of the frame problem in
TAL lies in the use ofocclusion. When narra-
tives are translated into classical logic anOcclude

predicate is introduced and constrained to be true
at those time points where fluents are forced to
change their values due to reassignments. An ad-
ditional no-changeaxiom is added that rules out

� � � � � � �

� � �

� � � �� 	
� �

� � � �� � �

� � � �

� �� � � �
� � � ��

� � � � �� � �

� 	 � 	 �

� � � �� �

� � 	 � �� �
� � � � � � � �
� � � � ��

� � � � �� � � �
� � � �� � � � 	 � 	
� �
� � � � ��

 � 	 � � � 	 � �
� � � � � �
� �
� � � � ��

Figure 2: An overview of the NL1 architecture.

any fluent changes at any time points when the flu-
ent was not occluded. The final step is the min-
imization of theOcclude predicate and the ac-
tion occurrences, expressing the default assump-
tion that no unexpected fluent changes or spuri-
ous actions occur unless explicitly specified. The
minimization is accomplished through the circum-
scription of those parts of the translated theory that
contain action schemas and action occurrences re-
spectively.

3 System Architecture

NL1 carries on an interactive natural language text
dialogue with the user, executing commands and
answering queries about a simulated blocksworld.
An important emphasis of the system architec-
ture, depicted in Figure 2, is the use of declarative
knowledge structures in the hope of building a sys-
tem that is both convenient to adapt to new usage
scenarios and that has a great ultimate potential for
extension while at the same time retaining the ba-
sic implementation components.

3.1 Natural Language Module

The natural language module is responsible for the
parsing of input sentences and the construction of
a quasi-logical form. User interaction consists of
natural language input and output through a mini-
mal user interface in the form of a text top-loop.
Sentence are read from a prompt and passed as
text strings to the Linguistic Knowledge Builder
(LKB) component. The LKB chart parser uses a
Head-driven Phrase Structure Grammar (HPSG),

29 KRAQ06

based on the grammar in (Sag et al., 2003), to
parse the input text string and build a feature struc-
ture representation. The grammar includes seman-
tical relations, and the semantical part of the fea-
ture structure representation constitutes a Minimal
Recursion Semantics (MRS) structure.

One of the benefits of this set-up is that natural
language generation can be achieved by running
the chart parser “in reverse” using the same gram-
mar that was used when parsing. The task of gen-
erating a response is then reduced to the task of
constructing a suitable MRS structure represent-
ing an answer to the user’s request.

The HPSG grammar forms a declarative knowl-
edge source that is easily adapted to new vocab-
ularies, by changing the lexicon of words and se-
mantical relations, and that has a great potential
for extension, e.g., moving towards broad cover-
age as in the English Resource Grammar project
(Copestake and Flickinger, 2000).

3.2 Knowledge Representation Module

The knowledge representation module holds a rep-
resentation of both the basic world laws and the
particulars of the current scenario, but also a his-
tory of the developments of the world during the
ongoing dialogue.

The world model, together with action specifi-
cations and an initial state is encoded as TAL for-
mulas and stored in the blocksworld knowledge
base. A continually evolving TAL narrative of ac-
tion occurrences represents the world history and
is stored in the state knowledge base. Any sen-
tence that enters the system reaches the knowl-
edge representation module in the form of an MRS
structure that needs to be transformed into a full
logical form before it is used in reasoning. The
MRS structure is passed to the translation compo-
nent that implements a partial translation by per-
forming a number of transformations, as described
in Section 4, that result in a TAL formula. If
the natural language module identified the sen-
tence as an imperative command, the TAL for-
mula is appended to the narrative, but if the sen-
tence was identified as a proposition or a question,
a reasoning problem is formed by combining the
corresponding TAL formula with the background
blocksworld theory.

By using TAL as our knowledge representa-
tion language we are able to express a wide range
of common-sense reasoning scenarios and ensure

that the system is not limited to the relatively sim-
ple blocksworld, even though it is used as an illus-
trative example.

3.3 Automated Reasoning Module

Performing automated reasoning in the Tempo-
ral Action Logic is not trivial since it is a non-
monotonic logic with a semantics based on cir-
cumscription. When Sandewall developed the
basis of the formalism he was concerned more
with assessing its correctness rather than per-
forming automated reasoning. Later Doherty and
Łukaszewicz (1994) showed how the semantics
could be expressed using circumscription and, in
(Doherty, 1994), that under certain restrictions
the circumscription policy could be reduced to
predicate completion (defined by Lifschitz (1994))
which is computable and results in an equivalent
first-order characterization.

These methods open up the possibility of rea-
soning in TAL using a very flexible compilation
approach that fits in nicely with the TAL high-
level narrative description to base language trans-
lation. The idea is to choose an existing domain-
independent automated reasoning paradigm and
develop a compilation step from the TAL base lan-
guage into a language compatible with that para-
digm. The most obvious example would be a com-
pilation into regular first-order logic and the ap-
plication of resolution theorem provers, but other
options are certainly possible as will be described
below. The flexibility lies in the postponing of the
expressibility vs. tractability tradeoff decision to
the time at which some specific application do-
main is fixed, or even later, to the time at which a
specific reasoning problem needs to be addressed.
For example, one would like to detect if the the-
ory is Horn and then use a logic program compila-
tion while still retaining the possibility to automat-
ically fall back to first-order or even higher-order
logic if necessary. Such a classification of the
complexity of the reasoning problem is not pos-
sible in general, but even an incomplete version
might be tremendously useful in certain domains.

Our implementation includes two different
compilation mechanisms. One results in a first-
order theory that is further encapsulated (adding
explicit theorem proving strategies and other con-
figurations) to form an input problem to SNARK
(Stickel, 2005), a resolution theorem prover with
support for, among other things, sorts and answer

30 KRAQ06

(1) B1 is on the table.
Ok.

(2) The table supports B1.
Yes.

(3) Does the table support B2?
I don’t know.

(4) B2 is on the table and B3 is on B1.
Ok.

(5) Does the table support B3?
No.

(6) What blocks are clear?
B3 is clear and B2 is clear.

(7) Pick up B3.
Ok.

(8) Put B3 on the table.
Ok.

(9) What blocks are on the table?
B2 is on the table and B1 is on the table
and B3 is on the table.

Figure 3: An example dialogue from NL1.

extraction. The other compilation results in a logic
program that is further specialized into a program
for Allegro Prolog2, a Prolog environment that is
fully integrated in the Allegro Common-Lisp de-
velopment environment. In both cases, depending
on the question type, the result is the deduction
of true or false, or the extraction of answer terms
from a proof of the query formula. These answer
formulas are passed back to the natural language
module where they are used in the construction of
an answer MRS that generates a natural language
response, closing the loop.

3.4 Example Dialogue

The example dialogue in Figure 3 illustrates the
working system and consists of numbered interac-
tions between an operator and the software. The
simplest sentence type is a proposition stating a
fact about the world, as in sentence 1. NL1 parses
the sentence, translates the result into a TAL for-
mula, and adds it to the knowledge base. Since the
knowledge is expressed using logic we can define
new relations in terms of old relations using ax-
ioms, as in thesupportrelation of sentence 2. Be-
fore accepting new knowledge NL1 uses its rea-
soning capabilities to determine if the new infor-
mation contradicts the current knowledge or if it

2http://www.franz.com/support/
documentation/7.0/doc/prolog.html

mrsToTal(MRS)
Rmrs ← the list of relations in MRS
for each r ∈ Rmrs do

if r = the(x) or r = exists(x) then do Q← Q ∪ ∃x
else if r = forall(x) then do Q← Q ∪ ∀x
else if r = rel(ei, x1, . . . , xn) then do

Rtal ← Rtal∪ [now] rel(x1, . . . , xn)
else if r = rel(x) and rel is a background theory sort

add sort(x) = rel to the symbol table
else do Rtal ← Rtal ∪ r

return q1 . . . qi.[r1 ∧ . . . ∧ rj]
where q1, . . . , qi ∈ Q and r1, . . . , rj ∈ Rtal

Figure 4: The translation algorithm.

is already entailed and therefore redundant. That
the table supports B1 is entailed by the previous
fact and the axioms definingsupport, so the sys-
tem simply replies yes. In sentence 3 we demon-
strate the evaluation of a simple yes/no-question,
although in this case the answer is not known since
nothing has been said about block B2 and NL1
makes no closed world assumptions. Sentence 4
adds B2 to the table and B3 on top of B1 so that
when the question in sentence 5 is evaluated it fol-
lows, from the fact that B3 is on B1 and the fact
that a block cannot be in two places at the same
time, that the table can not support B3. A much
more complex type of questions is what-questions.
Sentence 6 poses a what-question about another
defined relation,clear. The system processes the
question, as described in detail in Section 4, and
constructs an answer MRS from which a com-
plex natural language reply is generated. The sen-
tences in 7 and 8 are recognized as imperative and
are parsed into TAL action occurrences that are
added to the world history. Finally, the question in
sentence 9 demonstrates that the new blocksworld
state conforms to the changes specified for the per-
formed actions in the background action theory
listed in Figure 7.

4 Sentence Processing

The sentence processing can be described by an
(incomplete) algorithm, shown in figure 4, that
translates a feature structure representation of an
MRS into a TAL formula. To illustrate the algo-
rithm let us assume that a user enters the ques-
tion in Figure 5a. The LKB component parses
the string and the MRS in Figure 5b is extracted
from the resulting feature structure. The MRS
Trans component uses the algorithm to interpret
the sentence as a TAL formula, starting by con-

31 KRAQ06

a. ”What blocks are on the table?”

b.

predication

mode wh−ques

index e1

liszt

on

ARG 1 e1

ARG 2 x1

ARG 3 x2

,
table

ARG 1 x2

,
the

ARG 1 x2

,

block

ARG 1 x1

,
exists

ARG 1 x1

,
answer

ARG 1 x1

c. (on e1 x1 x2) (table x2) (the x2)
(block x1) (exists x1) (answer x1)

d. (exists (x2 x1)
(and (on e1 x1 x2) (table x2)

(block x1) (answer x1)))

e. (exists (x2 x1)
(and (time now (on x1 x2))

(table x2) (block x1)
(answer x1)))

f. (exists (x2 x1)
(and (time now (on x1 x2))

(answer x1)))

sort(x1) = block, sort(x2) = table

Figure 5: Input processing for a question.

a. (answer b2) (answer b1)

b. (and
(exists (x2) (time now (on b2 x2)))
(exists (x4) (time now (on b1 x4))))

c. (and e1 e2 e3)
(exists x2) (on e2 b2 x2)
(exists x4) (on e3 b1 x4)

d. (and e1 e2 e3) (the x2) (on e2 x1 x2)
(b2 x1) (table x2) (the x4)
(on e3 x3 x4) (b1 x3) (table x4)

e.

predication

mode prop

index e1

liszt

and

ARG 1 e1

ARG 2 e2

ARG 3 e3

,

on

ARG 1 e2

ARG 2 x1

ARG 3 x2

,
table

ARG 1 x2

,

the

ARG 1 x2

,
b2

ARG 1 x 1

,

on

ARG 1 e3

ARG 2 x3

ARG 3 x4

,

table

ARG 1 x 4

,
the

ARG 1 x 4

,
b1

ARG 1 x3

f. ”B2 is on the table and B1 is on the table.”

Figure 6: Answer processing and generation.

(domain block (b1 b2 b3))
(domain table (table1))
(domain surface (block table))
(fluent (holding block) boolean)
(fluent (on block surface) boolean)
(action (pickup block))
(action (putdown block surface))
(variable t time)
(variable block1 block)
(variable surface1 surface)
(variable surface2 surface)
(per (forall (t block1 surface1)

(and (per t (holding block1))
(per t (on block1 surface1)))))

(dep (forall (t block1 surface1 surface2)
(-> (and (time t (on block1 surface1))

(not (= surface1 surface2)))
(time t (not (on block1 surface2))))))

(acs t1 t2 (pickup block1)
(and (r (oc t1 t2) (holding block1))

(forall (surface1)
(r (oc t1 t2)

(not (on block1 surface1))))))
(acs t1 t2 (putdown block1 surface1)

(r (oc t1 t2)
(and (not (holding block1))

(on block1 surface1))))
(obs (forall (block1)

(time 0 (not (holding block1)))))

(occ 0 1 (pickup b3))
(occ 1 2 (putdown b3 table1))

Figure 7: TAL representation of the blocksworld.

verting the MRS structure to a relation list, shown
in Figure 5c. Our simple treatment of quantifiers
assigns the scope of the entire formula while or-
dering each quantifier as they appear in the relation
list and treatingthe as an existential quantifier, as
in Figure 5d. In Figure 5e, the TAL time operator
has been applied to create a temporal formula re-
placing the event variablee1 with the designated
constantnow that is updated during the dialogue.
Finally, to take advantage of the fact that TAL is
an order-sorted logic, one-place relations that are
identical to sorts defined in the current background
theory are compiled into a symbol table and re-
moved from the formula in Figure 5f.

At this point we have arrived at the TAL formula
representing the user’s question. Let us further as-
sume that we are using the TAL blocksworld for-
malization shown in Figure 7, and that the cur-
rent state of the dialogue interaction has produced
the narrative history represented by the two final
occ statements in the figure. These components
together form a reasoning problem and any an-
swer to the original question is an instantiation
of the variable(s) selected by the special answer
predicate in the question formula that satisfies the

32 KRAQ06

blocksworld specification together with the cur-
rent world history.

Whatever method chosen, to solve the specific
reasoning problem, will produce one or more an-
swer formulas as show in Figure 6a. The answers
are used to instantiate the question formula from
Figure 5f to form the TAL representation in Fig-
ure 6b, representing the answers to the question.
Again the MRS Trans module applies a number
of processing steps, this time to construct an MRS
structure representing the answers. First, the TAL
time operator is translated into event variables and
the quantifiers flattened to relations in Figure 6c.
In Figure 6d, the references to the different blocks
are made explicit in the relation list and the exis-
tential quantifier relations are translated tothe re-
lations, assuming the answer recipient knows what
instance is meant. Finally, the MRS feature struc-
ture in Figure 6e is built and passed to the LKB
module which uses the HPSG grammar to gener-
ate a natural language sentence corresponding to
it. This sentence, displayed in Figure 6f, repre-
sents the natural language answer to the natural
language question posed in Figure 5a.

5 Discussion

Natural language understanding was among the
first research topics of artificial intelligence and
has continued to be of great importance. As a con-
sequence a large number of natural language un-
derstanding and dialogue systems have been built.
Even though our system does not contribute any
new techniques, it is a novel combination of exist-
ing techniques that form an environment in which
a variety of linguistic and knowledge representa-
tion problems can be attacked.

Both the HPSG grammar and the TAL back-
ground knowledge are declarative knowledge
sources that can be updated, incrementally and it-
eratively extended, or adapted to other use scenar-
ios, independent of each other and most of the im-
plementation components. They are also very ex-
pressive, contributing to the generality of the ap-
proach and to the goal of achieving representa-
tional adequacy. Equally important to expressive-
ness are issues of efficiency. Through a flexible
compilation scheme for automated reasoning the
tradeoff between expressiveness and efficiency is
not set in stone but can be adapted to the task at
hand. Different compilation steps can be imple-
mented from different subsets of TAL to different

automated reasoners and the choice of which com-
pilation step to use is postponed.

While we have defended our design decisions
we also acknowledge that they do give rise to some
disadvantages. Relying on deep parsing might re-
sult in an instance of what is often called the “brit-
tleness” problem where sentences slightly outside
the competence of the grammar is totally incom-
prehensible and any grammatical error has similar
results. We agree to some extent with this objec-
tion but note that there is interesting work on a
Robust Minimal Recursion Semantics (Copestake,
2003) that would help integrate deep and shallow
parsing. However, it should be pointed out that
certain problems can never be solved using shal-
low methods and the mixing of deep and shal-
low methods can only obscure their solutions. Al-
though generality was listed as an advantage, we
also include it as a system drawback and possible
point of attack by critics. A more general system
will always be worse at any given task than a less
general system that is more specialized toward that
task. This rule weakens as the complexity of the
task grows, but holds for most problems dealt with
in current AI research.

5.1 Evaluation

Ultimately deciding on the viability of a frame-
work such as NL1 should depend in some way on
evaluation, but we have yet to perform any struc-
tured evaluation attempts and it is far from obvious
how they would be implemented. The emphasis is
not on the immediate improvement in the measur-
able efficiency of some real-world task like natural
language translation, or the maximum coverage of
a large number of question answering tasks, but
instead on the investigation and exploration of a
potentially fruitful marriage between natural lan-
guage and knowledge representation technologies.
At the same time, it is clear that there are obvious
improvements that could be made to the current
NL1 system, and that one would like to formulate
some measure that made what is intuitively obvi-
ous, objectively evident. To this end we propose
evaluations through a problem collection.

Even a very simple system can answer an in-
finite number of questions correctly if all that is
varied is some trivial question property such as
the name of the blocks in a blocksworld. It is
not sufficient to count the number of sentences
that are answered without further classifying them

33 KRAQ06

according to some complexity dimension, which
is easier said than done. But even without this
classification, one carefully selected sentence, il-
lustrative of some complexity of language or rea-
soning, can still make or break a system. We
propose that one creates and maintains an on-
line collection of such examples, similar to the
common-sense reasoning problem page (Morgen-
stern, 2005), the logically reasoning agents prob-
lem page (Thielscher, 2005), or the logic mod-
elling workshop (Sandewall, 2005). New exam-
ples, illustrating new difficulties, would be sub-
mitted by different researchers and added to the
problem page (with moderation). Evaluating dif-
ferent versions of the same system would then
simply be accomplished by noting that the new
version solves some additional question (ignoring,
among others, issues of efficiency). Comparisons
between systems would be entirely possible if one
system subsumes the sentences correctly handled
by the other system and possible with subjective
results if the systems had a partial overlap.

5.2 Limitations and Future Work

We think this project has only scratched the sur-
face of what is possible to accomplish using these
techniques and that the proposed architecture has
great potential. This section will point out the
most important current limitations as well as our
plans for continued development.

An obvious improvement is an extension of the
HPSG grammar coverage to make the dialogue
more varied and robust. The grammar does not at
present even cover all the language constructs de-
scribed in the book that it is based on (Sag et al.,
2003) and there are certainly other HPSG gram-
mar work that can be adapted to our system to fur-
ther complement and extend coverage. An inter-
esting experiment would be a coupling to the Eng-
lish resource grammar (Copestake and Flickinger,
2000).

Another extension that would put our approach
to the test is a method of dealing with different
forms of reference. We envision that, in addition
to the domain background theory, the knowledge
representation module will contain a model of the
ongoing dialogue expressed using the same tem-
poral action logic. Reference resolution would
then be the solution of additional reasoning prob-
lems where objects that simultaneously fulfilled
declarative constraints from dialogue factors, such

as recency, and background knowledge, would be
retrieved.

Time is a central concept in the system, yet at
present this is not taken advantage of. Questions
are all in present tense, even though everything is
set up so as to support one talking to the system
about past actions and time.

The current implementation recognizes com-
mands of action and executes them, but such com-
mands are restricted to simple atomic operations
and the system can not by itself plan a sequence
of actions in response to a user request. As part
of another project, we are working on extending
TAL to incorporate composite actions and action
sequences or plans. Such work would fit natu-
rally in the framework we have described here and
would enable a seamless transition between re-
questing simple actions and requesting complex
actions, possibly requiring the use of deductive
planning, without extending the system architec-
ture with a special purpose planner.

The compilation approach to automated TAL
reasoning is inherently suitable for experimenta-
tion. While we have already performed work in
this direction, developing several different compi-
lations to first-order logic and another to logic pro-
grams, we do not expect to run out of ideas in this
area. An especially interesting one is the use of
deduction system alternatives to resolution, such
as natural deduction, that might be more suitable
for the kinds of inferences needed in the logicist
approach to natural language understanding.

6 Related Work

An early and very impressive demonstration of
natural language understanding was the SHRDLU
system (Winograd, 1971). NL1 improves upon
SHRDLU by using modern HPSG grammars in-
stead of CFG grammars and declarative instead of
procedural knowledge representation, but still falls
short of the complexity of correctly executed dia-
logues. Though we are confident that our more
general system architecture will catch up in the
long run.

More recent work was carried out in the
CLARE project (Alshawi et al., 1992) to provide
natural language question answering interfaces for
databases. The Core Language Engine parses
questions into a quasi-logical form, aptly called
QLF, that is interpreted and reasoned about in the
context of background knowledge. In addition to

34 KRAQ06

the choice of parsing environment and intermedi-
ate form, two differences from NL1 are that we
explicitly avoid committing to a specific reason-
ing paradigm while CLARE is based on the logic
programming paradigm, and that the scale of the
CLARE project is simply vastly larger than ours.

The idea of using other theorem proving tech-
niques than logic programming to aid natural lan-
guage understanding has also been explored pre-
viously. The work in (Blackburn et al., 1998) uses
Dynamic Logic as the semantical representation
and a translation to a fragment of first-order logic
together with the Bliksem theorem prover as the
reasoning mechanism. The feasibility of the set-
up is demonstrated by using it to resolve discourse
ambiguities. Our approach is similar in the ap-
plication of an automated theorem prover after a
translation step, but our background knowledge is
encoded in Temporal Action Logic, which endows
the system with the power to perform actions and
reason about their effects.

Other systems, such as the architecture de-
scribed in (Allen et al., 2001), deal with dialogues
in realistic scenarios where human users want to
interact with the system as fluently as possible to
accomplish a task. Such efforts strive forhuman-
like behaviour while we consider the ultimate goal
to behuman-level, but possibly very artificial, be-
haviour and hypothesize that many issues in hu-
man dialogues might well be ignored. Our inter-
est lies not in modelling dialogue phenomena, but
in using knowledge representation techniques for
natural language understanding in a system with a
dialogue interface.

Acknowledgements

We would like to thank Lars Ahrenberg for guid-
ance and helpful discussions.

References

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conver-
sational systems. InProceedings of the 6th Inter-
national Conference on Intelligent User Interfaces
IUI’01 , pages 1–8. ACM Press.

Hiyan Alshawi, David Carter, Richard Crouch, Steve
Pulman, Manny Rayner, and Arnold Smith. 1992.
CLARE: A contextual reasoning and cooperative
response framework for the core language engine.
Technical Report CRC-028, SRI International.

Patrick Blackburn, Johan Bos, Michael Kohlhase, and

Hans de Nivelle. 1998. Automated theorem prov-
ing for natural language understanding. InProblem-
solving Methodologies with Automated Deduction
(Workshop at CADE-15).

Ann Copestake and Dan Flickinger. 2000. An
open-source grammar development environment
and broad-coverage english grammar using HPSG.
In Proceedings of the Second Conference on Lan-
guage Resources and Evaluation LREC-2000.

Ann Copestake. 2003. Report on the design of RMRS.
Technical Report D1.1a, University of Cambridge.

Patrick Doherty and Witold Łukaszewicz. 1994. Cir-
cumscribing features and fluents. InProceedings of
the 1st International Conference on Temporal Logic
ICTL’94, volume 827 ofLecture Notes in AI, pages
82–100. Springer.

Patrick Doherty, Joakim Gustafsson, Lars Karlsson,
and Jonas Kvarnström. 1998. Temporal action
logics (TAL): Language specification and tutorial.
Linköping Electronic Articles in Computer and In-
formation Science, 3(15).

Patrick Doherty. 1994. Reasoning about action and
change using occlusion. InProceedings of the
Eleventh European Conference on Artificial Intel-
ligence ECAI’94, pages 401–405. John Wiley and
Sons.

Vladimir Lifschitz, 1994. Circumscription, volume 3
of Handbook of Logic in Artificial Intelligence and
Logic Programming, chapter 6, pages 298–352. Ox-
ford University Press.

Leora Morgenstern. 2005. The common-sense rea-
soning problem page.http://www-formal.
stanford.edu/leora/commonsense/ .
Visited February 2006.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender.
2003. Syntactic Theory: A Formal Introduction
(Second Edition). CSLI Publications.

Erik Sandewall. 1994.Features and Fluents: The Rep-
resentation of Knowledge about Dynamical Systems,
volume 1. Oxford University Press.

Erik Sandewall. 2005. Logic modelling workshop.
http://www.ida.liu.se/ext/etai/
lmw/ . Visited December 2005.

Mark E. Stickel. 2005. SNARK - SRI’s new au-
tomated reasoning kit.http://www.ai.sri.
com/ ˜ stickel/snark.html . Visited Decem-
ber 2005.

Michael Thielscher. 2005. Logically reasoning
agents problem page.http://www.cl.inf.
tu-dresden.de/ ˜ mit/LRAPP/ . Visited De-
cember 2005.

Terry Winograd. 1971. Procedures as a representation
for data in a computer program for understanding
natural language. Technical Report 235, MIT Arti-
ficial Intelligence Laboratory.

35 KRAQ06

