
Partial-State Progression for Stream Reasoning with Metric Temporal Logic

Daniel de Leng and Fredrik Heintz
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

{daniel.de.leng, fredrik.heintz}@liu.se

Abstract

The formula progression procedure for Metric Temporal
Logic (MTL), originally proposed by Bacchus and Kabanza,
makes use of syntactic formula rewritings to incremen-
tally evaluate MTL formulas against incrementally-available
states. Progression however assumes complete state informa-
tion, which can be problematic when not all state information
is available or can be observed, such as in qualitative spatial
reasoning tasks or in robot applications. Our main contribu-
tion is an extension of the progression procedure to handle
partial state information. For each missing truth value, we ef-
ficiently consider all consistent hypotheses by branching pro-
gression for each such hypothesis. The resulting procedure is
flexible, allowing a trade-off between faster but approximate
and slower but precise partial-state progression.

Motivation
Metric Temporal Logic (MTL) by (Koymans 1990) ex-
tends Linear Temporal Logic (LTL) (Emerson 1990) by
adding metric intervals for the temporal operators. The pro-
gression algorithm for MTL (Bacchus and Kabanza 1996;
1998) was developed to allow for the incremental evalua-
tion of MTL formulas. This makes it possible to perform
incremental reasoning over incremental information, called
stream reasoning. Progression-based stream reasoning has
for example previously been used on-board unmanned aerial
vehicles (UAVs) for tasks such as planning and execution
monitoring (Heintz and Doherty 2004; Kvarnström, Heintz,
and Doherty 2008).

Progression works by incrementally reading states from a
state sequence and computing a new formula that incorpo-
rates this state information using syntactic rewriting. If the
new formula holds over the unseen remainder of the state
sequence, then the original formula is guaranteed to hold
over the complete state sequence. Consequently the evalua-
tion of an MTL formula through progression is linear in the
size of the formula, but the formula may grow exponentially
due to the rewritings. Furthermore, once a formula is deter-
mined to be true or false, the answer can be returned due to
monotonicity. One key assumption for progression is that the
states received are complete, i.e. all propositions have a truth

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

value assigned to them. This assumption is however unrea-
sonable in applications in which acquiring such a snapshot
is not feasible, e.g. robot applications relying on sensor data.

Partial-State Progression
The classical progression procedure, denoted by
PROGRESS, corresponds to the progression of a stream
of complete states. These full states have no uncertainty
about the truth values of their contained propositions. The
progression procedure for every time-point takes a wff φ
together with a (complete) state s ∈ 2Prop and a time delay
∆ ∈ N, and produces a resulting formula φ′ which may be
a verdict > or ⊥. Since we only have to consider a single
state every time we read a state, progression can be applied
to that state, yielding a progressed formula φ′ that acts as
the input formula for the next state. One shortcoming of
classical progression is the requirement of complete rather
than partial states. Partial states are states for which some or
all propositions have an unknown truth assignment. We are
able to model partial states, denoted by ŝ, by representing
them in DNF, i.e. a partial state ŝ is represented by a
disjunctive set of complete states {s1, . . . , sn} representing
all possible complete interpretations of ŝ. For example, if
for a state ŝ we know p is true but we do not know the
truth value of q, then ŝ = {{p} , {p, q}} in the absence of
additional background theories.

We propose partial-state progression using progression
graphs, which are composed of formulas connected by di-
rected edges labelled with sets of states. Each formula φ has
an outgoing edge—with a label containing complete states
s—to a destination formula φ′ iff PROGRESS(φ, s,∆) = φ′

for each of the complete states s. Each formula additionally
has a probability mass and a time-to-live (ttl) associated with
it. The probability mass represents the ratio of traces that
have currently reached an associated formula. When pro-
gressing a new formula φ, all of the probability mass resides
in φ, denoted by m(φ) = 1. While structurally similar to
deterministic timed automata (DTA), progression graphs in-
stead are used to push probability mass between nodes and
consequently lack the notion of clocks or accepting states.

Algorithm 1 shows the leaky multi-state progression
procedure MP-LEAKY, which takes a progression graph
and a partial states, and yields an updated progression
graph. Repeated application results in probability mass get-

Algorithm 1: Approximate Partial-State Progression
1 function MP-LEAKY(G, ŝ):
2 V ′ ← V
3 foreach ψ ∈ V ′ do
4 if m(ψ) > 0 then
5 if ¬expanded(ψ) then
6 foreach s ∈ 2Prop do
7 φ′ ← PROGRESS(ψ, s,∆)
8 if ψ′ 6∈ V ′ then
9 V ← V ∪ {ψ′}

10 expanded(ψ′)← false
11 end
12 E ← E ∪ {(ψ,ψ′, s)}
13 expanded(ψ)← true
14 end
15 end
16 foreach (ψ,ψ′, s) ∈ E do
17 m′(ψ′)← m′(ψ′) + m(ψ)

|ŝ|
18 ttl(ψ′)← MAX TTL

19 end
20 end
21 end
22 Decrease ttl and remove expired formulas with ttl < 0.
23 Remove formulas by mass while |V | > MAX NODES.
24 m← m′

25 return G

ting stuck in verdict nodes > and/or ⊥, which are fix-
points of PROGRESS. The MAX TTL constant allows us to
‘drop’ formulas if they do not receive any probability mass
for MAX TTL time-units, without affecting precision. When
MAX NODES is set sufficiently high, the procedure is guar-
anteed to be precise. In the converse case, some formulas
carrying probability mass are removed until MAX NODES is
reached, removing formulas with the least probability mass.
The ‘leaked’ probability mass corresponds to unlikely hypo-
thetical traces that were chosen to not be pursued, and allows
us to quantify the precision of the progression graph in terms
of how much mass was leaked.

We performed initial empirical evaluations1 using a
fourth-generation Intel Xeon E5-1650 CPU (6 cores, 12
threads) with 50GiB of RAM allocated to the JVM. Figure 1
shows an analysis of probability mass leakage for an ex-
ample MTL formula �

(
¬p→

(
♦[0,100]

(
�[0,10]p

)))
with

∆ = 1 and MAX TTL = 1. On the left-hand side (correspond-
ing to the blue dashed line), we see the leaked probability
mass at termination, which occurs when 99% of probabil-
ity mass has found its way into verdict nodes for ‘false’ or
was leaked (corresponding to ‘unknown’). As the probabil-
ity of an ‘unknown’ verdict decreases, the probability of a⊥
verdict—here the inverse; not shown explicitly—increases.
When we decrease the value for MAX NODES, the ‘unknown’
verdict dominates the ‘false’ verdict, and vice-versa. On the
right-hand side of Figure 1 (the red line) we see the time to
termination and the two standard deviations (the red shade).

1The jprogress implementation is available at https://
github.com/dnleng/jprogress.

20 40 60 80 100 120 140 160 180

MAX_NODES

0

0.2

0.4

0.6

0.8

1

L
ea

k
ed

 P
ro

b
ab

il
it

y
 a

t
T

er
m

in
at

io
n

0

10

20

30

40

50

60

70

80

90

T
im

e
to

 T
er

m
in

at
io

n
 (

se
c)

Figure 1: Leaked probability mass at termination (left), and
time to termination ±2σ (right).

To better illustrate the velocity of the state stream, consider
that for MAX NODES = 175 a total of 222,599 states were
fed to MP-LEAKY to reach the termination criterion within
89.174s. This corresponds to the ability to handle a sample
rate of a bit under 2,500Hz.

In conclusion, the proposed partial-state progression pro-
cedure provides a trade-off between faster but approximate,
and slower but precise partial-state progression. The pro-
posed procedure could for example be useful in qualitative
spatio-temporal stream reasoning (Heintz and de Leng 2014)
to deal with the intrinsic uncertainty associated with quali-
tative spatial relations.

Acknowledgments
This work is partially supported by a grant from the National
Graduate School in Computer Science, Sweden (CUGS).

References
Bacchus, F., and Kabanza, F. 1996. Planning for temporally
extended goals. In Proc. AAAI, 1215–1222.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Emerson, E. A. 1990. Temporal and modal logic. In Formal
Models and Semantics. Elsevier. 995–1072.
Heintz, F., and de Leng, D. 2014. Spatio-temporal stream
reasoning with incomplete spatial information. In Proc.
ECAI, 429–434.
Heintz, F., and Doherty, P. 2004. DyKnow: An approach to
middleware for knowledge processing. Journal of Intelligent
and Fuzzy Systems 15(1):3–13.
Koymans, R. 1990. Specifying real-time properties with
Metric Temporal Logic. Real-Time Systems 2(4):255–299.
Kvarnström, J.; Heintz, F.; and Doherty, P. 2008. A temporal
logic-based planning and execution monitoring system. In
Proc. ICAPS, 198–205.

