
Deductive Planning with Inductive Loops

Martin Magnusson and Patrick Doherty
Department of Computer and Information Science
Linköping University, 581 83 Link̈oping, Sweden
marma@ida.liu.se,patdo@ida.liu.se

Abstract

Agents plan to achieve and maintain goals. Maintenance
that requires continuous action excludes the representation
of plans as finite sequences of actions. If there is no upper
bound on the number of actions, a simple list of actions would
be infinitely long. Instead, a compact representation requires
some form of looping construct. We look at a specific tem-
porally extended maintenance goal, multiple target video sur-
veillance, and formalize it in Temporal Action Logic. The
logic’s representation of time as the natural numbers suggests
using mathematical induction to deductively plan to satisfy
temporally extended goals. Such planning makes use of a
sound and useful, but incomplete, induction rule that com-
pactly represents the solution as a recursive fixpoint formula.
Two heuristic rules overcome the problem of identifying a
sufficiently strong induction hypothesis and enable an auto-
mated solution to the surveillance problem that satisfies the
goal indefinitely.

Introduction
Research in cognitive robotics has produced autonomous
robots such as unmanned aerial vehicles (UAVs) that can
carry out complex tasks without human intervention (Do-
herty 2004; Dohertyet al. 2004; Doherty &Rudol 2007).
But many natural applications are associated with automated
planning problems that are beyond the representational ca-
pabilities of most automated planners. While one could cir-
cumvent this problem by providing ready-made plans for
these problems, doing so sacrifices flexibility since such
plans will not work in unforeseen circumstances.

Consider e.g. a surveillance task. The goal is to continu-
ally get information or video footage of a number of target
locations. Such a goal is not achieved, but rather maintained
indefinitely or until the surveillance task is aborted. View-
ing plans as sequences of actions would result in an infinite
number of actions, flying back and forth to keep information
on the targets current. Any workable solution must instead
view plans as simple programs that make use of some form
of loop construct. As a consequence, planning must corre-
spond to a simple form of program synthesis.

Program synthesis is most often considered in a deduc-
tive framework as the result of a constructive proof of the

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

program’s specification, or the planning goal. Previous re-
search (Magnusson 2007) has investigated deductive plan-
ning in Temporal Action Logic (TAL) (Doherty &Kvarn-
ström 2007) where time is explicitly represented by the nat-
ural numbers. Achievement goals are then expressed as the
existence of a time point at which the goals are satisfied.
Maintenance goals, in contrast, must hold at all time points:

∀t [Goals(t)]

This formulation strongly suggests the use of mathematical
induction over the natural number time line. The base case
proof would result in initialization actions that form a set-up
phase in the task’s solution plan. This would be followed by
an induction step proof to produce actions that must be per-
formed iteratively. Finally, applying the principle of mathe-
matical induction would append an infinite chain of copies
of the iterated actions to the initialization actions, thereby
closing the loop.

However, some difficulties must be overcome before this
intuition can be realized. First, mathematical induction usu-
ally proceeds in one step increments. One proves that if the
proposition holds forx, it will hold for x + 1. This is incon-
venient when multiple actions with non-unit durations are
involved in the induction step proof. We solve this problem
by using an induction rule parameterized on the induction
step sizes. The choice of a value for the step sizes is de-
layed until the proof of the induction step is completed.

Second, even if a goal formula is provable using induc-
tion, it might not be inductive by itself (Manna &Waldinger
1987). In other words, assuming that the formula holds atx
might not provide sufficient grounds for a proof that it holds
atx+s. Instead, one needs to find a “stronger” induction hy-
pothesis thatis inductive. The proof of the stronger formula
then entails the original formula. Finding an inductive vari-
ant of the goal formula is a serious difficulty, and the usual
solution is to delegate this task to a human. We add heuris-
tic goal strengtheningrules that guide the proof process into
trying promising strengthened variants of the original for-
mula.

Third, the resulting plan contains a loop and loops can
not in general be expressed in first-order logic. We add a
greatest fixpoint operator to our logic that admits a compact
representation of loops in terms of recursive expressions that
can be executed by the agent.

After briefly surveying related work and introducing the
above paraphernalia, we present a solution to the surveil-
lance task produced by an automated theorem prover based
on natural deduction.

Related Work
While most automated planning systems do not have the ca-
pability to generate plans with loops, nor do they have plan
representation languages expressive enough to encode solu-
tion plans with loops, we discuss some notable exceptions
below.

One such exception is Manna and Waldinger’s (1987)
plan theory. It is based on the Situation Calculus and uses in-
duction over well-founded relations, such as the blocksworld
relationabove(x, y). They apply an automated tableau the-
orem prover to the task of clearing a block, i.e. ensuring that
no block is above the cleared block. A block can be cleared
e.g. by clearing the block that is directly above, and then
moving that block to the table. In constructing this plan
Manna and Waldinger end up with two conditions that are
unprovable without a strengthening of their induction hy-
pothesis. However, suggestions for how such strengthening
could be automated are not provided.

Cresswell, Smaill, and Richardson (2000) extend previ-
ous deductive planning approaches based on intuitionistic
linear logic. A recursive data type is introduced along with
an induction rule for it. This is linked to the deductive syn-
thesis of recursive plans using concepts from type theory.
Automation is provided in Lolli (Hodas &Miller 1994), a
logic programming language based on intuitionistic linear
logic, where heuristics help at “difficult choice points” such
as when choosing what induction rule to use. One step
in their proof requires an induction hypothesis strengthen-
ing, generalizing their goal of inverting a blocksworld tower,
which they state is “amenable to automation”. Whether they
doautomate it is not made clear by the paper.

Stephan and Biundo (1993) present a deductive planning
framework based on Dynamic Logic. Although they treat
“recursively defined notions”, again citing the blocksworld
aboverelation, to the best of our knowledge they do not gen-
erate solution plans with recursion or loops.

In later work (Stephan &Biundo 1996) they introduce an
interval-based modal temporal logic called Temporal Plan-
ning Logic, which can be used to formulate plans that con-
tain recursive procedures. However, these are “prefabricated
general solutions [that] are adapted to special problems”.
There is no attempt to generate such plans since they claim
that this “cannot be carried out in a fully automatic way”. If
they are taken to mean that there can be nocompletealgo-
rithm for generating recursive procedures it is clear that they
are correct since plans with recursion are Turing complete.
However this should not stop us from attempting to develop
fully automated synthesis for interesting special cases that
are useful for large classes of real world problems.

Similarly, Koehler’s PHI planner (Koehler 1996) can
work with plans that contain complex control structures like
conditionals and loops. But loop constructs are reused or
modified from existing plans, not generated from scratch.

Bundy et. al. (2006) argue that “induction is needed when-
ever some form of repetition is required”. They present algo-
rithms for constructing new induction rules on the fly instead
of relying on a fixed set of predefined rules. Their results are
applied to the problem of automatic program synthesis from
a specification rather than to the related problem of planning
robot actions.

A non-inductive strategy is pursued by Levesque (2005)
in his KPLANNER. It explores an interesting middle ground
between our direct synthesis of loops and “traditional non-
iterative planning”. The planner works by placing an upper
bound on theplanning parameter, e.g. the time line in our
surveillance example. The bounded problem can be solved
using classical planning techniques. Next, the planner iden-
tifies action sequences that could correspond to unwinded
loops and winds them up so that the result is a compact plan
with loops. Levesque shows how this method is guaranteed
correct for certain classes of planning problems, though it
seems to us that an inductive formulation of planning with
loops is more straightforward.

More different still are systems based on model check-
ing, such as the Cooperative Intelligent Real-Time Control
Architecture (CIRCA) (Musliner, Durfee, &Shin 1993) and
the MBP planner (Cimattiet al. 2003). While they allow
cyclic solutions, they also rely on an explicit state space
representation, which we want to avoid. Even if manage-
able state spaces can be constructed for many benchmark
planning problems, we would like to consider planning in
a more general setting. An autonomous agent trying to sat-
isfy a goal will have a large body of background knowledge
about the world. An explicit representation of the resulting
state space would result in a state explosion. One may at-
tempt to circumvent this problem by planning in a limited
state representation involving only those fluents that are rel-
evant to the satisfaction of the given goal. But this begs the
difficult question of how one would know what fluents are
relevantbeforethe search for a solution has even begun.

Inductive Proof
Manna and Waldinger (1987) state that “In proving a given
theorem by induction, it is often necessary to prove a
stronger, more general theorem, so as to have the benefit
of a stronger induction hypothesis”. Pnueli (2006) provides
a simple example:

∀x [∃y [1 + 3 + 5 + · · · + (2x − 1) = y2]] (1)

Proving Formula 1 using induction over the natural numbers
is not possible by using the body of the universal quantifier
as the induction hypothesis. Instead one must find a stronger
inductivehypothesis, the proof of which entails the original
formula.

Now, consider the surveillance task mentioned above.
Suppose that we need to have up-to-date image data, at most
15 minutes old, from three locations. Our UAV continually
records video so visiting a location suffices to obtain image
data from it. We state that the location featureloc for a UAV
uav1 assumes, e.g., the valuepos(160, 500) at some time
point y by value(y, loc(uav1)) = pos(160, 500). If time
points represent seconds then we can express the fact that

the visit takes place no more than 15 minutes from the cur-
rent time pointx by 0 ≤ y − x < 900. In the surveillance
task the goal is toalwayshave recent information, i.e. the
above condition is satisfied at all time points:

∀x [∃y [value(y, loc(uav1)) = pos(160, 500) ∧
0 ≤ y − x < 900]] (2)

Formula 2, unfortunately, is too weak as an induction hy-
pothesis for the same reason as Formula 1. Assuming only
theexistenceof a visiting timey within 900 seconds fromx
does not leave any time for flying around while still making
sure the condition holds atx+ s. In the worst case, 899 sec-
onds have already passed sincey and the UAV would need
to visit pos(160, 500) again the very next second.

The task of finding a strengthening of the goal formula
is often left to a human. E.g., Pnueli’s Formula 1 is eas-
ily proved if the existential quantifier is removed and the
variabley replaced by the variablex. This stronger for-
mula entails the original by existential generalization. But
an autonomous UAV cannot depend on human ingenuity to
help solve its planning problems. Moreover, as previously
mentioned, there can be no complete proof method for in-
duction in general. Our solution is instead the addition of
goal strengthening rules. These are proof rules that suggest
stronger versions of goals of certain commonly occurring
forms. Their theoretical redundancy but practical signifi-
cance, in guiding the proof search, make these rules heuristic
in nature.

Regularity Heuristic
If the robot knew the time point at which a location was
last visited it would have more freedom in planning its next
visit. E.g., if the UAV decides on a regular flight schedule
it would, at any given time point, know how much time had
passed since its last visit to the target location. We can cap-
ture this intuition as a heuristic goal strengthening rule.The
following rule guides a backward chaining proof search, and
should therefore be read backwards from the conclusion to
the premise. If we are trying to prove that there always exists
a time pointy within n time points whereP holds, then we
might instead try to prove that there is some regular sched-
ule of lengths no larger thann such thatP always holds
for each repetitioni of the schedule, with some offsetm less
thann:

(Regularity Heuristic)

∃s [s ≤ n ∧ ∃m∀i [P (is + m) ∧ 0 ≤ m < n]]

∀x∃y [P (y) ∧ 0 ≤ y − x < n]

Theorem 1. The regularity heuristic is sound.

Proof. Assume the premise and thatx is an arbitrary num-
ber. Choose the smallesti such thatis + m ≥ x. By as-
sumptionP (is + m) holds, and sinces ≤ n andm < n the
distance fromx to is + m must be less thann. Thus for any
x there exists ay within n time points (namelyis+m) such
thatP (y) holds.

Applying this rule to Formula 2 produces a new goal:

∃s [s ≤ 900 ∧
∃m [∀i [value(is+m, loc(uav1)) = pos(160, 500)∧

0 ≤ m < 900]]]

Synchronization Heuristic
Of course, as long as there is only one location to moni-
tor, the UAV could get by with the trivial solution of just
hovering over it. More interesting behaviour is necessary
if up-to-date information from several different locations is
required:

∃s [s ≤ 900 ∧
∃m [∀i [value(is+m, loc(uav1)) = pos(160, 500)∧

0 ≤ m < 900]]] ∧
∃s [s ≤ 900 ∧

∃m [∀i [value(is+m, loc(uav1)) = pos(160, 680)∧
0 ≤ m < 900]]] ∧

∃s [s ≤ 900 ∧
∃m [∀i [value(is+m, loc(uav1)) = pos(400, 680)∧

0 ≤ m < 900]]] (3)

While each sub-goal could be planned for separately, this
would most likely result in a very inefficient proof search.
The UAV would first construct plans that work for each lo-
cation in isolation and backtrack if the combined plan re-
quires it to visit two locations simultaneously, again recon-
sidering each plan in isolation. A better strategy would be to
assume that all of the visits are part of thesameschedule and
consider them simultaneously. This strategy corresponds to
another goal strengthening heuristic. If trying to prove the
existence of several different schedules with independentit-
eration variables we may instead synchronize them into one
schedule and iteration:

(Synchronization Heuristic)

∃s∀i [P1(s, i) ∧ · · · ∧ Pn(s, i)]

∃s1∀i1 [P1(s1, i1)] ∧ · · · ∧ ∃sn∀in [Pn(sn, in)]

Theorem 2. The synchronization heuristic is sound.

Proof. Assume the premise. Distribute the universal quanti-
fier over the conjunction. Since the entire conjunction holds
for somes, each conjunct must hold for somes, as in the
conclusion.

By moving them variables of Formula 3 into the prefix,
renaming them apart, and applying the above heuristic, we
arrive at a new proof goal:

∃m1,m2,m3, s [∀i [
s ≤ 900 ∧
value(is + m1, loc(uav1)) = pos(160, 500) ∧
0 ≤ m1 < 900 ∧
value(is + m2, loc(uav1)) = pos(160, 680) ∧
0 ≤ m2 < 900 ∧
value(is + m3, loc(uav1)) = pos(400, 680) ∧
0 ≤ m3 < 900]] (4)

Induction Rule
The goal strengthening heuristics enable the formulation of
an induction rule for planning with loops by introducing ini-
tialization actionsI in the base case and loop step actionsA
in the induction step, as further explained below:

(Induction Rule)

I → P (0)

∀x [P (x) ∧ A(x) → P (x + s)]

I ∧ νX(x)[A(x) ∧ X(x + s)](0) → ∀i [P (is)]

The initialization actionsI make sure that the induction base
case holds. The actionsA inside the loop depend on the
induction variablex and make sure the goalP holds for the
next loop iteration atx + s.

When the induction principle is applied the loop step ac-
tions need to be repeated indefinitely. This could be ex-
pressed in a declarative manner using a universal quantifier.
But since the purpose of the formula is to function as an ex-
ecutable plan for the UAV, we express it in a constructive
manner by introducing a greatest fixpoint operatorν. The
expressionνX(x)[A(x) ∧ X(x + s)] defines a new relation
X with a time point argumentx at which the loop step ac-
tions A hold. Moreover,X itself holds atx + s, thereby
setting up a recursive iteration. Finally, the loop expression
is initialized by providing the base case time point0 as its
argument. Note that we assumes > 0 and i ≥ 0 sinces
corresponds to the loop duration andi to loop repetitions,
none of which make sense for negative values.

The fixpoint loop together with the initialization actions
ensure only thatP holds at any multiplei of s. However,
the goal strengthening heuristics have already put the sur-
veillance goal into this form in Formula 4. The original goal,
covering all time points as in Formula 2, is a guaranteed con-
sequence due to the heuristics’ soundness. Soundness of the
induction rule will be proved using the following lemma.

Lemma 3. The induction rule fixpoint formula corresponds
to occurrences of actionsA at regular intervals starting at0
and spaced bys, i.e.:

νX(x)[A(x) ∧ X(x + s)](0) ⇔
A(0) ∧ A(s) ∧ A(2s) ∧ · · ·

Proof. The Knaster-Tarski fixpoint theorem states the ex-
istence of a greatest fixpoint of a formulaF , defined by
Kleene’s iterative construction as the limit of the general-
ized conjunction bounded byω:

νX(x)[F (X(x))] ⇔
∧

i<ω

F i(true)

whereF 0 is the identity function andF (i+1) is F with oc-
currences ofX(x) replaced byF i instantiated withx. In
our case we haveF = A(x) ∧ X(x + s) and:

F 0 = true

F 1 = F (F 0) = A(x) ∧ true

F 2 = F (F 1) = A(x) ∧ A(x + s)

F 3 = F (F 2) = A(x) ∧ A(x + s) ∧ A(x + s + s)
...

We see that the form ofF i is:

F i = A(x + 0s) ∧ A(x + 1s) ∧ · · · ∧ A(x + is)

Clearly F i subsumesF (i−1) for everyi in the generalized
conjunction above. What remains is thenFω, which we
write in the form of an infinite conjunction:

Fω = A(x) ∧ A(x + s) ∧ A(x + 2s) ∧ · · ·

By instantiating the free variablex with 0 we arrive at the
right hand side of Lemma 3:

A(0) ∧ A(s) ∧ A(2s) ∧ · · ·

Theorem 4. The induction rule is sound.

Proof. The proof that the induction rule conclusion follows
from the premises proceeds by mathematical induction over
the sizek of the domain{0, . . . , k} of the natural numberi.

In the base casei = {0}. Given that the premises hold,
assume the antecedent of the conclusion implication, includ-
ing I. This, together with the first premise, immediately
producesP (0) which can be rewrittenP (0s). Since0 is the
only valuei may assume we haveP (is) for all i.

As induction hypothesis we assume that the induction rule
is sound fori = {0, . . . , k} and show that it holds for
i = {0, . . . , k, k + 1}. Thus the conclusion follows from
the premises for alli up to and includingk and what re-
mains is to show that it follows fori = k + 1, i.e. to show
thatI ∧ νX(x)[A(x) ∧ X(x + s)](0) → P ((k + 1)s). As-
sume the antecedent. The induction hypothesis holds for
i = k and gives usP (ks). According to Lemma 3 we have
A(0) ∧ A(s) ∧ A(2s) ∧ · · · ∧ A(ks) ∧ · · · . Taken together
we haveP (ks) ∧ A(ks) which, from the second induction
rule premise, producesP (ks + s), i.e. P ((k + 1)s). We
have now proved the consequent of the conclusion implica-
tion for all possible values ofi and the universally quantified
conclusion follows.

By the principle of mathematical induction the rule holds
for all possible sizes of the domain ofi.

Bundy’s Criteria for Heuristic Rules
While the heuristics and induction rule can not be complete,
one would wish for them to cover some useful and com-
monly occurring cases. At the same time, one wants to avoid
creating a set of specialized ad hoc rules that solve only a
particular problem. Bundy (1988) considers desirable prop-
erties ofproof plans, which are used to guide the search for
a proof. Our heuristic rules are clearly related to the concept
of proof plans, and evaluating them with regard to Bundy’s
properties can help explain their usefulness. Specifically,
Bundy’s generality and expectancy (why one expects the
rule to work) properties are relevant and we examine each
of the rules with respect to these properties below.

Regularity Heuristic The regularity heuristic is applica-
ble to any conditionP for which only a limited amount of
time n should pass before it is satisfied again. The heuris-
tic suggests that these can be accomplished by deciding on
a fixed periods and offsetm at which to satisfy them. Real
life examples include e.g. a bus servicing a stop every 20
minutes, or backing up data each week on Friday.

Synchronization Heuristic The synchronization heuristic
is applicable when several iteration periodssi are involved
and suggests synchronizing them with each other by using a
common periods. This is especially useful when the same
resource is involved in the different tasks. E.g., if the UAV’s
surveillance of each location is planned in isolation there
is great risk that the different schedules will conflict when
merged. By synchronizing the iteration periods and organiz-
ing all the tasks in a single schedule one readily detects and
resolves attempts of conflicting resource use.

Induction Rule The heuristics taken together with the in-
duction rule provide the high-level structure for solving a
class of commonly occurring temporally extended planning
goals by planning actions in an iterative loop. Specifically,
any tasks where some general constraint is satisfied by pe-
riodic actions are candidates. Such tasks are plentiful, with
examples from different domains such as autonomous sur-
veillance or a housekeeper robot watering the plants every
day to keep them alive. In fact, much of your day probably
consists of loops that are designed to keep some parameter
within an acceptable range through regular action, e.g. men-
tal alertness through regular sleep and brain caffeination.

Automating Planning with Loops

The question of automation still remains. Previous work on
deductive planning in Temporal Action Logic used a com-
pilation of TAL formulas into Prolog programs (Magnusson
2007). But Prolog’s limited expressivity makes it inadequate
for our present purposes. Instead, our current work utilizes
Pollock’s natural deduction withquantifier-free form(Pol-
lock 1999) that replaces the somewhat cumbersome quanti-
fier introduction and elimination rules found in most natural
deduction systems with unification.

Our theorem prover implementation is named ANDI, for
augmented natural deduction intelligence. Its rules are di-
vided into forward andbackwardrules. Forward rules are
triggered whenever possible and are designed to converge
on a stable set of conclusions to avoid generating new in-
ferences forever. Backward rules, in contrast, are used to
search backwards from the current proof goal and thus ex-
hibit goal direction. Combined, the result is a bi-directional
search for proofs.

We make non-monotonic reasoning and planning possi-
ble through a “natural abduction” proof rule. Relations from
a set ofabduciblesare allowed to be assumed rather than
proven, as long as doing so does not lead to inconsistency. It
is well known that the problem of determining consistency
of a first-order theory is not even semi-decidable. Our the-
orem prover relies on its forward rules to implement anin-
completeconsistency check. If an abductive assumption and

the triggering forward rules produce a contradiction, then
the prover needs to backtrack and cancel some assumption
that participates in the proof of the contradiction. If an in-
consistent assumption remains undetected the resulting im-
plication for a goal formulaP would have the form⊥ → P
and thus, while consistent, be tautological and void.

The Surveillance Problem
Given the heuristics and the induction rule, the only thing
that ANDI is missing to solve the surveillance problem is a
formalization of an action for flying between locations. A
version that takes the distance between the locations into ac-
count is presented below. Note that the universal quantifiers
for agents, time, and locations are dropped in quantifier-free
form, and the corresponding variablesa, t, l1, and l2 are
prefixed by question marks:

(-> (and (= (value ?t (loc ?a)) ?l1)
(occurs ?a ?t (fly ?l1 ?l2)))

(= (value (+ ?t (dist ?l1 ?l2))
(loc ?a))

?l2))

The surveillance goals of the form (2) are put into quantifier-
free form through skolemization. Existentially quantified
variables are replaced by skolem constants and functions,
prefixed by a $. E.g., since the existentially quantifiedy
variables depend on the universally quantifiedx variables
they result in skolem functions of the form($y ?x). The
goal is then:

(and (= (value ($y1 ?x1) (loc uav1))
(pos 160 500))

(<= 0 (- ($y1 ?x1) ?x1))
(< (- ($y1 ?x1) ?x1) 900)
(= (value ($y2 ?x2) (loc uav1))

(pos 160 680))
(<= 0 (- ($y2 ?x2) ?x2))
(< (- ($y2 ?x2) ?x2) 900)
(= (value ($y3 ?x3) (loc uav1))

(pos 400 680))
(<= 0 (- ($y3 ?x3) ?x3))
(< (- ($y3 ?x3) ?x3) 900))

Finally, we need to know the initial location of the UAV:

(= (value 0 (loc uav1)) (pos 160 500))

Provided this input, the ANDI theorem prover automatically
generates the following plan:

(and (occurs uav1 0 (fly (pos 160 500)
(pos 160 680)))

(occurs uav1 180 (fly (pos 160 680)
(pos 400 680)))

((gfp (rel ?x)
(and (occurs uav1 (+ ?x 420)

(fly (pos 400 680)
(pos 160 500)))

(occurs uav1 (+ ?x 720)
(fly (pos 160 500)

(pos 160 680)))
(occurs uav1 (+ ?x 900)

(fly (pos 160 680)
(pos 400 680)))

(rel (+ ?x 720)))) 0))

Number of Targets CPU Time in Seconds
10 1
20 5
30 17

Table 1: Time spent by ANDI (on average over three runs)
solving different size surveillance problems on a Pentium M
1.8 GHz laptop with 512 MB of RAM.

ANDI integrates constraint solvers and rewrite rules into the
proof process. In this case an inequality constraint solverde-
termined the value 720 fors and rewrite rules were used e.g.
to simplify instantiated arithmetic expressions, most impor-
tantly the distance function between location coordinates.
Very large (or infinite) domains such as numeric time and
coordinate spaces are no problem for the backward chaining
search, which picks relevant values from the huge set of pos-
sibilities by unification with the goal or a sub-goal derived
from the goal. Moreover, the most general unifier does not
necessarily instantiate variables and can thereby often avoid
early commitment to choices that might lead to unnecessary
backtracking. All of these factors contribute to the theorem
prover’s practical usefulness in solving real world size plan-
ning problems, as exemplified by Table 1.

Conclusion
Many interesting problems require planning with loops, for
which there can be no complete algorithm. We consid-
ered a useful subset of temporally extended goals that can
be solved by regular repeated action. These problems can
be solved using a proof rule for mathematical induction to-
gether with a couple of heuristic rules that put the goal
into a form where the induction rule is applicable. Nat-
ural deduction conveniently captures this relatively complex
proof strategy through its extensible set of proof rules since,
when a planning goal matches a rule’s conclusion, the rule’s
premises functions as a proof agenda to follow. For the in-
duction rule, the result is a fixpoint loop solution that com-
pactly represents an infinite plan.

We applied the methodology to a UAV surveillance prob-
lem that was quickly solved by an automated natural deduc-
tion theorem prover. By concentrating on surveillance we
could ignore, for now, the frame problem since no reasoning
about persistence was involved. Furthermore, the tempo-
rally extended goal was solved by a simple application of
mathematical induction over the TAL time line since it con-
sists of the natural numbers. However, there are clearly more
complex classes of planning problems, requiring solutions
of an iterative nature, where the same methodology could be
attempted. Consider e.g. a logistics mission where the goal
is to distribute supply crates. The crates’ current locations
and target destinations could be represented as well-founded
sets, thereby making induction applicable. A plan that loops
over crates would represent a constant size solution, regard-
less of the number of crates that need to be distributed. We
believe that this ability to utilize complex proof rules, such
as induction, to find compact plans in highly expressive for-

malisms, such as loops in fixpoint logic, provides logical
planning with a potential to scale up to realistically sized
problems.

Acknowledgements
We thank Andrzej Szalas for fruitful discussions about fix-
points.

This work is supported in part by the Swedish Research
Council VR grant 2005-3642, the National Aeronautics Re-
search Program NFFP04 S4203, CENIIT, and the Strategic
Research Center MOVIII, funded by the Swedish Founda-
tion for Strategic Research, SSF.

References
Bundy, A.; Dixon, L.; Gow, J.; and Fleuriot, J. D.
2006. Constructing induction rules for deductive synthesis
proofs. Electronic Notes in Theoretical Computer Science
153(1):3–21.
Bundy, A. 1988. The use of explicit plans to guide in-
ductive proofs. InConference on Automated Deduction,
111–120.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking.Artificial Intelligence147(1-2):35–
84.
Cresswell, S.; Smaill, A.; and Richardson, J. 2000. Deduc-
tive synthesis of recursive plans in linear logic. InProceed-
ings of the 5th European Conference on Planning (ECP
’99), 252–264. London, UK: Springer-Verlag.
Doherty, P., and Kvarnström, J. 2007. Temporal action
logics. In Lifschitz, V.; van Harmelen, F.; and Porter, B.,
eds.,Handbook of Knowledge Representation. Elsevier.
Doherty, P., and Rudol, P. 2007. A UAV search and rescue
scenario with human body detection and geolocalization.
In 20th Australian Joint Conference on Artificial Intelli-
gence (AI07).
Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Persson, T.;
and Wingman, B. 2004. A distributed architecture for in-
telligent unmanned aerial vehicle experimentation. InPro-
ceedings of the 7th International Symposium on Distrib-
uted Autonomous Robotic Systems, 221–230.
Doherty, P. 2004. Advanced research with autonomous
unmanned aerial vehicles. InProceedings of the 9th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR2004), 731–732.
Hodas, J. S., and Miller, D. 1994. Logic programming in
a fragment of intuitionistic linear logic.Information and
Computation110(2):327–365.
Koehler, J. 1996. Planning from second principles.Artifi-
cial Intelligence87(1-2):145–186.
Levesque, H. J. 2005. Planning with loops. InProceed-
ings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), 509–515.
Magnusson, M. 2007. Deductive Planning and
Composite Actions in Temporal Action Logic. Li-
centiate thesis, Link̈oping University. http:

//www.martinmagnusson.com/publications/
magnusson-2007-lic.pdf.
Manna, Z., and Waldinger, R. 1987. How to clear a
block: A theory of plans.Journal of Automated Reason-
ing 3(4):343–377.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: A cooperative intelligent real time control archi-
tecture. IEEE Transactions on Systems, Man, and Cyber-
netics23(6):1561–1574.
Pnueli, A. 2006. Analysis of reactive systems: Lecture
7. http://cs.nyu.edu/courses/spring06/
G22.3033-005/lecture7.pdf. Visited Feb. 2008.
Pollock, J. 1999. Natural deduction. Technical report, De-
partment of Philosophy, University of Arizona.http://
www.sambabike.org/ftp/OSCAR-web-page/
PAPERS/Natural-Deduction.pdf.
Stephan, W., and Biundo, S. 1993. A new logical frame-
work for deductive planning. InProceedings of the 13th
International Joint Conference on Artificial Intelligence
(IJCAI-03), 32–38.
Stephan, W., and Biundo, S. 1996. Deduction-based re-
finement planning. InProceedings of the 3rd Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-96), 213–220.

