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Abstract Autonomous systems situated in the real world
often need to recognize, track, and reason about various
types of physical objects. In order to allow reasoning at a
symbolic level, one must create and continuously maintain
a correlation between symbols denoting physical objects and
sensor data being collected about them, a process called an-
choring.

In this paper we present a stream-based hierarchical an-
choring framework. A classification hierarchy is associated
with expressive conditions for hypothesizing the type and
identity of an object given streams of temporally tagged sen-
sor data. The anchoring process constructs and maintains a
set of object linkage structures representing the best possible
hypotheses at any time. Each hypothesis can be incremen-
tally generalized or narrowed down as new sensor data ar-
rives. Symbols can be associated with an object at any level
of classification, permitting symbolic reasoning on differ-
ent levels of abstraction. The approach is integrated in the
DyKnow knowledge processing middleware and has been
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applied to an unmanned aerial vehicle traffic monitoring ap-
plication.

1 Introduction

The ability to recognize, track, and reason about various
types of physical objects is essential for many autonomous
systems situated in the real world. One difficult issue to re-
solve is how to create and maintain a consistent correlation
between symbolic representations of these objects and the
sensor data that is being continually collected about them, a
process called anchoring [3].

As a motivating example, suppose a human operator aims
to maintain situational awareness about traffic in an area us-
ing static and mobile sensors such as surveillance cameras
and unmanned helicopters. Reducing the amount of infor-
mation sent to the operator reduces her cognitive load, help-
ing her to focus her attention on salient events. Therefore
each sensor platform should monitor traffic situations and
only report back relevant high-level events, such as reck-
less overtakes and probable drunk driving. To detect such
events it is not sufficient that we can identify those cars and
other objects that occur in a single image. Instead each ob-
ject must have a persistent identity over time, so that we can
reliably detect complex events such as a particular car being
behind another car, then beside it, and finally in front of it.
To achieve this the symbol representing each object must be
properly anchored.

Tracking an object through a series of images is an estab-
lished problem, and there are many effective solutions for
the case where the object can be tracked without interrup-
tions. However, we must also consider the case where an
object is temporarily hidden by obstacles (or tunnels in the
case of traffic), and where many similar objects are present
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in the world. In this case pure image-based tracking does
not provide a complete solution: The information available
in the image itself is generally not sufficient to infer cor-
rect object identities over longer periods of time. Instead
we must include additional knowledge about the world at
higher abstraction levels, such as the normative character-
istics of specific classes of physical objects. In the case of
traffic, this could include the layout of the road network as
well as the typical size, speed, and driving behavior of cars.
This is a central problem, and in fact, it has been argued that
anchoring is an extension to classical tracking approaches
which handles missing data in a principled manner [7].

In this article we present a stream-based anchoring
framework and a realization that extends the existing knowl-
edge processing middleware framework DyKnow [10, 14].
The solution uses object linkage structures to incrementally
classify and track objects and to anchor these objects to sym-
bolic identifiers on multiple levels of abstraction, allowing
a hierarchy of object types. A metric temporal logic is used
to declaratively specify temporally extended conditions for
classification as well as for reacquiring object identities.

Two important advantages of our approach compared to
existing approaches is that it explicitly models time, allow-
ing complex temporal classification conditions to be ex-
pressed, and that it supports hierarchical anchoring where
an object is incrementally anchored to more and more spe-
cific object types, allowing multiple related representations
of objects to be created and used concurrently.

2 Anchoring Using Object Linkage Structures

The objective of the anchoring process is to connect sym-
bols to sensor data originating in the physical world, which
requires processing on many abstraction levels. At the low-
est level, the input consists of raw sensor data which can
be processed by techniques adapted to each particular type
of sensor. For example, a variety of image processing tech-
niques can be applied to input from a color camera. Even
though such techniques lack higher-level knowledge about
objects or their behavior, they can nevertheless often pro-
vide some information about which parts of the raw sensor
input pertain to a single physical object. They may even be
able to track such objects and give them persistent identities
over shorter periods of time. For example, image process-
ing can extract “blobs” within a frame, each corresponding
to a single physical object. Image-based tracking might then
track blobs over multiple frames, until losing track due to
for example obstacles or changing visual conditions.

Clearly, anchoring should be able to make use of all in-
formation such techniques can provide. We therefore repre-
sent the sensor input to the anchoring process as a stream of
percepts, each of which is an object whose attributes change

Fig. 1 The example percept/object hierarchy used in the traffic moni-
toring scenario

but whose identity persists. A vision percept, for example,
could include color and size information that image pro-
cessing has extracted for a moving or stationary blob. We
may also have radar percepts or laser range finder percepts,
which might or might not originate in the same physical
objects. Anchoring then consists of the more difficult task
of consistently associating symbolic identities with percepts
for specific physical objects over the long term, even when
no information arrives about a particular object for extended
periods of time. This allows for grounded high-level sym-
bolic reasoning, where attributes of objects may be com-
puted from sensor data even though no sensor completely
tracks the object through its lifetime.

Rather than doing anchoring in a single step, as in most
current approaches, we define an incremental process of ob-
ject classification and (re-)identification. This process builds
on a hierarchy of percept and object types.

An example hierarchy for the traffic monitoring scenario
can be seen in Fig. 1. A world object represents a physical
object. Its attributes are based on information from one or
more linked percepts and include the absolute coordinates
of the object in the physical world. World objects can be
on-road objects moving along roads or off-road objects that
travel or exist anywhere. An on-road object has attributes
representing the road segment or crossing the object occu-
pies, making more qualitative forms of reasoning possible,
and an improved position estimation which is snapped to the
road. Finally, an on-road object could be a car, a motorcy-
cle, a truck, or neither. Each level in the hierarchy adds more
abstract and qualitative information while still maintaining
a copy of the attributes of the object it was derived from.
Thus, an on-road object contains both the original position
from the world object and the position projected onto the
road network.

Hypotheses about object types and identities must be able
to evolve over time. For example, while it might be deter-
mined quickly that a world object is an on-road object, more
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time may be required to determine that it is in fact a car.
Also, what initially appeared to be a car might later turn out
to be better classified as a truck. To support incremental ad-
dition of information and incremental revision of hypothe-
ses, a single physical object is not represented as an indivis-
ible object structure but as an object linkage structure.

An object linkage structure consists of a set of objects
which are linked together (note that percepts are also consid-
ered to be objects). Each object has a type and is associated
with a symbol, and represents information about a particular
physical object at a given level of abstraction. A symbol is
anchored if its object is part of an object linkage structure
that is grounded in at least one percept.

2.1 Incremental Generation of Object Linkage Structures

As percepts arrive from low-level sensor processing, ob-
ject linkage structures must be incrementally generated, up-
dated, and maintained. For example, when a new percept
with a previously unseen identity arrives, it may be hypoth-
esized to correspond to a new or existing object at a higher
level of abstraction. If a new object is inferred, it may also
correspond to an object at an even higher level of abstrac-
tion, and so on. Furthermore, when an existing percept or
object is updated with new information, this may cause ex-
isting classification hypotheses to be invalidated.

The conditions determining when this should happen are
written in an expressive temporal logic, similar to the well
known Metric Temporal Logic [18]. Such formulas are de-
fined over infinite state sequences but must be tested in real
time, and are therefore evaluated incrementally using pro-
gression (Sect. 3). Informally, given a formula and a new
timed state including percept and object attributes, progres-
sion determines that the information received up to this point
in time is sufficient to verify that the formula is true regard-
less of future states (the formula “is progressed to true” or
“becomes true”), that the formula is false, or that its status
still depends on information to arrive in the future.

Establishing Links Whenever a new percept or other ob-
ject of a given type A is created, the anchoring system must
consider whether this object can also be classified as belong-
ing to a new object of one of the immediate subtypes. An-
choring therefore immediately instantiates a unary establish
condition for every immediate subtype B and then begins
progressing these conditions. For example, a new world ob-
ject might be classified as corresponding to a new on-road
object if it has been observed on a road for at least 30 sec-
onds, or as a new off-road object if another condition holds.

If and when a state arrives that causes the establish con-
dition from A to some subtype B to be progressed to true, a
new object structure of type B is created and a link between
the objects is established, thereby generating or extending

an object linkage structure. The link between the objects in-
dicates that lower-level information about the first object is
used to derive higher-level information about the second ob-
ject, possibly together with information from other sources.
This corresponds to the Find functionality suggested by
Coradeschi and Saffiotti [3], which takes a symbolic descrip-
tion of an object and aims to anchor it in sensor data.

Assume that an image processing system is currently
tracking a potential car represented by the vision percept
vp1 and that no other objects have been created. The only
parent of vision percept in the hierarchy is world object, so
only such links can be considered. We do not have to con-
sider linking the vision percept to an existing world object,
since none exists. Therefore it is sufficient to progress the
establish condition from vp1 to a new world object in order
to determine whether a new world object should be gener-
ated.

If the establish condition is eventually satisfied (one or more
states are received causing the formula to progress to true),
a new world object wo1 is created which is associated with
vp1. For as long as wo1 is associated with vp1, its state is
computed partly or entirely from the state of that vision per-
cept. It is also possible to estimate a model of the behavior
of wo1 using the collected information. This model can later
be used to predict the behavior of wo1 if image processing
loses track and the vision percept is no longer updated.

Given a new world object, the establish conditions for on-
road object and off-road object must be progressed. Assume
that after a while the establish condition for on-road object
is progressed to true. Then wo1 is hypothesized as being a
new on-road object, represented by oo1, and the object link-
age structure is extended to contain three objects.

Reestablishing Links The binary reestablish condition ex-
presses the condition for an object of type A to be linked to
a known object of an immediate subtype B, as in the case
where a new world object corresponds to an existing on-
road object that had temporarily been hidden by a bridge.
Whenever a new object of type A is created, the anchoring
system immediately instantiates and begins to progress the
re-establish condition for every known object of type B that
is not already linked to an object of type A. If and when
one of these conditions becomes true, a link is created be-
tween the associated objects. This corresponds to the Reac-
quire functionality of Coradeschi and Saffiotti [3].
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Assume for example that after a while, image processing
loses track of the blob represented by vp1, which we pre-
viously hypothesized to be an on-road object. Then vp1 is
removed. The link from vp1 to wo1 is also removed, but de-
spite this the world object wo1 remains and is still linked to
oo1. As long as wo1 is not linked to any vision percept its
state is predicted using either a general model of physical
objects or an individually adapted model of this particular
object. Since wo1 is linked to an on-road object it is also pos-
sible to use this hypothesis to further restrict the predicted
movements of the object as it can be assumed to only move
along roads. This greatly reduces the possible positions of
the object and facilitates reestablishing a link to it.

Assume further that the image processing system later rec-
ognizes a potential car represented by the new vision percept
vp2. Since there exists a known world object, wo1, the an-
choring system has to determine whether vp2 is a new world
object, the known world object wo1, or not a world object
at all. This is done by instantiating and progressing both the
establish condition on vp2 and the reestablish condition be-
tween vp2 and wo1.

Finally, assume that after a number of states have arrived, the
establish condition is progressed to false and the (in this case
unique) reestablish condition is progressed to true. Then a
new link is created from vp2 to wo1 and the attributes of
wo1 can be computed from the attributes of vp2. This also
means that oo1 is once again anchored.

Maintaining Links Since observations are uncertain and
classification is imperfect, any link is considered a hypoth-
esis and is continually validated through a maintain condi-
tion. Such conditions can compare the observed behavior of
an object with behavior that is normative for its type, and
possibly with behavior predicted in other ways. For exam-
ple, one might state that an on-road object should remain
continually on the road, maybe with occasional shorter peri-
ods being observed off the road due to sensor error.

If progression determines that the condition is violated,
the link is removed. However, it is essential for anchoring
that sensor data can be anchored even to symbols/objects
for which no percepts have arrived for a period of time.
Therefore object structures and their symbols are retained
for some time when their associated percepts disappear, as

shown above, enabling re-classification and re-identification
at a later time. This resembles the Track functionality of
Coradeschi and Saffiotti [3]. To reduce the computational
cost, though, objects which are not likely to be found again
may be removed. The criteria for determining that an object
is not likely to be found again are specific to each object type
and can include conditions such as the time since the object
was last observed or anchored.

The state of an object without incoming links, i.e. an un-
anchored object, is predicted based on a model of how ob-
jects of this type normally behave. In future work, we may
extend this ability by estimating a specific model for this
particular individual using system identification or machine
learning techniques on the data collected while tracking it.

Top-Down Identification Object linkage structures can be
created bottom-up as shown above, by processing incoming
percepts and creating a new symbol for each hypothesized
object. A similar approach can be used for top-down object
identification by adding partially instantiated object linkage
structures containing information about a symbol that the
user would like to have anchored. The anchoring process
then attempts to identify these objects by processing incom-
ing percepts in an attempt to satisfy the reestablish condi-
tion and extend the partial structures until they are anchored.
This is an interesting topic for additional future work.

3 DyKnow

The anchoring framework has been realized by extending
the stream-based knowledge processing middleware frame-
work DyKnow [10, 14]. DyKnow helps organize the many
levels of information and knowledge processing in a robotic
system as a coherent network of processes connected by
streams. The streams contain time-stamped information and
can be viewed as continually evolving time-series. In addi-
tion to providing conceptual support, DyKnow serves as a
central component in the UASTech UAV architecture [6].

A knowledge processing application in DyKnow consists
of a set of knowledge processes connected by streams satis-
fying policies. A policy is a declarative specification of the
desired properties of a stream. Each knowledge process is
an instantiation of a source or computational unit providing
stream generators that produce streams. A source makes ex-
ternal information available in the form of streams while a
computational unit refines and processes streams. A formal
language called KPL is used to write declarative specifica-
tions of DyKnow applications (see [10, 14] for details).

DyKnow views the world as consisting of objects and
features representing for example properties of objects and
relations between objects. A sort is a collection of objects,
which may represent that they are all of the same type.
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Due to inherent limitations in sensing and processing, an
agent cannot always expect access to the actual value of a
feature over time. Instead it has to use approximations. Such
approximations are represented as streams of samples called
fluent streams. Each sample represents an observation or es-
timation of the value of a feature at a specific point in time
called the valid time. A sample is also tagged with its avail-
able time, the time when it is ready to be processed by the
receiving process after having been transmitted through a
potentially distributed system. This allows us to formally
model delays in the availability of a value and permits an
application to use this information introspectively to deter-
mine whether to reconfigure the current processing network
to achieve better performance. DyKnow also provides sup-
port for generating streams of states by synchronizing dis-
tributed individual streams. Using the stream specifications
it can be determined when the best possible state at each
time-point can be extracted [10]. This is essential for eval-
uating the temporal conditions used in anchoring. DyKnow
also supports stream reasoning, that is, incremental reason-
ing over streams. For example, it incrementally evaluates
logic formulas given a stream of states.

For the purpose of anchoring (and several other tasks)
we begin with first order logic, a powerful technique for ex-
pressing complex relationships between objects, and extend
it with operators allowing metric temporal relationships to
be expressed. Specifically, ♦[τ1,τ2] φ (“eventually φ”) is true
at time τ iff φ holds at some τ ′ ∈ [τ +τ1, τ +τ2], allowing us
to model conditions such as “formula F must become true
within 30 seconds”. Also, �[τ1,τ2] φ (“always φ”) is true at τ

iff φ is true at all τ ′ ∈ [τ + τ1, τ + τ2], allowing us to say
that a formula F ′ must hold in every state between 10 and
20 seconds from now. Finally, φ U[τ1,τ2] ψ (“until”) is true
at τ iff ψ is true at some τ ′ ∈ [τ + τ1, τ + τ2] such that φ is
true in all states in (τ, τ ′): Essentially, φ must be true until ψ

becomes true, which must happen in the specified interval.
As exemplified later, these operators can be nested. This is
similar to the well known Metric Temporal Logic [18], but
has here been integrated as a part of Temporal Action Logic
(TAL) [5]. To support spatio-temporal stream reasoning, the
progression algorithm has also recently been extended with
support for spatial reasoning in RCC-8 [19].

The semantics of metric temporal formulas is defined
over infinite state sequences. To make the logic suitable for
stream reasoning, formulas are incrementally evaluated us-
ing progression over a stream of timed states, allowing them
to be processed in real time as states become available.

The result of progressing a formula through the first state
in a stream is not a truth value but a new formula that holds
in the remainder of the state stream if and only if the orig-
inal formula holds in the complete state stream. In essence,
all parts of a temporal formula that refer to a particular state
are resolved against that state when it arrives and never have

to be re-evaluated. If progression returns the formula true
(false), then the information provided in the states through
which the original formula has been progressed was suffi-
cient to determine that the formula must be true (false), re-
gardless of future states. For example, to verify ♦[0,∞] φ, it
is sufficient that at some time we receive a state where φ is
true, and what happens after that cannot matter.

Even though the size of a progressed formula may grow
exponentially in the worst case, it is always possible to use
bounded intervals to limit the potential growth. A variety
of formula simplification rules can also be applied to the
progressed formula, further limiting growth [10].

DyKnow has been realized both using CORBA [10]
and in the Robot Operating System (ROS) [15]. Figure 2
gives an overview of the stream reasoning architecture as
it is realized in ROS and the steps involved in logic-based
spatio-temporal stream reasoning. An important feature of
this architecture is the semantic matching functionality that
matches symbols to streams based on their meaning [11].
This is achieved by creating a common ontology, specify-
ing the semantic content of streams relative to the ontology
and then using semantic matching to find relevant streams.
By using semantic mappings between ontologies it is also
possible to do semantic matching over multiple ontologies.

The semantic matching is used to find streams containing
the information necessary for the evaluation of a particular
formula. When suitable streams have been found, they are
connected to a stream processing engine that regularly gen-
erates temporally synchronized states, based on information
received, to be used in formula evaluation.

3.1 Anchoring in DyKnow

Object linkage structures are created in DyKnow using a
particular type of knowledge process called a Link Process.
This process handles linking between two specific types of
entities (A and B), either a percept type and an object type or
two object types. An example link process is shown in Fig. 3
where vision percepts are linked to car objects.

The link process subscribes to a stream containing infor-
mation about all objects of type A. It then uses DyKnow’s
support for formula progression to evaluate the associated
establish, reestablish, and maintain conditions over the tem-
poral evolution of each of these objects, thereby determining
when to create and remove links (the bottom part of the fig-
ure). Concurrently, one DyKnow computational unit is used
for each current link A → B to calculate the state of the ob-
ject of type B from the state of the corresponding object of
type A, possibly together with additional information from
other sources such as a geographic information system. The
output of the link process contains information about all ob-
jects currently hypothesized as being of type B. More details
about Link Processes can be found in Heintz et al. [13].
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Fig. 2 The DyKnow stream
reasoning architecture

Fig. 3 A link process creating
car objects from vision percepts

One major issue is how to handle the fact that af-
ter linking two object structures their symbols should be
considered equivalent. If wo3 is linked to oo1, subscrib-
ing to speed(wo3) should be equivalent to subscribing to
speed(oo1). To support this, which was not done before, we
leverage the semantic matching functionality of DyKnow.
We therefore propose using an ontology to represent both
the specification of object linkage structures and what per-
cepts and objects are currently linked and thereby equiva-
lent.

Ontologies provide support for creating and reasoning
with machine readable domain models [16]. In the ontology
each percept and object type is represented as a class. The
ontology has two class hierarchies, one for percept types and
one for object types. To facilitate improving the classifica-
tion of an object, each object class has an establish and a
reestablish condition relative to its ancestor represented as
properties. Multiple inheritance is currently not allowed. To
facilitate linking between different class hierarchies, such

as percepts to object, a new class hierarchy is introduced
with the top class Link. Each class in the Link hierarchy
represents one link type, such as VisionPerceptToWorldOb-

jectLink, and has properties representing the establish and
reestablish conditions. To continually check that an entity is
an instance of its class every class has a property represent-
ing its maintenance condition. The reason for representing
each link type as a class in the ontology is to support rea-
soning about link types at the terminological (T-Box) level.
Only reasoning about equivalences among object and per-
cept instances is done at the assertion (A-Box) level.

From a realization perspective, this replaces the previ-
ous KPL link specification. An important change to the Link
Process is that each time two entities are linked a SameIn-
dividual assertion is added to the ontology and each time
a link is removed the corresponding assertion is removed.
These changes affect future subscriptions. We are working
on allowing subscriptions to change dynamically.
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Fig. 4 Incremental processing
for a traffic monitoring task

4 A UAV Traffic Monitoring Case Study

The anchoring framework presented above can be applied in
a wide variety of robotic applications where there is a need
to reason symbolically over extended periods of time about
objects perceived by sensors.

To illustrate the approach, we again consider the traf-
fic monitoring scenario discussed in the introduction. Here
traffic violations and other events to be detected should
be represented formally and declaratively, which is a spe-
cific example of a general classification task which is com-
mon in robotic applications. This can be done using chron-
icle recognition [8], where each chronicle defines a pa-
rameterized class of complex events as a simple tempo-
ral network [4] whose nodes correspond to occurrences of
high-level qualitative events and edges correspond to met-
ric temporal constraints between event occurrences. For ex-
ample, events representing changes in qualitative spatial re-
lations such as beside(car1, car2), close(car1, car2), and
on(car1, road7) might be used to detect a reckless over-
take [12].

Creating these high-level representations from low-level
sensor data, such as video streams from the color and ther-
mal cameras on-board our UAVs, involves extensive infor-
mation processing within each sensor platform. Figure 4
provides a partial overview of the incremental processing
required for a traffic monitoring task implemented as a set
of distinct DyKnow knowledge processes. Anchoring is a
central process making symbolic reasoning about the exter-
nal world possible by creating symbols referring to objects
in the world based on processing of sensor data. The anchor-
ing process is actually a set of concurrent link processes as
described in the previous section.

At the lowest level, a helicopter state estimation compo-
nent uses data from an inertial measurement unit (IMU) and
a global positioning system (GPS) to determine the current
position and attitude of the UAV. A camera state estima-
tor uses this information, and the current state of the pan-

tilt unit on which the cameras are mounted, to generate in-
formation about the current camera state. Image processing
uses this to determine where the camera is currently point-
ing. Video streams from the color and thermal cameras can
then be analyzed in order to generate vision percepts rep-
resenting hypotheses about moving and stationary physical
entities, including their approximate positions and veloci-
ties.

Symbolic formalisms such as chronicle recognition [8]
require a consistent assignment of symbols, or identities,
to the physical objects being reasoned about and the sensor
data received about those objects. Image analysis provides a
partial solution, with vision percepts having symbolic identi-
ties that persist over short intervals of time. However, chang-
ing visual conditions or objects temporarily being out of
view lead to problems that image analysis often cannot (and
should not) handle. This is the task of the anchoring system,
which also assists in object classification and in the extrac-
tion of higher level attributes of an object. A geographic in-
formation system is used to determine whether an object is
currently on a road. Such attributes can in turn be used to de-
rive relations between objects, including qualitative spatial
relations such as beside(car1, car2) and close(car1, car2).
Concrete events corresponding to changes in such attributes
and predicates finally provide sufficient information for the
chronicle recognition system to determine when higher-level
events such as reckless overtakes occur.

In the case study, anchoring links vision percepts from an
object tracker to world objects, which are then linked to on-
road objects. Link conditions below are intended to demon-
strate key concepts and could be elaborated to take more
complex conditions into account. The temporal unit in the
formulas is milliseconds, which is the temporal granularity
used in the real system.

We used the formula ♦[0,1000] xydist(from, to) < thresh
as a reestablish condition from vision percepts to existing
world objects: The distance to the (predicted or simulated)
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Fig. 5 A demonstration of the
result of hierarchical anchoring

world object in the x/y plane must be within a given thresh-
old within one second. Since we believe all vision percepts
do correspond to world objects, the corresponding establish
condition is simply ♦[1000,∞] true, which unconditionally
becomes true to generate a new world object if after one sec-
ond no reestablish condition has been satisfied. Finally, the
maintain condition is true: As long as the vision percept
persists, we do not doubt its identity as a world object.

A link from a world object to an existing on-road ob-
ject is reestablished if ♦[0,1000] xydist(from, to) < thresh.
Not all world objects are on-road objects. A new on-road
object is therefore only created from a world object if
♦[1000,∞] �[0,1000] on_road(from), that is, if within one sec-
ond, the object is detected on a road for at least one sec-
ond. Finally, the maintain condition is �♦[0,30000] �[0,10000]
on_road(from). In other words, it must always be the case
that within 30 seconds, the object is detected as being on
a road for at least 10 seconds. These temporal intervals are
adjusted to suit the specific noise profile of our simulated
sensors with a minimum of false positives or negatives.

Straight-forward simulations were used for temporarily
unanchored world and on-road objects. World objects are as-
sumed to continue traveling in the same direction, and with
the same speed, as when they were last anchored. On-road
objects are also assumed to retain their speed, but travel
along the road network, splitting into multiple objects at
crossings. This greatly improves the chance of reacquiring
an anchor when the roads are curved or contain crossings.

Figure 5 shows a representative example from running a
car tracking simulation with noisy sensors with four tracks,
from the same car, each about 3 seconds long and then
roughly 2 seconds without any tracking. The speed of the
car is 15 meters/second and the sample period is 100 mil-
liseconds. Uniform noise in the range −3 to 3 meters is
added to the x and y coordinates independently, which is
roughly the quality of our current image-based tracker. Each
dot represents an estimated position of an object. Each color
represents a separate object identity. The vision percept po-
sitions come directly from image processing and are miss-
ing where image processing fails to detect a vehicle. The
computational unit that continually updates an on-road ob-
ject from its associated world object knows that an on-road
object tends to travel in the center of a specific lane, and ad-
justs positions accordingly (right most image). When vision
percepts are missing, position estimates for a world object

are provided by simulation, assuming a continuous straight
line motion. Position estimates for an on-road object, on the
other hand, are simulated based on the assumption that the
object continues along the road with constant speed. When
a simulated on-road object enters a crossing, one hypothesis
for each potential next road segment is generated to qual-
itatively represent the uncertainty in the position. The dif-
ference is clearly seen in the crossing, where the estimated
world object continues straight out into the grass on the other
side of the crossing while the on-road object follows the road
and can be matched to the new vision percept after the cross-
ing.

For more details about the traffic monitoring application
see Heintz et al. [12] and for more details about how the
anchoring process is realized in DyKnow see Heintz [10]
and Heintz et al. [13].

5 Related Work

In recent research, anchoring has been considered as a sep-
arate problem, which has generated a series of interesting
approaches [1–3, 7, 9, 20, 22, 23].

One well-known framework was proposed by Corade-
schi and Saffiotti [3]. Their approach converts the quanti-
tative attributes of a percept to a set of symbolic predicates
using a predicate grounding relation. An object described
by a set of predicates can be found by finding a percept
whose attributes match the predicates of the object accord-
ing to the predicate grounding relation. Objects are tracked
using a single step prediction function computing the next
state of the object which can then be compared with the
next percept. As long as the predictions and the observa-
tions match, the object is tracked. Reacquiring an anchor is
similar to acquiring it, but the information collected about
the object while it was tracked can be used to improve the
re-identification.

In more recent work this approach has been extended to
allow multiple percepts to be anchored to a single symbol
[21], to support the anchoring of not only unary predicates
but also binary relations [21], and to actively control a robot
with the goal of anchoring particular symbols [17].

In our framework, predicate grounding relations can be
encoded in link specifications. Thanks to the use of a metric
temporal logic, we can also use anchoring conditions that
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range over several observations. This can be used to model
arbitrary tradeoffs between false positives and false nega-
tives in the case where a percept may temporarily fail to sat-
isfy a condition, which is not easily doable in their frame-
work. Another benefit of our approach is the possibility to
do anchoring in several smaller steps. Instead of describing
how to directly identify a particular percept as a specific car
we can connect a percept to a world object, which can be
connected to an on road object, which can finally be con-
nected to a car object. This allows the predicate grounding
relation to be contextual, based on the types of objects being
linked.

Another related framework is the GLAIR grounded lay-
ered architecture with integrated reasoning [22]. GLAIR is
a three-layered architecture consisting of a knowledge level
(KL), a perceptuo-motor level (PML), and a sensori-actuator
level (SAL). Anchoring is done by aligning KL terms repre-
senting mental entities with PML descriptions representing
perceived objects. A PML description is an n-tuple where
each component is a value from some perceptual feature do-
main. This alignment is made by hand. If the SAL finds an
object with a particular PML description and there is only
one KL term aligned with it, then the term is anchored to the
PML description and indirectly to the external physical ob-
ject. With the exception that GLAIR has two clearly distinct
levels and an anchor does not belong to either of them, this
approach is similar to the one by Coradeschi and Saffiotti.

Another approach is used by Steels and Baillie [23] to
achieve shared grounding among agents. In their experi-
ment, two robots watch the same scene using cameras and
try to agree what is happening through the use of natural lan-
guage. Several image processing and pattern matching tech-
niques are used to interpret the scene and to ground the natu-
ral language utterances. Image processing is used to classify
objects found in video sequences and to collect qualitative
information about the objects such as their shape and color
in the form of predicate logical statements. Then pattern
matching techniques are used to detect first changes in the
properties of objects and then events as sequences of such
changes. The main difference to our approach is the way
the identity of individual objects are determined. Instead of
using predefined histograms, we describe the conditions for
when two objects should be assumed to be identical using a
metric temporal logic, an approach we believe is more flex-
ible and general.

A fourth related approach proposes a method for anchor-
ing symbols denoting composite objects through anchoring
the symbols of their corresponding component objects [7].
This extends the Coradeschi and Saffiotti framework with
the concept of a composite anchor, which is an anchor with-
out a direct perceptual counterpart. The composite anchor
computes its own perceptual signature from the perceptual
signatures of its component objects. The benefit is that each

sensor can anchor its sensor data to symbols which can be
used to build composite objects fusing information from
several sensors. The same functionality is provided by our
approach, since objects do not have to have direct perceptual
counterparts but can be computed from other objects which
may or may not acquire their input directly from sensors.

Compared to existing approaches our approach supports
hierarchical anchoring where an object is incrementally an-
chored to more and more abstract objects. For example, in
the traffic monitoring scenario we start by linking blobs
found by an image processing system, representing poten-
tial cars, to world objects. These world objects can then be
linked to on-road objects, which can finally be linked to car
objects. Each step in this chain adds more abstract attributes
to the object and allows for more specific assumptions to be
made about how such an object behaves. These assumptions
can be used when trying to reacquire an anchor by predicting
where the object is.

Another significant difference is that our approach ex-
plicitly models time using a metric temporal logic, allowing
the use of complex temporal conditions to decide when to
anchor symbols to objects. This is especially important
when anchoring dynamic objects such as people and vehi-
cles.

6 Conclusions

We have presented a general stream-based hierarchical an-
choring framework and an implementation as an exten-
sion of the DyKnow knowledge processing middleware.
The framework dynamically creates object linkage struc-
tures representing the current hypothesis about the identity
and classification of an object. As more information be-
comes available the structures are updated either by narrow-
ing down the classification or by removing violated hypothe-
ses. The result is that each object linkage structure maintains
the best possible hypothesis about the identity and classifica-
tion of a single physical object. The symbol associated with
an object in the object linkage structure can then be used to
further reason about the object.

The use of an expressive metric temporal logic and the
support for hierarchical anchoring gives our approach qual-
itative advantages over existing systems. First, the hierar-
chical approach is a strict extension since it is still possible
to do direct anchoring. Second, hierarchies support a divide
and conquer approach to describing how to anchor an ob-
ject which also supports reuse. Third, it is possible to have
multiple coherent representations of the same object allow-
ing different functionalities to interact with the object at the
appropriate level of abstraction. Finally, the use of an ex-
pressive metric temporal logic allows complex temporal re-
lations to be used in the anchoring process. The approach
has been applied to a traffic monitoring application where a
UAV detects traffic violations.



128 Künstl Intell (2013) 27:119–128

References

1. Bonarini A, Matteucci M, Restelli M (2001) Anchoring: do we
need new solutions to an old problem or do we have old solutions
for a new problem? In: Anchoring symbols to sensor data in single
and multiple robot systems: AAAI Fall symposium

2. Chella A, Frixione M, Gaglio S (2003) Anchoring symbols to con-
ceptual spaces: the case of dynamic scenarios. Robot Auton Syst
43(2–3):175–188

3. Coradeschi S, Saffiotti A (2003) An introduction to the anchoring
problem. Robot Auton Syst 43(2–3):85–96

4. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks.
Artif Intell 49:61–95

5. Doherty P, Kvarnström J (2008) Temporal action logics. In: Hand-
book of knowledge representation. Elsevier, Amsterdam

6. Doherty P, Haslum P, Heintz F, Merz T, Nyblom P, Persson T,
Wingman B (2004) A distributed architecture for autonomous un-
manned aerial vehicle experimentation. In: Proc 7th international
symposium on distributed autonomous robotic systems (DARS),
pp 221–230

7. Fritsch J, Kleinehagenbrock M, Lang S, Plötz T, Fink GA, Sagerer
G (2003) Multi-modal anchoring for human-robot interaction.
Robot Auton Syst 43(2–3):133–147

8. Ghallab M (1996) On chronicles: representation, on-line recogni-
tion and learning. In: Proc KR

9. Gunderson JP, Gunderson LF (2006) Reification: what is it, and
why should I care? In: Proc PerMIS

10. Heintz F (2009) DyKnow: a stream-based knowledge processing
middleware framework. PhD thesis, Linköpings Universitet

11. Heintz F, Dragisic Z (2012) Semantic information integration for
stream reasoning. In: Proc fusion

12. Heintz F, Rudol P, Doherty P (2007) From images to traffic
behavior—a UAV tracking and monitoring application. In: Proc
fusion

13. Heintz F, Kvarnström J, Doherty P (2009) A stream-based hierar-
chical anchoring framework. In: Proc of IROS

14. Heintz F, Kvarnström J, Doherty P (2010) Bridging the sense-
reasoning gap: DyKnow—stream-based middleware for knowl-
edge processing. Adv Eng Inform 24(1):14–26

15. Hongslo A (2012) Stream processing in the robot operating system
framework. Master’s thesis, Linköpings Universitet

16. Horrocks I (2008) Ontologies and the Semantic Web. Commun
ACM 51(12):58. doi:10.1145/1409360.1409377

17. Karlsson L, Bouguerra A, Broxvall M, Coradeschi S, Saffiotti A
(2008) To secure an anchor—a recovery planning approach to am-
biguity in perceptual anchoring. AI Commun 21(1):1–14

18. Koymans R (1990) Specifying real-time properties with metric
temporal logic. Real-Time Syst 2(4):255–299

19. Lazarovski D (2012) Extending the stream reasoning in DyKnow
with spatial reasoning in RCC-8. Master’s thesis. Linköpings Uni-
versitet

20. Lemaignan S, Ros R, Sisbot EA, Alami R, Beetz M (2011)
Grounding the interaction: anchoring situated discourse in every-
day human-robot interaction. Int J Soc Robot 1–19

21. Loutfi A, Coradeschi S, Daoutis M, Melchert J (2008) Using
knowledge representation for perceptual anchoring in a robotic
system. Int J Artif Intell Tools 17(5):925–944

22. Shapiro SC, Ismail HO (2003) Anchoring in a grounded lay-
ered architecture with integrated reasoning. Robot Auton Syst
43(2–3):97–108

23. Steels L (2003) Shared grounding of event descriptions by au-
tonomous robots. Robot Auton Syst 43(2–3):163–173

Fredrik Heintz is a researcher at
the Department of Computer and In-
formation Science (IDA), Linköping
University, Sweden, where he cur-
rently leads the Embedded Rea-
soning Systems Group. He com-
pleted his Ph.D. in 2009. He is cur-
rently the president of SAIS, the
Swedish Artificial Intelligence So-
ciety. His main research areas are
knowledge representation, informa-
tion fusion, intelligent autonomous
systems, and multi-agent systems.

Jonas Kvarnström is a researcher
at the Department of Computer and
Information Science (IDA), Linköp-
ing University, Sweden, where he
currently leads the Automated Plan-
ning Group. He completed his Ph.D.
in 2005. His main research areas
are knowledge representation, intel-
ligent autonomous systems, and au-
tomated planning.

Patrick Doherty is a Professor of
Computer Science at the Depart-
ment of Computer and Information
Science (IDA), Linköping Univer-
sity, Sweden. He heads the Artificial
Intelligence and Integrated Com-
puter Systems Division at IDA. He
is currently President of ECCAI, the
European Coordinating Committee
for Artificial Intelligence and is an
ECCAI fellow. His main areas of in-
terest are knowledge representation,
automated planning, intelligent au-
tonomous systems and multi-agent
systems.

http://dx.doi.org/10.1145/1409360.1409377

	Stream-Based Hierarchical Anchoring
	Abstract
	Introduction
	Anchoring Using Object Linkage Structures
	Incremental Generation of Object Linkage Structures
	Establishing Links
	Reestablishing Links
	Maintaining Links
	Top-Down Identification


	DyKnow
	Anchoring in DyKnow

	A UAV Traffic Monitoring Case Study
	Related Work
	Conclusions
	References


