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Abstract. In traditional approaches to knowledge representation, no-
tions such as tolerance measures on data, distance between objects or
individuals, and similarity measures between primitive and complex data
structures are rarely considered. There is often a need to use tolerance
and similarity measures in processes of data and knowledge abstrac-
tion because many complex systems which have knowledge representa-
tion components such as robots or software agents receive and process
data which is incomplete, noisy, approximative and uncertain. This pa-
per presents a framework for recursively constructing arbitrarily complex
knowledge structures which may be compared for similarity, distance and
approximativeness. It integrates nicely with more traditional knowledge
representation techniques and attempts to bridge a gap between approx-
imate and crisp knowledge representation. It can be viewed in part as
a generalization of approximate reasoning techniques used in rough set
theory. The strategy that will be used is to define tolerance and distance
measures on the value sets associated with attributes or primitive data
domains associated with particular applications. These tolerance and dis-
tance measures will be induced through the different levels of data and
knowledge abstraction in complex representational structures. Once the
tolerance and similarity measures are in place, an important structuring
generalization can be made where the idea of a tolerance space is intro-
duced. Use of these ideas is exemplified using two application domains
related to sensor modeling and communication between agents.

1 Introduction

In traditional approaches to knowledge representation, notions such as toler-
ance measures on data, distance between objects or individuals, and similarity
measures between primitive and complex data structures such as properties and
relations, elementary and complex descriptors, decision rules, information sys-
tems, and relational databases, are rarely considered. This is unfortunate because
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many complex systems which have knowledge representation components such as
robots or software agents receive and process data which is incomplete, noisy, ap-
proximative and uncertain. There is often a need to use tolerance and similarity
measures in processes of data and knowledge abstraction and in communication
between agents.
This is a particular problem in the area of cognitive robotics where data input
by sensors has to be fused, filtered and integrated with more traditional quali-
tative knowledge structures. A great many levels of knowledge abstraction and
data reduction must be used as one tries to integrate newly acquired raw data
with existing data which has previously been abstracted and represented explic-
itly in the form of more qualitative data and knowledge structures. It is also a
problem for software agents on the world wide web where knowledge structures
are continually required to be compared and merged and agents are obligated
to communicate with each other using similar, but unidentical ontologies or vo-
cabularies.
This paper presents a framework for recursively constructing arbitrarily com-
plex knowledge structures which may be compared for similarity, distance and
approximativeness. It integrates nicely with more traditional knowledge repre-
sentation techniques and attempts to bridge a gap between approximate and
crisp knowledge representation [2]. It can be viewed in part as a generaliza-
tion of approximate reasoning techniques used in rough set theory [5] where an
approximate relation is represented as having both an upper and lower approx-
imation represented as classical sets and an individual in a domain of discourse
has additional structure in terms of attribute/value pairs. It also has connections
to recent work by Gärdenfors with conceptual spaces [4].
Ontologically, the world is viewed as consisting of individual elements with as-
sociated sets of attribute/value pairs. Each attribute has a value set and toler-
ance relations will be associated with each value set inducing a neighborhood
relation. Arbitrarily complex data structures and representational systems are
constructed recursively from the primitive notions of individual, attribute and
value. Consequently, notions of tolerance and similarity can be induced through
these structures via the tolerance and similarity measures placed on primitive
data or value sets. For example, a set of values for each attribute associated
with an individual may be viewed as a tuple. A set of one-tuples is a property,
a set of k-tuples is a k-relation, sets of relations are associated with relational
structures. In regard to relations, upper and lower approximations to these can
be derived through use of the individual tolerance relations.
The representational structures constructed in this manner are viewed as in-
formation granules and have a great deal of representational fluidity. They can
be combined, compared for tolerance and similarity, reasoned about approxima-
tively, and often represented using traditional database techniques. The latter is
especially important for integration with legacy knowledge structures and logi-
cal inferencing techniques. Use of the framework will be exemplified using two
fundamentally important potential applications: sensor to symbolic data conver-
sions and communication between software agents. The techniques are currently
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being applied to real-world applications in both the cognitive robotics and soft-
ware agents application domains.
Let us begin with the notion of tolerance and tolerance measures. Webster’s
dictionary defines tolerance as “the amount of variation allowed from a standard,
accuracy, etc.”
For example, suppose a system receives data about an attribute a from two
sources, where source one asserts that that a = 1.04 and source two asserts that
a = 0.98. Depending on the context, the system might want to consider the
values 1.04 and 0.98 as the same relative to some tolerance measure since their
distance is only 0.06. In another application this difference may have serious
repercussions on system safety, so it is important to make sure that tolerance
measures are contextual and can be tuned either automatically or manually
relative to the application and context at hand.
The strategy that will be used is to define tolerance and distance measures on the
value sets associated with attributes or primitive data domains associated with
particular applications. These tolerance and distance measures will be induced
through the different levels of data and knowledge abstraction in complex repre-
sentational structures. The representational structures will in some sense inherit
the tolerance measures from the primitive data domains and value sets used
in these structures at lower levels of abstraction and taken into account when
comparing for similarity or reasoning. By defining parameterized measures of
tolerance via distance measurements on values sets and primitive domains, one
can cluster sets of values into tolerance neighborhoods and view the clusters as
individual elements. Similarly, individuals whose identities are dependent on sets
of attribute/value pairs can also be clustered into tolerance neighborhoods and
viewed as indiscernible entities to a particular degree of tolerance when used in
other data structures.
The basic primitive in the ideas presented is that of a tolerance function. Let’s
begin with a value set V and two elements x, y ∈ V . A tolerance function τ
provides us with a distance measure between x and y normalized to the real
interval [0, 1] where the higher the value, the closer in tolerance the two elements
are. Given a parameter p ∈ [0, 1], a tolerance relation τp is then introduced
among individuals with a threshold p which tunes the tolerance to be within
a certain degree. If τ(x, y) ≥ p then the pair 〈x, y〉 is in the relation τp. Both
the tolerance function and the parameter p must be provided by a knowledge
engineer or must be machine learned. One can continually refine these values.
Once this is done for individual value sets or primitive data domains, it can be
generalized to tuples of values and tolerance can be measured between two tuples
〈x1, . . . , xk〉 and 〈y1, . . . , yk〉 using pairwise comparison of associated tolerance
relations.
Given a value set V with associated tolerance measures, we can then take subsets
V1, V2 ⊆ V and induce tolerance measures and neighborhood functions on the
subsets. Likewise, given a set T of k-tuples with associated tolerance measures,
we can then take subsets T1, T2 ⊆ T and induce tolerance measures and neigh-
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borhood functions on the subsets. Subsets of V can be viewed as properties or
concepts and subsets of T can be viewed as k-argument relations.
These ideas can be generalized further to sets of sets and sets of sets of tuples,
where the tolerance and similarity measures between these structures is induced
from the primitive tolerance measures in the base value sets. Once the tolerance
and similarity measures are in place, an important structuring generalization
can be made where the idea of a tolerance space is introduced.
Given a universe U of objects in a tolerance space with the associated tolerance
measures, we can provide a generalization of the notions of upper and lower
approximations on sets used in rough set theory to subsets of U . The lower and
upper approximations will again be induced from the particular tolerance mea-
sures provided by the tolerance space in question. Rather than using equivalence
classes of individuals constructed from subsets of attributes as in rough set the-
ory, one would work instead with neighborhoods generated from neighborhood
functions of individuals.
There is an interesting connection between the idea of tolerance spaces proposed
in this chapter and the work of Gärdenfors with conceptual spaces (see, e.g.,
[4]). Conceptual spaces are built up using multi-dimensional spaces of quality
dimensions (attributes) and providing geometric constraints between these di-
mensions in order to model distance measures and similarity. However, we use
the notion of semi-distances rather than of distances. Tolerance spaces contribute
to a generalization of conceptual spaces in the sense that concepts can be gener-
alized to approximate concepts based on tolerance measures and the geometric
constraints used are less rigid than with conceptual spaces. In order to place tol-
erance spaces in the proper context with conceptual spaces, we define a simple
version of conceptual spaces and show how tolerance spaces may be integrated
in this framework.
In the remainder of the paper, the basic framework will be presented and then
exemplified using two applications.

2 Conceptual Spaces

A semi-metric space is a pair 〈A, δ〉, where A is a set and δ is a function

δ : A × A −→ R
which, for all x, y ∈ A, satisfies:

δ(x, y) ≥ 0, δ(x, x) = 0 and δ(x, y) = δ(y, x).

Any function δ satisfying the above properties is called a semi-metric for A and
δ(x, y) is called the semi-distance between x and y.

Definition 2.1. Let U be a finite nonempty set of objects. By a quality dimen-
sion over U we understand any semi-metric space 〈U, δ〉. By a conceptual space
over U we mean any pair 〈U, Q〉, where Q is a finite set of quality dimensions
over U .
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Quality dimensions usually correspond to attributes of objects together with a
semi-distance defined on the attributes value domains. For example, if one mea-
sures colors of objects, quality dimensions can correspond to hue, chromatic-
ity and brightness. The concept “fruit” may have dimensions corresponding to
weight, taste, color, etc.
Usually, with any quality dimension one associates a relational structure rep-
resenting a domain of values corresponding to the quality dimension, together
with functions and relations allowing one to calculate (semi-)distances.
For instance, with the quality dimension “weight” one can associate a relational
structure defining arithmetic on the real numbers.

3 Tolerance and Inclusion Functions

We begin by defining a tolerance function on individuals. From this a parame-
terized tolerance relation follows naturally.

Definition 3.1. By a tolerance function on a set U we mean any function τ :
U × U −→ [0, 1] such that for all x, y ∈ U ,

τ(x, x) = 1 and τ(x, y) = τ(y, x).

Given a conceptual space 〈U, Q〉 and a quality dimension 〈U, δ〉 ∈ Q, a tolerance
function τ , based on the quality dimension can be defined as follows:

τ(u, u′) def= 1 − δ(u, u′)
max{δ(x, y) : x, y ∈ U} . (1)

Of course, the same approach could be used for an attribute a and its value
set Va in a complex knowledge structure, provided δ is given, without appeal to
conceptual spaces.

Definition 3.2. For p ∈ [0, 1] by a tolerance relation to a degree at least p
based on τ , we mean the relation τp given by

τp def= {〈x, y〉 | τ(x, y) ≥ p}.

The relation τp is also called the parameterized tolerance relation.

In the rest of the paper, τp(x, y) is used to denote the characteristic function for
the relation τp.
Intuitively, τ(x, y) provides a degree of similarity between x and y, whereas
τp(x, y) states that the degree of similarity between x and y is at least p. In
what follows we limit ourselves to tolerance relations where it is assumed that
the parameter p has been provided and is tuned to fit particular applications.
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Often one considers objects to be similar if a given distance between them is not
greater than a given threshold, say d. Given a quality dimension 〈U, δ〉 and a
threshold d ≥ 0, one can define the parameter p from Definition 3.2 to be

p
def= 1 − d

max{δ(x, y) : x, y ∈ U} . (2)

A parameterized tolerance relation is used to construct tolerance neighborhoods
for individuals.

Definition 3.3. By a neighborhood function wrt τp we mean a function given
by

nτp

(u) def= {u′ ∈ U | τp(u, u′) holds}.

By a neighborhood of u wrt τp we mean the value nτp

(u).

4 Tolerance Spaces

The concept of tolerance spaces plays a fundamental rôle in our approach.

Definition 4.1. A tolerance space is defined as the tuple TS = 〈U, τ, p〉, which
consists of

– a nonempty set U , called the domain of TS;
– a tolerance function τ

– a tolerance parameter p ∈ [0, 1].

The parameterized tolerance relation τp is defined as in Definition 3.2.

Given a universe U of individuals, a set of attributes A and a set X ⊆ U , one
often considers the lower and upper approximation of X as defined in terms of
a partitioning of the universe U in indiscernibility classes relative to a subset of
the attributes A. Given a tolerance space TS = 〈U, τ, p〉, rather than considering
an individual’s indiscernibility class as a basis for defining the lower and upper
approximation of X ⊆ U , we can instead use the neighborhood of an individual
induced by the tolerance function/parameter pair(s) provided by the tolerance
space. In addition, we can tune our definition of upper approximation via a
parameter q which determines how much of a neighborhood must be part of X
in order for it to be included in the upper approximation.3

Below, for any set X , by |X | we mean the cardinality of X .

3 A different approach, based on a notion of approximation spaces, object neighbor-
hoods and rough inclusion, has been introduced in [6].
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Definition 4.2. Let U1, U2 ⊆ U . By the standard inclusion function we mean
the function given by

µ(U1, U2) def=

⎧⎨
⎩

|U1 ∩ U2|
|U1| if U1 �= ∅

1 otherwise.

Let TS =〈U, τ, p〉 be a tolerance space and X⊆U . The lower and upper approxi-
mations of X wrt TS to a degree q∈ [0, 1], Xq

TS+ and Xq
TS⊕ , are defined by

Xq
TS+ = {u ∈ U : µ(nτp

(u), X) = 1}, Xq
TS⊕ = {u ∈ U : µ(nτp

(u), X) > q}.
The approximations X0

TS+ , X0
TS⊕ are called the lower and upper approximations

of X wrt TS and are often denoted by XTS+, XTS⊕ , respectively.

5 Defining Tolerance on Complex Representational
Structures

In this section we show how to induce a tolerance relation on complex structures
on the basis of a tolerance relation defined on domain elements.
Consider a tolerance space TS = 〈U, τ, p〉. First, we would like to extend the
tolerance and neighborhood functions induced by TS to deal with subsets of U .
We shall need a notion of generalized inclusion function ντp

which will be used
as a basis for measuring similarity between complex information structures.
One of the important motivations behind the definition provided is that we
require a generalized inclusion function to coincide with the standard inclusion
function in the case of a trivial tolerance space (identifying equal elements and
distinguishing elements that are not equal).4

Definition 5.1. Let U be a set and U1, U2 ⊆ U . By the generalized inclusion
function induced by τp we mean the function given by

ντp

(U1, U2) def=

⎧⎨
⎩

|{u1 ∈ U1 : ∃u2 ∈ U2[u1 ∈ nτp

(u2)]}|
|U1| if U1 �= ∅

1 otherwise.

For q ∈ [0, 1], we say that U1 is included in U2 to a degree at least q wrt ντp

iff
ντp

(U1, U2) ≥ q.
In the case of tuples5 U1 = 〈u1, . . . , un〉 and U2 = 〈u′

1, . . . , u
′
n〉, by the generalized

inclusion function over tuples, induced by τp we mean the function given by

ντp

o (U1, U2) def=

⎧⎨
⎩

|{ui : 1 ≤ i ≤ n and ui ∈ nτp

(u′
i)}|

|U1| if n �= 0

1 otherwise.
4 We also require such “continuity” in other definitions. Namely, the trivial tolerance

space should always lead to standard notions that are accepted when tolerance is
not considered.

5 I.e., ordered sets of the same cardinality.
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In the sequel we write ντp
TS and nτp

TS , respectively, to denote ντp and nτp

, where
τp is a tolerance relation induced from a tolerance space TS.6

Definition 5.2. Let TS = 〈U, τ, p〉 be a tolerance space. By a power tolerance
space induced by TS we mean T TS = 〈UTS , τTS , s〉, where

– UTS def= 2U , is the set of all subsets of U

– for U1, U2 ∈ UTS, τTS(U1, U2) def= min
{
ντp

(U1, U2), ντp

(U2, U1)
}

– s ∈ [0, 1] is a tolerance parameter.

We define tolerance and neighborhood functions on tuples of elements in a similar
manner.

Definition 5.3. Let TS = 〈U, τ, p〉 be a tolerance space. By a k-tuple tolerance
space induced by TS we mean T TSk

= 〈UTSk

, τTSk

, s〉, where

– UTSk def= U × . . . × U︸ ︷︷ ︸
k−times

, is the set of all k-tuples of U

– for U1, U2 ∈ UTSk

, τTSk

(U1, U2) def= ντp

o (U1, U2) = ντp

o (U2, U1),7

– s ∈ [0, 1] is a tolerance parameter8.

Let us summarize the methodology we propose:

– we start with a quantitative representation of the similarity of considered
concepts given by semi-distance or tolerance functions (see Definitions 2.1
and 3.1)

– the definition of tolerance spaces (Definition 4.1) and neighborhoods (De-
finition 3.3) allows us to transform the quantitative representation of the
similarity into a qualitative representation of the concepts. Such a trans-
formation can also be applied to complex representational structures using
Definitions 5.2 and 5.3. Tolerance parameters allow us to tune the similarities
to fit particular application domains

– the approximations provided in Definition 4.2 allow us to isolate objects
that surely satisfy a given property and that might satisfy the property. In
consequence, we also obtain a characterization of objects that surely do not
satisfy the property

– finally one can apply various deduction mechanisms to reason about the
considered concepts (see, e.g., [2]).

6 We often drop the superscripts and subscripts when the tolerance spaces and rela-
tions are known from context.

7 The equality between ντp

o (U1, U2) and ντp

o (U2, U1) follows from the symmetry of τ .
8 The tolerance paramter s specified in definitions 5.2 and 5.3 is not used in this paper.
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Object Length (cm) Wingspan (cm) Weight (g) Color

blue jay 28 41 85 blue and grey
gray jay 29 46 70 grey with white and black

rusty blackbird 23 36 60 black
brewer’s blackbird 23 39 63 black
european starling 22 41 82 black to brown

Table 1. Description of birds.

6 An Example

In the following example we will use the data in Table 1 to exemplify the def-
inition and use of tolerance spaces, where objects (birds) are characterized by
attributes Length, Wingspan, Weight and Color.
For simplicity of presentation, below we use a separate domain for each of the
attributes. Of course, the domains can simply be encoded by a single domain.

Let δ(x, y) def= abs(x − y) be a distance function, where abs(z) stands for the
absolute value of z.
We first define a tolerance space for the integer value domain VL of the attributes
Length and Wingspan. We use a threshold of 5cm. The corresponding tolerance
space TSL = 〈VL, τL, pL〉 is defined by:

VL = {x : 20 ≤ x ≤ 50}, τL(x, y) = 1 − δ(x, y)
δ(20, 50)

, pL = 1 − 5
δ(20, 50)

.

Now nτL
pL (x) = {y ∈ VL : abs(x − y) ≤ 5} = {y ∈ VL : τPL

L (x, y)}.
Similarly one can define a tolerance space for the integer value domain VW of
the attribute Weight. We use a threshold of 10g. The tolerance space TSW =
〈VW , τW , pW 〉 is defined by:

VW = {x : 60 ≤ x ≤ 90}, τW (x, y) = 1 − δ(x, y)
δ(60, 90)

, pW = 1 − 10
δ(60, 90)

.

Now nτW
pW (x) = {y ∈ VL : abs(x − y) ≤ 10} = {y ∈ VL : τPW

W (x, y)}.
We define a tolerance space for the symbol value domain VC of the attribute
Color to be TSC = 〈VC , τC , pC〉, where:

– VC consists of colors listed in the column of Table 1 labelled by Color
– for any color c, τC(c, c) = 1. We also assume that

τC(black, black to brown) = τC(black to brown, black) = 0.9

– pC = 0.85.

Assuming such tolerance spaces, we can conclude that rusty blackbird is similar to
brewer’s blackbird, since the first one is characterized by attributes 〈23, 36, 60, black〉
and the second by attributes 〈23, 39, 63, black〉. By Definition 5.3,

τTS4
(〈23, 36, 60, black〉, 〈23, 39, 63, black〉) = 4/4 = 1,
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since 23 ∈ nτL
pL (23), 36 ∈ nτL

pL (39), 60 ∈ nτL
pL (63) and black ∈ nτC

pC (black).

For blue jay and grey jay we can conclude that:

τTS4
(〈28, 41, 85, blue and grey〉, 〈29, 46, 70, grey with white and black〉) = 2/4,

since 28 ∈ nτL
pL (29), 41 ∈ nτL

pL (46), 85 �∈ nτL
pL (70) and

blue and grey �∈ nτC
pC (grey with white and black).

For rusty blackbird and european starling we can conclude that:

τTS4
(〈23, 36, 60, black〉, 〈22, 41, 82, black to brown〉) = 3/4,

since 23 ∈ nτL
pL (22), 36 ∈ nτL

pL (41), 60 �∈ nτL
pL (82) and

black ∈ nτC
pC (black to brown).

One can further define tolerance spaces on collections of birds, using Defini-
tion 5.2, relations defined on birds, etc.

7 Applications

7.1 Sensor Models and Tolerance Spaces

In this section, we provide a simple sensor model9 and one method for modeling
uncertainty in sensor data which integrates well with tolerance spaces. We also
discuss the construction of virtual sensors from combinations of actual and other
virtual sensors.
A sensor is used to measure one or more physical attributes in an environment
E. The value sets associated with a physical attribute might be the real num-
bers, as in the case of measurement of the temperature or velocity of an object;
Boolean values, as in the measurement of the presence or absence of an object
such as a red car; integer values, as in the case of measurement of the number
of vehicles in a particular intersection; or scalar values, such as the specific color
of a vehicle. An environment E can be viewed as an abstract entity containing
a collection of physical attributes that are measurable. Vectors or n-dimensional
arrays of attribute/value pairs could be used to represent a particular environ-
ment. One may want to add a temporal argument to E, so the current state of
the environment is dynamic and changes with time.
We denote a sensor Si as a function of the environment E and time point t,
Si(E, t). Si is a function which returns a pair of functions,

Si(E, t) = {Vi(t), εi(t)}.

Depending on the type of sensor being modeled, Vi(t) will be a function that
returns the values of the physical attributes associated with the sensor. Vi might
9 This model is based on a generalization of that in [1].
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return a single value, as in the case of a single temperature sensor, or a vector
or array of values for more complex sensors.
For any physical attribute measured, explicit accuracy bounds will be supplied
in the form of εi(t). The temporal argument is supplied since the accuracy of a
sensor may vary with time. As in the case of Vi, εi might return a single accuracy
bound or a vector or array of accuracy bounds.
For example, suppose Stemp is a sensor measuring the temperature of a PC104
box on an unmanned aerial vehicle. Let atemp be the physical attribute asso-
ciated with temperature in the environment, where the actual temperature is
E(t)(atemp) and the value returned by the sensor is Vi(t)(atemp). The following
constraint holds:

E(t)(atemp) ∈ [Vi(t)(atemp) − εi(t), Vi(t)(atemp) + εi(t)].

By using tolerance spaces, accuracy bounds for a physical attribute can be rep-
resented equivalently as tolerance relations to degree p on the value set for the
attribute. In this manner, we can use neighborhood functions to reason about
the tolerance or accuracy neighborhoods around individual sensor readings and
combine these into neighborhoods for more complex virtual sensors.
In the following, we will drop the temporal argument for ε and assume the accu-
racy bounds for attributes do not change with time. Let TSSik

= 〈VSik
, τsik

, psik
〉

be a tolerance space for the kth physical attribute, aik
associated with the sensor

Si, where,

– VSik
= {x | lb ≤ x ≤ ub, x ∈ D}, where D is a value domain such as the

reals or integers. It is assumed that the legal values for a physical attribute
have a lower and upper bound, lb, ub. We associate a distance measurement
δ(x) =| x−y | with the value set VSik

, which includes all the values that can
be read from the sensor Si.

– Both the tolerance function τsik
, and the tolerance parameter psik

are defined
as follows,

τsik
(x, y) = 1 − δ(x, y)

δ(lb, ub)
, psik

= 1 − εi

δ(lb, ub)
.

The neighborhood function can be used to compute the possible actual values
of a physical attribute in the environment, given a sensor reading, under the
assumption that the accuracy bounds have been generated correctly for a par-
ticular sensor and the sensor remains calibrated. For example, if Vi(atemp) is the
current value measured by the sensor Si then we would know that E(atemp) ∈
npsik (Vi(atemp)). So, the tolerance neighborhood around a sensor reading always
contains the actual value of the physical attribute in the environment E and it
would be correct to reason with the neighborhoods of sensor values, rather than
the sensor value itself.
We can then use these physical attributes and their associated tolerance spaces
to construct more complex attributes and knowledge structures in terms of these.
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These new attributes and knowledge structures would inherit the accuracy (in-
accuracy) of the primitive sensor data used in their construction.

7.2 Mutual Understanding between Tolerance Agents

Consider a multi-agent application in a complex environment such as the world
wide web for software agents, or a natural disaster in an urban area for physical
robots. Each agent will generally have its own view of its environment due to
a number of factors such as the use of different sensor suites, knowledge struc-
tures, reasoning processes, etc. Agents may also have different understandings
of the underlying concepts which are used in their respective representational
structures and will measure objects and phenomena with different accuracy. How
then can agents with different knowledge structures and perceptive accuracies
understand each other and effect meaningful communication and how can this
be modeled? In this section, both tolerance spaces and upper and lower approxi-
mations on agent concepts and relations are used to define a means for agents to
communicate when different sensor capabilities and different levels of accuracy
in knowledge structures are assumed.
We begin with a broad definition of a tolerance agent.

Definition 7.1. By a tolerance agent we shall understand any pair 〈Ag, TS〉,
where Ag is an agent and TS is a tolerance space.

The assumption is that the Ag part of an agent consists of common functionali-
ties normally associated with agents such as planners, reactive and other meth-
ods, knowledge bases or structures, etc. The knowledge bases or structures are
also assumed to have a relational component consisting of approximate relations
which are derived and viewed through the agents limited sensor capabilities.
When the agent introspects and queries its own knowledge base these limited
perceptive capabilities should be reflected in any answer to a query.
The following definition will be used to provide a tolerance limited semantics for
queries in the context of a particular tolerance space.

Definition 7.2. Let TS = 〈U, τ, p〉 be a tolerance space. Consider a pair of sets,
Z = 〈X, Y 〉 , such that X ⊆ Y .10 By a lower and upper approximation of Z wrt
TS we mean

Zτp

TS+
def= {u ∈ U : nτp

TS(u) ⊆ X}
Zτp

TS⊕
def= {u ∈ U : nτp

TS(u) ∩ Y �= ∅}.

Zτp

TS− is defined as −Zτp

TS⊕ .

To keep the exposition concise, simple queries, such as R(a) will be used, where
R is a relation symbol and a is a constant symbol. Due to its limited perceptive
10 Intuitively, X and Y correspond to a lower and upper approximation of a set.



Tolerance Spaces and Approximative Representational Structures 13

capabilities, one can assume that the agent may not recognize the difference
between a and other objects in the neighborhood of a. Thus, the agent can be
sure that R(a) holds only if all elements in the neighborhood of a satisfy R. The
agent also can not exclude the possibility that R(a) holds if there is at least one
element in the neighborhood of a satisfying R. Consequently, it is clear that R
can be viewed as a set such that:

– its lower approximation only contains elements that, together with all ele-
ments in their neighborhood, satisfy R

– its upper approximation contains elements for which there is at least one
element in their neighborhood that satisfies R.

Moreover, the set itself is given only via its approximations.
The following example illustrates this approach.

Example 7.3. Let TA be a tolerance agent with the following domain of dis-
course: Mary, lR, mR, dR, where the latter three elements denote “light red”,
“medium red” and “dark red”, respectively. TA’s knowledge base contains the
following three facts:

Likes(Mary, lR), Likes(Mary, mR), ¬Likes(Mary, dR),

Assume further that the single tolerance relation associated with the tolerance
space of TA identifies lR with mR and mR with dR.
Suppose agent TA is given the task of verifying whether Mary likes a color it
directly senses as being lR. Based on the agent’s tolerance relation, its sensors
are not capable of recognizing the difference between lR and mR. However, Mary
likes both colors, so TA can be sure that she likes the color sensed by TA with
certainty.
If TA directly sensed the color as mR then it could not be sure whether Mary
likes this color or not, since it does not perceive any difference between mR and
dR. The sensed color might actually be dR which Mary does not like. On the
other hand, TA could not exclude the alternative that Mary likes this color, as
it could equally well be mR.
In summary, lR is in the lower approximation of the (unary) relation likes(Mary, x)
and mR and dR are in the upper approximation of the relation. The agent TA
would use these approximations of the relation together with its knowledge
and associated tolerance space when answering questions about Mary’s likes
or dislikes.

These intuitions are formalized in the following definition.

Definition 7.4. Let TA = 〈Ag, TS〉 be a tolerance agent. Then the semantics
of a relation R wrt TA is given by:

RTA+
def= RTS+ , RTA⊕

def= RTS⊕ and RTA−
def= RTS− ,

where RTS+ , RTS⊕ and RTA− are as defined in Definition 7.2.
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Remark 7.5. It is important to note that Definition 7.4 refers to an arbitrary
relation. Since any first-order or fixpoint query to a RDB returns a relation as
its result, the definition also provides us with the semantics of queries asked to
and answered by tolerance agents.

Example 7.6. Consider the tolerance agent TA again, with the same tolerance
space and facts given in Example 7.3. The answer returned by agent TA to the
sample query, Likes(Mary, x), will be computed using Definition 7.4.
According to Example 7.3,

Likes = {〈Mary, lR〉, 〈Mary, mR〉}.
Consequently, Likes is approximated by TA as follows:

LikesTA+
def= LikesTS+ = {u | u ∈ {〈Mary, lR〉, 〈Mary, mR〉, 〈Mary, dR〉}

and nTS(u) ⊆ Likes} = {〈Mary, lR〉}
LikesTA⊕

def= LikesTS⊕ = {u | u ∈ {〈Mary, lR〉, 〈Mary, mR〉, 〈Mary, dR〉}
and nTS(u) ∩ Likes �= ∅} = {〈Mary, lR〉, 〈Mary, mR〉, 〈Mary, dR〉}.

Thus,the following facts hold:

Likes(Mary, lR)TA+ , Likes(Mary, lR)TA⊕ ,
Likes(Mary, mR)TA⊕ , Likes(Mary, dR)TA⊕ .

These results reflect the intuitions described in Example 7.3.

Given that two tolerance agents have different tolerance spaces it becomes nec-
essary to define the meaning of queries and answers relative to the two tolerance
agents. As advocated before, a tolerance agent, when asked about a relation,
answers by using the approximations of the relation wrt its tolerance space. On
the other hand, the agent that asked the query has to understand the answer
provided by the other agent wrt to its own tolerance space. The dialog between
agents, say TA1 (query agent) and TA2 (answer agent), conforms then to the
following schema:

1. TA1 asks a query Q to TA2

2. TA2 computes the answer approximating it according to its tolerance space
and returns as an answer the approximations QA = 〈QTA+

2
, QTA⊕

2
〉

3. TA1 receives QA as input and approximates it according to its own tolerance
space. The resulting approximations provide the answer to the query, as
understood by TA1.

In order for the schema to work properly, it has to be assumed that the two
agents operate with a common vocabulary when communicating. This does not
imply that the agents need to have the same vocabulary, simply that there is
some overlap.
The definition describing this interaction now follows.
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Definition 7.7. Let TA1, TA2 be tolerance agents and let Q be a query, ex-
pressed in a logic, which is asked by TA1 and answered by TA2. Then the mean-
ing of the query is given by the following approximations:

〈〈QTA+
2
, QTA⊕

2
〉TA+

1
, 〈QTA+

2
, QTA⊕

2
〉TA⊕

1
〉. (3)

The notion of mutual understanding used by communicating agents of this type
is developed in full in [3].

8 Summary

This paper presents a framework for recursively constructing arbitrarily com-
plex knowledge structures which may be compared for similarity, distance and
approximativeness. The techniques used attempt to bridge a gap between quan-
titative representations of data in terms of attribute/value pairs and their use
in qualitative knowledge representations at different levels of abstraction. The
qualitative representations inherit the approximativeness of their component
structures through the use of neighborhoods of objects and upper and lower
approximations induced through their use. Tolerance spaces provide a struc-
tured means of constructing complex representational structures. These ideas
have been exemplified by using the techniques for sensor modeling and signal
to symbol conversions and for representing approximate queries between agents
with heterogenous perceptive capabilities.
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