
Declarative PTIME Queries to Relational Databases

Patrick Doherty Witold Lukaszewicz Andrzej Sza las

March 9, 2001

Abstract

In this paper, we consider the problem of expressing and computing PTIME queries to
relational deductive databases in a purely declarative query language we introduce, called
SHQL (Semi-Horn Query Language). Assuming the relational databases in question are
ordered, we show that all SHQL queries are computable in PTIME and the whole class
of PTIME queries is expressible in SHQL. Although similar results have been proven for
�xpoint languages and extensions to datalog, the claim is that SHQL has the advantage of
being purely declarative, where the negation operator is interpreted as classical negation,
mixed quanti�ers may be used and a query is simply a restricted �rst-order theory not
limited by the rule-based syntactic restrictions associated with logic programs in general.
We describe the PTIME algorithm used to compute queries in SHQL which is based in part
on quanti�er elimination techniques and also consider extending the method to incomplete
relational databases using intuitions related to circumscription techniques.

This article is published in the Journal of Logic and Computation 9(5):737-

758, 1999.

1 Introduction

In this paper, we consider the problem of expressing and computing PTIME queries
to relational deductive databases in a purely declarative query language we introduce,
called SHQL (Semi-Horn Query Language). The language is declarative in the sense
that queries are expressed in classical logic, having a well de�ned semantics which
does not refer to any aspect of the underlying execution mechanism.

Assuming the relational databases in question are ordered, we show that all SHQL
queries are computable in PTIME and the whole class of PTIME queries is expressible
in SHQL. Similar results have been proven for �xpoint languages and extensions to
datalog, but the claim will be that these languages are not purely declarative and
that SHQL provides a more natural means of expressing queries.

Much recent activity in the area of deductive databases has focused on the lan-
guage datalog and its extensions which integrate recursion with negation (see, e.g.
[1]). When adding negation to datalog, this requires de�ning a semantics for negative
facts. There are many choices as to such a semantics and these choices inuence not
only the natural interpretation of the negation symbol in a query, but the expressive-
ness of the language. For example, strati�ed semantics requires syntactic restrictions
on the use of negation in a datalog: program, while well-founded semantics, although

1

not requiring syntactic restrictions, does use a 3-valued semantics to interpret the
meaning of a program. In addition, while well-founded semantics is equivalent to the
�xpoint queries, strati�ed semantics is strictly weaker.

An important aspect of query language design is to achieve a good balance between
the expressiveness of the language and the complexity of evaluating queries in the
language. In addition to expressiveness and e�ciency, the language should be natural
to use. Although it can be argued that extended datalog languages achieve the goals of
expressiveness and e�ciency in theory, one can debate the naturalness of using datalog
as a query language. For instance, the variations in interpretation already discussed
can be quite confusing for a normal user of the query language. The procedural leakage
into the language resulting from the use of alternative non-classical interpretations
of the negation operator and the various syntactic restrictions such choices place
on datalog programs, tends to violate the basic tenets of a good declarative query
language.

On the other hand, SHQL is a purely declarative query language. Use of negation
in a query is interpreted as classical negation, a class of mixed quanti�ers is allowed in
queries, and intentional and extensional predicates may occur anywhere in the query.
SHQL is not rule-based and a query is expressed as a theory consisting of semi-Horn
formulas (de�ned in Section 5.1).

SHQL is used as follows. Given the task of computing a de�nition of an intensional
predicate Q (or asking whether a tuple is an instance of Q) relative to a relational
database B consisting of the relations R1; : : : ; Rn, we �rst provide an implicit def-
inition of Q in terms of a SHQL theory, �(Q), which is essentially a conjunction
of semi-Horn formulas using any of R1; : : : ; Rn, and Q. The theory �(Q) is only
constrained by the fact that it must be semi-Horn. All quanti�ers and logical connec-
tives are interpreted classically. The goal is to compute an explicit de�nition of Q in
PTIME which is interpreted as the result of the query �(Q).

The computation process can be described in two stages. In the �rst stage, we
provide a PTIME (in the size of the input query) compilation process which uses
a quanti�er elimination algorithm called the DLS algorithm [5]. An extension for
�xpoint formulas is called the G-DLS algorithm [6, 7]. The DLS algorithm takes as
input a second-order formula and returns a logically equivalent �rst-order formula,
or terminates with failure, where failure does not mean there is not a reduction, but
simply that the algorithm can not �nd one. The G-DLS algorithm is a generalization
of the DLS algorithm and returns logically equivalent �xpoint formulas for a wider
class of inputs. Both algorithms can be combined into one algorithm which we denote
by DLS� (see [7]). Given the SHQL query, �(Q), we pre�x it with an existential
quanti�er and input the formula 9Q:�(Q) to DLS�. If the query is �rst-order de�nable
than the output will be a logically equivalent �rst-order formula expressing an explicit
de�nition of Q. The output is computed in PTIME and LOGSPACE (in the size of the
database). If the query is not �rst-order de�nable, than the output will be a logically
equivalent �xpoint formula expressing an explicit de�nition of Q. In this case, output
is computed in PTIME. Note that this technique can be used for theories outside
the semi-Horn class, but neither the complexity results nor a successful reduction are
guaranteed.

In the second stage, we use the explicit de�nition of Q (output in the �rst stage)
to compute a suitable relation in the relational database that satis�es Q. Before

2

computing the output relation, we �rst check to see that such a relation exists relative
to the database. Suppose �(Q) is the original query, B the relational database and
�0(Q) the output of DLS� given the input 9Q:�(Q). We say that the query �(Q)
is a coherent query relative to B if B j= �0(Q). Assuming this is the case, we know
that the output relation exists and can now compute the answer. Both checking that
the query is coherent (B j= �0(Q)) and computing the output relation can be done
e�ciently because calculating �xpoint queries and �xpoint satis�ability checking over
�nite domains are both in PTIME (see Immerman [9], Sazonov [14], Vardi [16]).

Note that although the combined problem of �nding out whether an implicit query
�(Q) to a database exists, checking that the query is coherent, and explicitly comput-
ing the answer is in general NP-complete (in the size of the database), as was shown
by Fagin (see Immerman [10]), our method which applies quanti�er elimination tech-
niques to semi-Horn theories makes the problem solvable in polynomial time for this
special case. Most importantly, SHQL is a highly expressive language which covers
all PTIME queries and is at the same time purely declarative. Querying with SHQL
is as natural as querying with classical logic and the compilation step is completely
transparent to the user.

The rest of the paper will be structured as follows. In Section 2 we introduce
the concept using an introductory example. In Section 3, we provide preliminary
de�nitions. In Section 4, we describe Ackermann's Lemma and the Fixpoint Theo-
rem, which provide the formal basis for the DLS� algorithm. In fact, using the full
algorithm is not necessary in order to achieve our goals. Some more direct syntactic
manipulations together with these theorems provably achieve the same reduction re-
sults and are discussed in Section 5.2. In Section 5, we provide a detailed description
of our two stage method and discuss a technique which permits queries with more
than one intensional predicate. In Section 6, we provide a number of examples which
demonstrate the naturalness of SHQL and the proposed querying method. Finally,
in Section 7, we consider an extension of the method to relational databases with
incomplete information. We than conclude with a discussion. Appendix 1 includes a
detailed description of the DLS, G-DLS, and DLS� algorithms.

2 An Introductory Example

As we mentioned in Section 1, in order to retrieve information from a database, we
describe the query in terms of the properties of a desired relation using semi-Horn
formulas. The properties of the relation usually do not give us its explicit de�nition
directly. Moreover, some new facts are deduced in order to calculate the output
relation. Since we propose a new methodology, quite di�erent from the currently
accepted paradigm of selecting information by using SQL-like statements, we �rst
provide an introductory example illustrating the methodology and consider potential
problems which may arise.

Example 1 Assume we are provided with a database of information about SOQT1

Society members. There are two types of society members, the so called distinguished
terminators and the ordinary terminators. A candidate for membership in the society
is a person who is not in the society and is nominated by a distinguished terminator

1SOQT stands for Second Order Quanti�er Termination.

3

or at least two ordinary terminators. In addition, by a rule accepted by the society,
candidates can be considered by a selection committee provided that at least one of
the candidates is nominated by a distinguished terminator. The database contains in-
formation about members of the society and about candidates, stored as the following
extensional relations:

� P (x), containing data about persons (for simplicity represented as x)

� D(x), meaning that a person x is a distinguished terminator

� O(x), meaning that a person x is an ordinary terminator

� N(x; y), meaning that a person y is a candidate nominated by a person x.

We now want to select all candidates to the society and make sure that at least one
candidate is nominated by a distinguished terminator. We thus want to calculate
a (maximal) relation C(x), meaning that x is a candidate, satisfying the following
conditions:

1. 8x(C(x) � P (x)) (any candidate is a person)

2. 8x(C(x) � (:D(x)^:O(x))) (a candidate is not in the society already)

3. 8x(C(x) � (9y(D(y)^N(y; x))_9y9z(O(y)^O(z)^y 6= z^N(y; x)^N(z; x))) (a
candidate must be nominated by a distinguished terminator or at least two
ordinary terminators)

4. 9u9v(D(u)^N(u; v)^C(v)) (there is a candidate nominated by a distinguished
terminator).

The above speci�cation directly reects our rules as formulas of classical logic, i.e. is
purely declarative. Next we try to calculate the output relation C. Unfortunately, we
do not have an explicit de�nition of C in the database. Therefore, we cannot apply any
SQL-like SELECT statement directly as it would require an explicit de�nition in the
WHERE clause (translation of existential quanti�ers would also be problematic here).
We cannot use datalog as there are existential quanti�ers in the scope of universal
quanti�ers. One cannot eliminate these quanti�ers by Skolemization, since this move
introduces function symbols that are not allowed in datalog. Similarly, �xpoint queries
are not directly applicable here either. Another problem which appears is that formula
(4) in the current example implies the following condition:

9u9v(D(u)^N(u; v)):

The problem that arises when such constraints are deduced from queries also has to
be addressed. Sometimes the constraints follow from more advanced deductions and
should somehow be calculated. If we apply the method we propose, our query results
in both the generation of an explicit de�nition of C and the additional constraints
which we call coherence conditions. The generation of both the explicit de�nition and
the coherence condition is computed in time polynomial in the size of the original
query, provided it is formulated as a semi-Horn formula (for the de�nition see Section
5.1). Moreover, checking that the coherence condition is entailed by the database

4

and calculating the output relation speci�ed by a semi-Horn formula is done in time
polynomial in the size of the database. Thus the method we propose is acceptable if
a complexity argument is used as one of the criteria for evaluation of the method. In
the example used, we deal with semi-Horn formulas where the explicit de�nition for
C generated by the technique would be:

C(x) � [P (x)^:D(x)^:O(x)^(9y(D(y)^N(y; x))_9y9z(O(y)^O(z)^y 6= z ^

N(y; x)^N(z; x)))]

and the coherence condition would be:

9u9v(D(u)^N(u; v)^C(v));

where C is substituted by its explicit de�nition (with renaming of x by v).

3 De�nitions

In what follows, by a theory we always mean a �nite set of axioms. Thus theories can
be transformed into formulas (conjunctions of axioms).

De�nition 2 A relational database B, is a �rst order structure

hU; ra1
1
; : : : ; rakk ; c1; : : : ; cli;

where

� U is a �nite set,

� for 1 � i � k, raii is an ai-ary relation on U , i.e. raii � Uai , and

� c1; : : : ; cl 2 U are constants.

By a signature of B we mean a signature containing relation symbols Ra1
1
; : : : ; Rak

k

and constant symbols C1; : : : ; Cl together with equality =.

According to accepted terminology in the literature (introduced in [13]), a de-
ductive database consists of two parts: an extensional and intensional database. The
extensional database is usually equivalent to a traditional relational database (without
views) and the intensional database contains a set of de�nitions of relations that are
not explicitly stored in the database. Accordingly, we have the following de�nition.

De�nition 3 By a deductive database we understand a relational database aug-
mented with an additional set of formulas de�ning fresh relations in terms of a chosen
logic. The relational database is called extensional and the set of formulas is called
an intensional database. We say that a relation (relation symbol) is intensional in a
database if it appears in the intensional database only, otherwise it is called exten-
sional.

5

De�nition 4 We say that a formula � is positive w.r.t. a predicate P i� P appears
under no negation sign in � (in negation normal form2). Dually, we say that � is
negative w.r.t. P i� all occurrences of P have the form :P and :P appears under no
negation sign in �.

De�nition 5 Let LI be the classical �rst-order logic and � be a signature. By the
�xpoint calculus over �, denoted by L�

F
, we understand this to be the logic obtained

from LI by extending it with the least �xpoint operator �P:�(P), where � is positive
w.r.t. P . We de�ne �P:�(P) as :�:P::�(P)3 .

Note that �P (�x):�(P) is the least (w.r.t. implication) formula 	(�x) such that

	(�x) � �(P 	(�x)):

Every formula �(P) which is positive w.r.t. P is monotone and therefore, by the
Knaster & Tarski �xpoint theorem, the �xpoints we consider are well de�ned.

De�nition 6 Let B = hU; ra1
1
; : : : ; rakk ; c1; : : : ; cli be a relational database and let

� be a signature of B.

� By a �rst-order query language for B, denoted by LB
I

we mean the classical
�rst-order logic over signature �.

� By a �xpoint query language for B, denoted by LB
F

we mean the �xpoint calculus
over signature �.

� By an implicit query to B we mean a classical �rst-order formula �(Q) over
signature � augmented with an additional relation symbol Q (representing the
relation to be calculated).

Observe that in the case of an implicit query, say �(Q), it is natural to demand
that Q represents the minimal or maximal relation s satisfying �, provided that
such s exists4. Let us note that maximizing a relation corresponds to minimizing its
complement5. Accordingly, and without loss of generality, we shall focus on minimiz-
ing relations.

De�nition 7 Let B = hU; ra1
1
; : : : ; rakk ; c1; : : : ; cli be a relational data base.

� The semantics of the query language LB
I

is de�ned as in the case of �rst-order
logic, assuming that for 1 � i � k, relation symbols Rai

i are interpreted as
relations raii and for 1 � j � l, constant symbols Cj are interpreted as constants
cj .

� The semantics of the query language LB
F

is de�ned by extending the de�nition
of the semantics of LB

I
, assuming that �Q:�(Q) represents the least (w.r.t. �)

relation s such that B j= Q = �(Q) with Q interpreted as s.

2I.e. in a form where negation can appear only before atoms.
3Observe that we use a notation, where the �xpoint is applied to a negated variable. A more

readable form of this formula can be obtained by replacing P by :P and writing :�P::�(:P)
4The existence of s means that �(Q) is consistent with the database.
5This does not have to hold when a database is allowed to contain incomplete information - see

Section 7.

6

� The semantics of an implicit query �(Q) is de�ned as the least (w.r.t. �)
relation s such that B j= �(Q) with Q interpreted as s, provided that such s

exists. A formula expressing the existence of s is called the coherence condition
for �(Q).

It is often convenient to reference some \columns" of a relation in a database.
We often do this by extending the signature with relation symbols corresponding to
columns. For example, given a relation person � String � Integer, we might want
to refer to the �rst column using the predicate symbol Name where Name(x; john)
means that the name of person x is john. If a column, being represented by, say
C, contains boolean values then we write C(x) to mean C(x;>) and :C(x) to mean
C(x;?). This notation for referencing columns will prove to be useful in Section 7,
where we consider incomplete databases.

4 Ackermann's Lemma and a Fixpoint Theorem

In the introduction, we stated that the DLS� algorithm was a combination of two
separate algorithms, DLS and G-DLS. DLS� works as follows. The input to DLS�

is �rst passed to the DLS algorithm. If the input can be put into what we call a
Ackermann reducible formula (for the de�nition of those formulas see Section 5.1)
than DLS� outputs a logically equivalent �rst-order formula. If the DLS algorithm
terminates with failure, then the input is passed to the G-DLS algorithm. If the input
can be put into what we call a semi-Horn formula then the DLS� algorithm outputs
a �xpoint formula logically equivalent to the input. Of course, certain optimizations
can be made which combine the two algorithms in a more e�cient manner. The basis
for both the DLS and G-DLS algorithms are two theorems which we describe below.
Both provide a means of eliminating quanti�ers which bind predicate variables. These
two theorems provide the formal basis for the compilation step described previously
and called stage one, where an SHQL query is �rst pre�xed with an existential quan-
ti�er which binds the intensional predicate whose explicit de�nition we would like to
generate and compute. The second-order query is than passed to the DLS� algorithm.
For a detailed description of the DLS� algorithm, see appendix 1.

The following lemma was proved by Ackermann in [2] (for an alternative proof see
also [15]).

Lemma 8 Let P be a predicate variable and �(�x; �z), 	(P) be formulas without
second-order quanti�cation. Let � contain no occurrences of P at all. Then the
following equivalences hold:

Let 	(:P) be negative w.r.t. P , then

9P8�x[P (�x)_�(�x; �z)]^	(:P) � 	(:P �(�x; �z)) (1)

Let 	(P) be positive w.r.t. P , then

9P8�x[:P (�x)_�(�x; �z)]^	(P) � 	(P �(�x; �z)); (2)

where in the right-hand formulae the arguments �x of � are to be substituted by the
respective actual arguments of P (renaming the bound variables whenever necessary).

7

The following theorem, extending Lemma 8, is proved in [12].

Theorem 9 Assume that all occurrences of the predicate symbol P in the formula
	 have only variables as arguments. Then the following equivalences hold:

Let �(:P) and 	(:P) be negative w.r.t. P , then

9P8�y[P (�y)_�(:P)]^[(:P)] � 	[:P �:P (�y):�(:P)]; (3)

Let �(P) and 	(P) be positive w.r.t. P , then

9P8�y[:P (�y)_�(P)]^[(P)] � 	[P �P (�y):�(P)]; (4)

where the above substitutions exchange the variables bound by �xpoint operators by
the corresponding actual variables of the substituted predicate.

Formula (2) of Lemma 8 and formula (4) of Theorem 9 are applied in the case
of maximizing relations, while formulas (1) and (3) are applied when minimizing
relations.

Lemma 8 is subsumed by Theorem 9. Moreover, any �xpoint formula of the
form �P:	, where 	 does not contain P , is equivalent to 	. Thus one can, in all
cases, use Theorem 9 and simplify the resulting formulas by applying this equivalence.
This optimization diverges from the conceptual description we have been using when
describing the DLS� algorithm, but it will simplify the detailed description of the
query method described in the next section.

5 The Method

We �rst observe that the problem whether a result of an implicit query �(Q) to a
database B exists reduces to the question whether the second-order formula 9Q�(Q)
is satis�ed in B. By Fagin's theorem the problem is NP -complete in the size of B
(see [10]). In what follows we concentrate on selecting a class of implicit queries for
which the problem is in PTIME.

Conceptually, the SHQL query method consists of four steps:

1. State a query �(Q) to a relational database B in SHQL, where �(Q) is a semi-
Horn formula (for the de�nition of semi-Horn formulas see Section 5.1). Pre�x
the query with an existential quanti�er binding the intensional predicate whose
implicit de�nition in terms of �(Q) we would like to make explicit. The input
to the compilation stage is 9Q:�(Q).

2. Pass the input 9Q:�(Q) to the DLS� algorithm. Assuming the input is semi-
Horn, the algorithm will return either a logically equivalent �rst-order formula
or a �xpoint formula. Call the output �0(Q).

3. Before explicitly computing the answer to the original query �(Q), check to
make sure the query is coherent relative to B. We do this by essentially checking
that �0(Q) is satis�ed by B. If the query is not coherent, the algorithm produces
no result (the user should be informed about the situation and perhaps be
supplied with those database elements/rows that caused the inconsistency).

8

4. If the query is coherent, than compute the de�nition of Q (or check whether a
tuple belongs to Q).

Provided the input is semi-Horn, all steps in the method can be computed in
PTIME. In the following subsections, we will formally de�ne the query language,
describe and justify each of steps 2-4 with appropriate theorems, and conclude with a
representation theorem characterizing the expressiveness and descriptive complexity
of the query language.

5.1 The Semi-Horn Query Language (SHQL)

In previous sections, we discussed SHQL informally, stating that queries to the database
had to be in what we called semi-Horn form. In practice, we can do more. A query
�(Q) can be any formula in a classical �rst-order language. If it is, or can be trans-
formed into semi-Horn form, then the DLS� algorithm is guaranteed to generate an
explicit de�nition of Q which is logically equivalent to 9Q:�(Q). If it is not, the DLS�

algorithm may still terminate successfully and steps 2-4 above would still apply. In
this section, we will make these intuitions precise.

We shall consider two types of formulas of the form

�1(Q)^�2(Q); (5)

where �2(Q) is any �rst-order formula negative w.r.t. Q. We call these two types
Ackermann-reducible formulas and semi-Horn formulas. They are de�ned as follows:

� Ackermann-reducible formulas (w.r.t. Q) are of the form (5) for which �1(Q)
is a conjunction of formulas of the form 8�x(Q(�t)_), where 	 is an arbitrary
Q-free �rst-order formula

� semi-Horn formulas (w.r.t. Q) are of the form (5) for which �1(Q) is a conjunc-
tion of formulas of the form 8�x(Q(�t)_	(:Q)), and 	 is an arbitrary �rst-order
formula negative w.r.t. Q.

The negative dual forms are obtained by substituting Q by :Q in the de�nitions,
making 	 an arbitrary �rst-order formula positive w.r.t. Q, and making �2(Q) neg-
ative w.r.t. Q. In this case we are able to �nd the greatest solution for :Q, that is,
a minimal solution for Q.

Ackermann-reducible formulas are also semi-Horn formulas, since in semi-Horn
formulas no occurrence of :Q in 	 is required. However, it is important to isolate this
class of formulas because these de�ne �rst-order expressible queries. If the initial query
�(Q) can be transformed into this form, then in the compilation step where 9Q:�(Q)
is given as input to the DLS� algorithm, the call to DLS will return a logically
equivalent �rst-order formula. In fact, the DLS� algorithm, when successful, basically
transforms �(Q) into one of the above forms (or their negative duals). Consequently,
it is important to note that the method can be made more general by generating
solutions for arbitrary formulas �(Q) which although not semi-Horn, are reducible by
the DLS� algorithm.

Note that any conjunction of semi-Horn formulas w.r.t. Q can be transformed
into the following form:

8�x[�(�x; zi; Q) � Q(�x)]^	(:Q); (6)

9

where 	(:Q) is an arbitrary �rst-order formula negative w.r.t. Q and �(�x; zi; Q) is
positive w.r.t. Q, or its dual,

8�x[�(�x; zi;:Q)) � :Q(�x)]^	(Q); (7)

where 	(Q) is an arbitrary �rst-order formula positive w.r.t. Q and �(�x; zi;:Q) is
negative w.r.t. Q. To see this, it su�ces to use the following equivalence that allows
us to combine two semi-Horn formulas into a single semi-Horn formula:

[8�x(�(�x; zi; Q) � Q(�x))^	(:Q)]^[8�x(�0(�x; z0i; Q) � Q(�x))^	0(:Q)] (8)

� [8�x((�(�x; zi; Q)_�0(�x; z0i; Q)) � Q(�x))^((:Q)^	0(:Q))]:

A similar equivalence applies for the dual forms. Moreover, if we have many inten-
sional predicates, we can easily encode these by a single predicate which has a vector of
additional boolean variables distinguishing between various relations. For instance,
if we have two predicates, say P (�x) and Q(�y), then we can use a single predicate
R(z; �x; �y) such that R(>; �x; �y) means P (�x) and R(?; �x; �y) means Q(�y). The resulting
formulas are still semi-Horn formulas. Thus, we can safely assume that we always
deal with a single intensional predicate in our queries.

It is worth emphasizing here that semi-Horn formulas are strictly more expressive
than Horn clauses. For instance, semi-Horn formulas express the complement of a
relation which is not expressible by Horn clauses (see e.g. [3]). The semi-Horn (w.r.t.
Q) formula

8�x(Q(�x)_R(�x))^8�x(:Q(�x)_:R(�x))

expresses the complement of a relation, R. In addition, existential quanti�ers in the
scope of universal quanti�ers are not, in general, reducible to Horn clauses, but are
allowed in semi-Horn formulas.

Let us now introduce the de�nition of declarative queries and declarative query
language. As we shall see in Theorem 13, all the queries of the language are com-
putable in polynomial time. Moreover, the whole class of PTIME queries is covered
by the language.

De�nition 10 By a declarative query we mean any implicit query expressed as a
semi-Horn formula. By a declarative query language SHQL we mean a �rst-order
query language augmented with declarative queries, assuming that the underlying
signature contains a relation that, on the semantic side, linearly orders domains of
databases.

5.2 The Compilation, Coherence, and Computing Steps

It is easily observed that Ackermann-reducible formulas are reducible to classical
�rst-order formulas by applying the DLS algorithm which is based on Lemma 8 and
that semi-Horn formulas are reducible to �xpoint formulas by applying the G-DLS
algorithm which is based on Theorem 9 (see e.g. [5, 6]).

We also observe two additional facts concerning Lemma 8 and Theorem 9. Namely,
assume we are given a formula 9Q�(Q). By the proofs of Lemma 8 and Theorem
9, where reduction is successful (which is always the case for semi-Horn queries) one
gets:

10

� a �rst-order (or �xpoint) de�nition of Q (this de�nition is used in suitable
substitutions in the resulting formulas), and

� a �rst-order (or �xpoint) formula equivalent to the input formula.

The �rst observation justi�es the generation of a �xpoint or �rst-order formula
that explicitly de�nes the query. The second observation justi�es the generation of
the coherence condition for a query expressed as a �xpoint or �rst-order formula.
Note that the explicit de�nition and coherence condition are either both �rst-order
or both �xpoint formulas. The coherence condition allows us to check whether the
output relation exists. If we know that the output relation exists, we can calculate
the answer using the formula obtained via the �rst observation. Both the coherence
check and calculation of the output relation can be done in polynomial-time by using
an algorithm for calculating �xpoint queries and for checking �xpoint satis�ability
over �nite domains which is described in [9]. The process of calculating the output
relation and checking coherence can be optimized by noting that more or less the
same �xpoint formula appears in the explicit de�nition and the coherence condition.

The following theorem easily follows from a result in [6].

Theorem 11
For any formula �(Q) of the form (6):

� the explicit de�nition of Q is given by Q(�x) � �Q(�x):�(�x; zi; Q), and

� the coherence condition for �(Q) is 	(Q �Q(�x):�(�x; zi; Q)).

For any formula �(Q) of the form (7):

� the explicit de�nition of Q is given by Q(�x) � �Q(�x)::�(�x; zi;:Q), and

� the coherence condition for �(Q) is 	(Q �Q(�x)::�(�x; zi;:Q)).

As a consequence we have the following theorem.

Theorem 12
For any formula �(Q) of the form (6), where � does not contain Q:

� the explicit de�nition of Q is given by Q(�x) � �(�x; zi), and

� the coherence condition for �(Q) is 	(Q �(�x; zi)).

For any formula �(Q) of the form (7), where � does not contain Q:

� the explicit de�nition of Q is given by Q(�x) � :�(�x; zi), and

� the coherence condition for �(Q) is 	(Q :�(�x; zi)).

11

5.3 A Representation Theorem

For the declarative query language de�ned in De�nition 10 we have the following
theorem.

Theorem 13 Let B be a relational database.

� Any implicit query �(Q) to B, where �(Q) is a semi Horn formula, is com-
putable in polynomial time in the size of the database. Consequently, any
query expressed in the declarative query language de�ned in De�nition 10 is in
PTIME. If �(Q) is an Ackermann reducible formula, then Q is computable in
logarithmic space.

� Any PTIME query can be expressed in the declarative query language de�ned
in De�nition 10 provided that the domain of B is linearly ordered.

Proof The �rst part of the theorem can be proved by noticing that semi-Horn
formulas reduce to �xpoint formulas and using the well-known fact that �xpoint
queries are computable in polynomial time (see e.g. [3, 9]). If �(Q) is an Ackermann
reducible formula, then both Q and the coherence condition are expressed in classical
�rst-order logic and therefore are computable in logarithmic space.

To prove the second part of the theorem we use the following known facts:

� if the domain of the database is linearly ordered then �xpoint queries express
all PTIME queries (see [3, 9, 14, 16])

� under the above assumption all �xpoint queries can be expressed by taking a
single �xpoint of a �rst-order formula with positive occurrences of the calculated
predicate (followed by classical �rst-order operations) (see [3, 8, 9]).

According to the above, it is su�cient to prove that a single �xpoint can be de�ned
by an implicit query. Assume that the �xpoint to be de�ned is �P (�x):	(P), where
	 is positive w.r.t. P . By theorem 11, the implicit query that de�nes this �xpoint is
then simply the formula 8�x((P) � P (�x)).

It is also worth emphasizing here that in the case when a query is expressed as a
sem-Horn theory, then both the size of the resulting explicit de�nition and the size of
the coherence condition are polynomial in the size of the input query. In fact, from
Theorems 11 and 12, it easily follows that the size of the explicit de�nition is linear
in the size of the query (usually less than the size of the query) and the size of the
coherence condition is less than the square of the size of the query.

6 Examples

In this section, we provide a number of examples which demonstrate both the expres-
siveness of semi-Horn queries and how the formal results may be applied practically.

Example 14 This example demonstrates how the intensional predicate Q and the
extensional predicates R, S, and E may be used anywhere in the query. In particular,
in comparison with rule-based queries such as logic programming or datalog, both

12

intensional and extensional predicates may occur in both the head and body of any
implication.

Assume we have a database B, containing information about whether persons are
rich, smart, or experienced, denoted by the unary extensional predicates, R, S, and
E, respectively. Suppose we are interested in selecting all rich persons and perhaps
some others and we only want to consider those who are smart or experienced. Let Q
denote the unary intensional predicate that describes the required relation. The �rst
condition is then expressed by the formula

8x(R(x) � Q(x));

while the second condition is expressed by the formula

8x(Q(x) � (S(x)_E(x)):

The implicit query �(Q) is then de�ned as the conjunction of the above formulas,
where we are interested in obtaining the greatest relation Q satisfying

8x(Q(x) � (S(x)_E(x)))^8x(R(x) � Q(x)):

After removing the implication sign, we have the equivalent,

8x(:Q(x)_(S(x)_E(x)))^8x(:R(x)_Q(x)):

In order to maximize Q we will minimize its negation by using the dual form (7).
�(Q) can be rewritten as �(:Q),

8x(:(S(x)_E(x)) � :Q(x))^8x(:R(x)_Q(x))

which is easily observed to be of the form (7), where �(�x) is :(S(x)_E(x)) and 	(Q)
is 8x(:R(x)_Q(x)).

According to Theorem 12 the following formula of the form 	(Q :�(�x)) is the
suitable coherence condition:

8x(:R(x)_(S(x)_E(x))):

Observe that our query forces this condition (by transitivity of implication), Thus, for
instance, if a database contains an element e such that R(e) and :S(e) and :E(e),
then the query is inconsistent with the database.

Now from Theorem 12 we obtain the explicit de�nition of :Q, which is :Q(x) �
:(S(x)_E(x)). Consequently, the explicit de�nition for Q is:

Q(x) � S(x)_E(x):

Example 15 Let E;R; S and Q be as in Example 14. Suppose we are now again
interested in selecting rich persons and perhaps some others, but rule out those which
are smart. In addition we want to make sure that at least one experienced person is
selected. The implicit query �0(Q) can be expressed by formula

8x(R(x) � Q(x))^8z(S(z) � :Q(z))^9y(E(y)^Q(y)):

13

The query is already in the form (7). The application of Theorem 12 shows that the
coherence condition is

8x(R(x) � :S(x))^9y(E(y)^:S(y))

and the explicit de�nition of Q(x) is

Q(z) � :S(z):

Example 16 Consider the database containing a binary relation R. The following
implicit query �(S) de�nes S as the transitive closure of R:

8x8y(R(x; y) � S(x; y))^8x8y8z((S(x; y)^S(y; z)) � S(x; z)):

The above query is equivalent to the following formula:

9S[8x8z(S(x; z)_(:R(x; z)^8y(:S(x; y)_:S(y; z)))];

which is generated by the execution of the G-DLS algorithm. It is easily observed
that this formula has the form (6), where �(x; z; S) is
:(:R(x; z)^8y(:S(x; y)_:S(y; z)), and 	(:S) is >. Thus, according to Theorem
11, the coherence condition for �(S) is 	(:S �S(x; z):�(x; z)). Since 	 is > and
has no negative occurrences of S, its coherence condition is >, which means that the
required relation always exists. Moreover, we have the following explicit de�nition for
S(x; z):

S(x; z) � �S(x; z):[R(x; z)_9y(S(x; y)^S(y; z)]:

7 Databases with Incomplete Information

So far, we have assumed that databases only contain complete information. In many
AI applications, one is often confronted with the problem of using incomplete in-
formation. This could be due to the fact that we simply lack information about the
properties and relations of certain objects, or that we purposely represent information
incompletely for reasons of e�ciency. In this section, we show how one can extend the
current querying method when applied to incomplete relational databases. In order
to simplify matters, we will deal with what is arguably the simplest and most naive
model of incomplete information. We will only be concerned with providing a proof of
concept and deal with a particular class of queries, leaving precise characterizations
and variations of the approach for future research.

For simplicity, we will assume that there is a special domain value �, denoting the
unde�ned value. For example, if the database contains two pairs,

f(mary; smith); (john; �)g;

then the �rst pair represents mary smith and the second pair represents a john whose
family name is unknown. We will also assume that if a relation contains unde�ned
values then it cannot be directly represented in a query. Instead, we introduce new
relation symbols corresponding to its \columns". We also assume that if a \column"
can contain unde�ned �elds, then queries are either positive or negative w.r.t. the

14

relation symbol corresponding to the column. This is a technical assumption that
allows us to proceed without any further complications, but in certain cases can be
relaxed.

Of course, since we are now dealing with incomplete information, we have to make
a choice regarding the semantics of partially de�ned predicates. We will base this
choice on intuitions from AI, where second-order circumscription is used to reason
about incomplete information. More precisely, we will capitalize on the partitioning
of predicates in a circumscription policy into those that are minimized, �xed, or
varied. When minimizing an answer (or maximizing its negation) we will allow some
partially de�ned predicates to vary and leave some others �xed. As in the case of
circumscription, the choice of varied predicates is not immediate. A suitable heuristics
might be that the varied predicates are those that are in some way related to those
being minimized.

Let us assume that we are given an implicit query �(Q). In order to calculate
a coherence condition and an explicit de�nition of Q we proceed as before. What
will di�er in this case is the algorithm used for calculating the value of the coherence
condition and the relation in question. The di�culties occur when we have to calculate
a value of a relation that is unde�ned. In such a case, we will use the following policy:

� If a relation symbol occurs positively in the query and the relation is allowed to
vary then we assume > as its value.

� If a relation symbol occurs negatively in the query and the relation is allowed
to vary then we assume ? as its value.

� if a relation is unde�ned for some object and the relation is �xed then we assume
that the whole query is unde�ned for the object.

This solution precisely reects the circumscription principle, where the possibly unde-
�ned predicates are allowed to vary in order to minimize a predicate. The justi�cation
and correctness of this policy easily follows from the fact that both the explicit def-
inition and the coherence condition are monotone w.r.t. predicates occurring only
positively and anti-monotone w.r.t. predicates occurring only negatively.

Example 17 Assume we have a database with one binary relation r � Name �
f>;?g � f>;?; �g, where Name is a set of names of some objects. The second
column indicates whether an object is a bird and the third column indicates whether
it ies. For example, the contents of the database might be the following:

Name Bird Flies

swallow > >
Tweety > �
Clyde � �
Leo � ?

We now assume that predicate symbols B and F correspond to the last two
columns of the relation. Consider the following query �(Ab):

8x((B(x)^:Ab(x)) � F (x));

15

where Ab which stands for abnormal is the intensional predicate whose minimal def-
inition we would like to compute. According to Theorem 12, the coherence condi-
tion for this query would be > and the explicit de�nition for Ab would be Ab(x) �
(B(x)^:F (x)), using the same method as we used for complete databases. Note that
the relation F occurs positively in the query �(Ab). The calculated value of Ab would
be ; independently of the choice of predicates we choose to vary.

Now consider the query �0(N):

8x((B(x)^N(x)) � F (x));

where N which stands for normal is the intensional predicate whose maximal de�nition
we would like to compute. The coherence condition for this query would again be
> and the explicit de�nition for N would be N(x) � (:B(x)_F (x)). The following
table then summarizes the possible results of calculating N .

B F Calculated value of N

varied varied f(swallow;>;>); (Tweety;>; �); (Clyde; �; �); (Leo; �;?)g
varied �xed f(swallow;>;>); (Leo; �;?)g
�xed varied f(swallow;>;>); (Tweety;>; �)g
�xed �xed f(swallow;>;>)g

It is important to note that since only the fourth step of the method for querying
databases with complete information described in Section 5 di�ers from the querying
method for querying databases with incomplete information described here, that the
complexity results for steps one to three still hold. In addition, it is easily observed
that step four for the new method does not add any new complexity to the querying
method, so the complexity results apply to both querying databases with complete
and incomplete information.

8 Conclusions

We have introduced a new query language SHQL and query method which we claim
to be highly expressive, e�cient, and natural to use. A PTIME querying method
has been provided which is based on the use of quanti�er elimination techniques.
In addition, we have shown that the querying method may be used for databases
with both complete and incomplete information. We believe the declarative char-
acter of the query language has much to o�er in comparison to logic programming
approaches, but at the same time is limited to only the class of PTIME queries. We
are currently investigating extensions to the language and their characterization. As
stated previously, because the approach is based on an existing algorithm (DLS�),
there are already cases where queries outside the class we have investigated can be
compiled and computed. We would also like to apply these techniques to commercial
relational databases and are currently working on compilation methods from SHQL
into standard SQL and extended SQL.

16

Acknowledgements

Patrick Doherty is supported in part by the Swedish Research Council for Engineering
Sciences (TFR) and the Wallenberg Foundation. Witold Lukaszewicz and Andrzej
Sza las are supported in part by the State Committee for Scienti�c Research (Poland),
KBN grant 8T11C04010.

Appendix

8.1 The DLS and G-DLS Algorithm

In the Appendix we describe the DLS algorithm6. We also indicate all adjustments
necessary to obtain its �xpoint generalization G-DLS. The adjustments will be in-
dicated by using the typewriter font. We also assume that in case of G-DLS we
apply the Fixpoint Theorem instead of Ackermann's Lemma whenever the latter is
not applicable. The combination of the DLS and G-DLS algorithms is referred to as
DLS� in the paper.

The algorithm takes a formula of the form 9�A, where A is a �rst-order formula,
as an input and returns its �rst-order or fixpoint equivalent or reports failure7. Of
course, the algorithm can also be used for formulas of the form 8�:A, since the latter
formula is equivalent to :9�:A. Thus, by repeating the algorithm one can deal with
formulas containing arbitrarily many second-order quanti�ers.

The algorithm consists of four basic phases: (1) preprocessing; (2) preparation for
Ackermann's Lemma; (3) application of Ackermann's Lemma; and (4) simpli�cation.
These phases are described below. It is always assumed that whenever the goal speci�c
for a current phase is reached, then the remaining steps of the phase are skipped.

8.2 Preprocessing

The purpose of this phase is to transform the formula 9�:A into a form that separates
positive and negative occurrences of the quanti�ed predicate variable �. The form
we want to obtain is

9�x9�[(A1(�)^B1(�))_ � � � _(An(�)^Bn(�))]; (9)

where, for each 1 � i � n, Ai(�) is positive w.r.t. � and Bi(�) is negative
w.r.t. �.8 It should be emphasized that not every formula is reducible into this
form. If the form (9) cannot be obtained we cannot proceed with the DLS

algorithm, but use G-DLS instead.

To achieve the goal of this phase, apply the steps below in the following order.

6An online implementation of the DLS algorithm may
be found at the site: http://www.ida.liu.se/labs/kplab/projects/dls/. The online version of
the DLS� algorithm is currently under construction and will eventually be found at the same site.

7The failure of the algorithm does not mean that the second-order formula at hand cannot be
reduced to its �rst-order or fixpoint equivalent. The problem we are dealing with is not even
partially decidable, for �rst-order and fixpoint de�nability of the formulas we consider is not an
arithmetical notion.

8To increase the strength of the algorithm, it is essential to move as many existentially quanti�ed
variables as possible into the pre�x of (9).

17

Input:

Output: 9x9�[(A1(�) ^ B1(�)) _ : : : _ (An(�) ^ Bn(�))]

9x(9�(A1(�) ^ B1(�)) _ : : : _ 9�(An(�) ^ Bn(�)))

To Phase 2

9�:A

To Phase 2

Positive Negative

Phase 1

May Fail!

Figure 1: Phase 1: Preprocessing the Input.

1. Eliminate the connectives � and � using the usual de�nitions. Remove re-
dundant quanti�ers. Rename individual variables until all quanti�ed variables
are di�erent and no variable occurs both bound and free. Using the usual
equivalences, move the negation connective to the right until all its occurrences
immediately proceed atomic formulas.

2. Move universal quanti�ers to the right and existential quanti�ers to the left
applying as long as possible the following equivalences (below Q 2 f8; 9g; � 2
f_;^g and B contains no occurrences of variables �x):

� Q�x(A(�x) �B) � (Q�xA(�x)) �B

� Q�x(B �A(�x)) � B �Q�xA(�x).

3. Move to the right the existential quanti�ers that are in the scope of universal
quanti�ers using the equivalences of step 2.

18

4. Repeat (2) and (3) as long as no new existentially quanti�ed variable can be
moved into the pre�x.

5. In the matrix of the formula obtained so far, distribute all top-level conjunc-
tions over the disjunctions, containing both positive and negative occurrences
of �, that occur among their conjuncts. For this purpose, apply the following
equivalences:

� A^(B_C) � (A^B)_(A^C)

� (A_B)^C � (A^C)_(B^C)

only if B_C (A_B) have both positive and negative occurrences of �

If the resulting formula is not in the form (9), then report the failure of the
algorithm. Otherwise replace (9) by its equivalent given by

9�x(9�(A1(�)^B1(�))_ � � � _9�:(An(�)^Bn(�))): (10)

In the case of the G-DLS algorithm we do not require the form (9).

Consequently, the above replacement is always done.

For each disjunct 9�(Ai(�)^Bi(�)) of (10) try to �nd its �rst-order or fixpoint

equivalent by apply the next phases to the formula 9�(Ai(�)^Bi(�)). If all the
equivalents are obtained, return their disjunction, preceded by the pre�x 9�x, as
the output of the algorithm.

The following example illustrates the described phase.

Example 18 Consider the formula

9�[8x9y(P (y)_9t(�(t)_P (x)_R(x; t)))^9z�(z)^9u:�(u)]:

The following lines show the subsequent transformations.

9�[8x9y(P (y)_9t(�(t)_P (x)_R(x; t)))^9z�(z)^9u:�(u)] � (by 2)
9zu9�[8x9y(P (y)_9t(�(t)_P (x)_R(x; t)))^�(z)^:�(u)] � (by 3)
9zu9�[8x(9yP (y)_9t(�(t)_P (x)_R(x; t)))^�(z)^:�(u)] � (by 2)
9zu9�[(9yP (y)_8x9t(�(t)_P (x)_R(x; t)))^�(z)^:�(u)] � (by 2)
9zuy9�[(P (y)_8x9t(�(t)_P (x)_R(x; t)))^�(z)^:�(u)] � (by 5)
9zuy9�[(P (y)^�(z)^:�(u))_(8x9t(�(t)_P (x)_R(x; t))^
�(z)^:�(u))]:

8.3 Preparation for Ackermann's Lemma

The goal of this phase is to transform a formula of the form 9�(A(�)^B(�)), where
A(�) (resp. B(�)) is positive (resp. negative) w.r.t. �, into one of the forms (1) or (2)
given in Lemma 8 or into one of the forms (3) or (4) given in Theorem 9.
All the forms can always be obtained. However, Skolemization is sometimes necessary
and unskolemization, which is to be performed in the next phase, may fail. Accord-
ingly, the algorithm performs both transformations. Due to the symmetry of Acker-
mann's Lemma, the steps stated below describe only one of those transformations,
namely that leading to the form (1) or to the form (3). Note that the steps

stated below lead either to the form (1) or, otherwise, to the form (3).

19

pref [(�(�t11_ : : :_�(�t1n1)_C1)^ : : :^(�(�tk1)_ : : :_�(�tknk)_Ck)^D]

ni > 1

9�xi(8�y(�(�y)_�xi 6= �y_Ci)^(�xi = �ti1_ : : :_�xi = �tini_Ci)

Possible Skolemization

9�(A(�)^B(�))

8�y(�(�y)_�y 6= �ti1_Ci)

To Phase 3

Using 1st form of

Ackerman's Lemma

Phase 2

Input:

Output:

n1 = 1

B(�)^D^ : : :

9 �f9�8�y[�(�y)_pref 0((�x1 6= �y_C1)^ : : :^(�xk 6= �y_Ck))^pref 0E]

9 �f9�pref 0[8�y(�(�y)_�x1 6= �y_C1)^ : : :^8�y(�(�y)_�xk 6= �y_Ck)^E]

Figure 2: Phase 2: Preparation for Ackermann's Lemma

1. Transform A(�) into the form

pref [(�(�t11)_ � � � _�(�t1n1)_C1)^ � � � ^(�(�tk1)_ � � � _�(�tknk)_Ck)^D];

where pref is a pre�x of �rst-order quanti�ers and � does not occur in
C1; : : : ; Ck; D. This step is always possible by applying the usual technique of
obtaining the conjunctive normal form.

2. Transform each conjunct in Step 1 of form (�(�ti1)_ � � � _�(�tini)_Ci), where
ni > 1, into its equivalent

9�xi(8�y(�(�y)_�xi 6= �y_Ci)^(�xi = �ti1_ � � � _�xi = �tini_Ci))

and move all existential quanti�ers into the pre�x pref in Step 1. In addition,
move each of the second conjuncts, (�xi = �ti1_ � � � _�xi = �tini_Ci), into D in Step
1, renaming it D0.

20

3. Transform each conjunct in Step 1 of form (�(�ti1)_Ci) into its equivalent
8�y(�(�y)_�y 6= �ti1_Ci)

4. Remove all existential quanti�ers from the pre�x pref using the equivalence of
Skolem given by

8�x:9y:A(�x; y; : : :) � 9f:8�x:A(�x; y f(�x); : : :); (11)

where f is a new function variable. After this transformation the input formula
takes the form

9 �f9�pref 0[8�y(�(�y)_�x1 6= �y_C1)^ � � � ^8�y(�(�y)_�xk 6= �y_Ck)^E]; (12)

where �f is the tuple of the introduced Skolem functions, pref 0 only contains
universal quanti�ers, and E is D0^B(�).

5. Transform (12) into its equivalent given by

9 �f9�8�y[�(�y)_pref 0((�x1 6= �y_C1)^ � � � ^(�xk 6= �y_Ck))^pref 0E: (13)

Example 19 (continued) There are two formulas to be considered in this phase,
namely
9�(P (y)^�(z)^:�(u)) and 9�8x9t(�(t)_P (x))^�(z)^:�(u). We apply phase 2 to
the former of the above formulas.

9�(P (y)^�(z)^:�(u)) � (by 2)
9�(P (y)^8r(�(r)_z 6= r)^:�(u))

Applying phase 2 to the second formula proceeds as follows.

9�8x9t(�(t)_P (x)_R(x; t))^�(z)^:�(u) � (by 3)
9�8x9t8r(�(r)_r 6= t_P (x)_R(x; t))^8r(�(r)_z 6= r)^:�(u) � (by 4)
9f9�8x8r(�(r)_r 6= f(x)_P (x)_R(x; f(x)))
^8r(�(r)_z 6= r)^:�(u) � (by 5)
9f9�8r[�(r)_(8x(r 6= f(x)_P (x)_R(x; f(x)))^z 6= r)]^:�(u):

8.4 Application of Ackermann's Lemma

The goal of this phase is to eliminate the second-order quanti�cation over �, applying
Ackermann's Lemma, and then to unskolemize the introduced function variables. The
phase consists of the following two steps.

1. Applying Ackermann's Lemma to the formula (13). The resulting formula is of
the form

9 �f [pref 0E(:� pref 0((�x1 6= �y_C1)^ � � � ^(�xk 6= �y_Ck)))]

In the case of G-DLS the resulting formula is of the form

9 �f [pref 0E(:� �:�(�y):pref 0((�x1 6= �y_C1)^ � � � ^(�xk 6= �y_Ck)))]

21

9 �f9�8�y[�(�y)_pref 0((�x1 6= �y_C1)^ : : :^(�xk 6= �y_Ck))^pref 0E]

9 �f [pref 0E(:� pref 0((�x1 6= �y_C1)^ : : :^(�xk 6= �y_Ck)))]

8�x:9y:A(�x; y; : : :) � 9f:8�x:A(�x; y f(�x); : : :)

pref 00E(:� pref 0((�x1 6= �y_C1)^ : : :^(�xk 6= �y_Ck)))]

Input:

Phase 3.1

Phase 3.2

Output:

Apply

Unskolemize
May Fail!

To Phase 4

Figure 3: Phase 3: Application of Ackermann's Lemma

2. Try to remove all existential quanti�ers over function variables using the equiv-
alence (11). If this is impossible, the algorithm fails for the �rst form of Ack-
ermann's Lemma. Using the second form returned from 8.3, try to remove the
existential quanti�ers over function variables. If this is successful, go to the next
step. If not, the algorithm fails.

Example 20 (continued) We apply phase 3 for the pair of formulas obtained as
the result of phase 2.

9�(P (y)^8r(�(r)_z 6= r)^:�(u)) � (by 1)
P (y)^z 6= u:

22

9f9�8r[�(r)_(8x(r 6= f(x)_P (x)_R(x; f(x)))^z 6= r)]^:�(u) � (by 1)
9f8x(u 6= f(x)_P (x)_R(x; f(x)))^z 6= u � (by 2)
8x9t(u 6= t_P (x)_R(x; t))^z 6= u:

8.5 Simpli�cation

Input: pref 00E(:� pref 0((�x1 6= �y_C1)^ : : :^(�xk 6= �y_Ck)))]

Output: Simpli�ed Input Formula.

A(�t1)^ : : :^A(�tn)

8�x(A(�t �x)_�x 6= �t)

8�x(�x 6= �ti^ : : :^�x 6= �tn)_A(�t �x))

A(�t)

Figure 4: Phase 4: Simpli�cation

The formula obtained as the result of the previous phase can often be substantially
simpli�ed. The simpli�cation phase consists of one step. In the formula obtained after
successfully performing phase 3,

1. Replace each subformula of the form 8�x(A(�t �x)_�x 6= �t) by A(�t), and

2. Replace each subformula of the form 8�x(�x 6= �t1^ � � � ^�x 6= �tn)_A(�t1 �x)) by
A(�t1)^ � � � ^A(�tn).

23

Example 21 (continued) Since the simpli�cation phase is inapplicable to the for-
mulas obtained in phase 3, the �rst-order equivalent of the input formula we �nally
obtain is

9z9u9y[(P (y)^z 6= u)_(8x9t(u 6= t_P (x)_R(x; t))^z 6= u)]:

References

[1] Abiteboul, S., Hull, R., Vianu, V. (1995) Foundations of Databases, Addison-
Wesley Pub. Co.

[2] Ackermann, W. (1935) Untersuchungen �uber das Eliminationsproblem der math-
ematischen Logik, Mathematische Annalen, 110, 390-413.

[3] Chandra, A. K. (1988) Theory of Database Queries, Proc. 7th ACM Symp. on
Principles of Database Systems, 1-9.

[4] Doherty, P., Lukaszewicz, W., Sza las, A. (1995) Computing Circumscription Re-
visited: Preliminary Report, Proc. 14th IJCAI, 1995, Montreal, Canada.

[5] Doherty, P., Lukaszewicz, W., Sza las, A. (1997) Computing Circumscription Re-
visited: A Reduction Algorithm, Journal of Automated Reasoning, 18: 297-336.

[6] Doherty, P., Lukaszewicz, W., Sza las, A. (1996) A Reduction Result for Circum-
scribed Semi-Horn Formulas, Fundamenta Informaticae, 28(3,4), 261-272.

[7] Doherty, P., Lukaszewicz, W., Sza las, A. (1996) General Domain Circumscrip-
tion and its First-Order Reduction, In: D. Gabbay and H.J. Ohlbach (eds.) Pro-
ceedings of FAPR'96 Conference, LNAI 1085, 93-109, Springer-Verlag. Extended
version to appear in Fundamenta Informaticae (1998).

[8] Gurevich, Y., Shelah, S. (1986) Fixpoint Extensions of First-Order Logic, Annals
of Pure and Applied Logic, 32, North Holland, 265-280.

[9] Immerman, N. (1986) Relational Queries Computable in Polynomial Time, In-
formation and Control, 68, 86-104.

[10] Immerman, N. (1989) Descriptive and Computational Complexity, Proceedings
of Symposia in Applied Mathematics, 38, 75-91.

[11] Kanellakis, P.C. (1990) Elements of Relational Database Theory. In: J. Van
Leeuwen (ed.) Handbook of Theoretical Computer Science, vol. B, Elsevier, 1073-
1156.

[12] Nonnengart, A., Sza las, A. (1995) A Fixpoint Approach to Second-Order Quanti-
�er Elimination with Applications to Correspondence Theory, to appear in Logic
at Work. Essays Dedicated to the Memory of Helena Rasiowa, E. Or lowska (ed.),
Physica Verlag, 1998. Also in: Report of Max-Planck-Institut f�ur Informatik,
MPI-I-95-2-007, Saarbr�ucken, Germany.

24

[13] Reiter, R. (1978) On Closed World Databases, in: Logic and Databases, H. Gal-
laire and J. Minker (eds.), Plenum Press, New York, 55-76.

[14] Sazonov, V. (1980) A Logical Approach to the Problem of "P=NP", LNCS 88,
Springer-Verlag, 562-575.

[15] Sza las, A. (1993) On the Correspondence Between Modal and Classical Logic: an
Automated Approach, Journal of Logic and Computation, 3, 605-620.

[16] Vardi, M. Y. (1982) The Complexity of Relational Query Languages, 14th ACM
Symp. on Theory of Computing, 137-146.

25

