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Abstract 1 Introduction

Any autonomous system embedded in a dynamic amdthe past several years, attempts have been made to
changing environment must be able to create qualitatiemaden the traditional definition of data fusion as state
knowledge and object structures representing aspectestimation via aggregation of multiple sensor streams.
its environment on the fly from raw or preprocessed sefhere is a perceived need to broaden the definition to in-
sor data in order to reason qualitatively about the englude the many additional processes used in all aspects
ronment and to supply such state information to othef data and information fusion identified in large scale
nodes in the distributed network in which it is embediistributed systems. In this case, the nodes in such sys-
ded. These structures must be managed and madetams may not only include sensors in the traditional sense,
cessible to deliberative and reactive functionalities whobat also complex systems where data and information are
successful operation is dependent on being situationdliged at many different levels of abstraction to meet the
aware of the changes in both the robotic agent’s embelilrzerse situation assessment needs associated with differ-
ding and internal environments. DyKnow is a knowledgent applications.

processing middleware framework which provides a setOne of the more successful proposals for providing
of functionalities for contextually creating, storing, aca model for this broadened notion of data fusion is the
cessing and processing such structures. The frameworljs. Joint Directors of Laboratories (JDL) data fusion
implemented and has been deployed as part of a delibabdel [22] and its revisions [21, 3, 13]. In [21] for exam-
ative/reactive architecture for an autonomous unmannsid, data fusion is defined as “the process of combining
aerial vehicle. The architecture itself is distributed anthta or information to estimate or predict entity states”
uses real-time CORBA as a communications infrastrusnd the data fusion problem “becomes that of achieving
ture. We describe the system and show how it can be ugsedonsistent, comprehensive estimate and prediction of
to create more abstract entity and state representations@fe relevant portion of the world state”.

the world which can then be used for situation awarenessthe gap between models, such as the JDL data fu-

by an unmanned aerial vehicle in achieving mission goadfen model, which describe a set of functions or processes
We also show that the framework is a working instantigzhich should be components of a deployed system to the

tion of many aspects of the JDL data fusion model.  actual instantiation of data fusion in a software architec-
- - ture in this broader sense is very much an open and un-
L 42§3°fe5p°”d'”g author, tel no +46-13-282428, fax no +46-1¢.\eq problem. In fact, it is the belief of the authors that
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tested, analyzed in terms of performance and iterated tion of the DyKnow framework is given. In section 3,
in order to eventually support all the complex functionale consider the DyKnow framework in the context of the
ities proposed in the JDL data fusion model. revised JDL data fusion model. In section 4, we describe
In this paper, we will describe an instantiation of par&sUAV scenario involving vehicle identification and track-
of such an architectural framework which we have di#g, where DyKnow has been used to advantage. In sec-
signed, implemented, and tested in a prototype deliisn 5, some work related to the DyKnow framework is
erative/reactive software architecture for a deployed upresented. In section 6, we conclude and summarize the
manned aerial vehicle (UAV) [5, 6]. The name given twork.
this architectural framework which supports data fusion
at many levels of abstraction is DyKnéw DyKnow is
a knowledge processing middleware framework usedo DYKnNow
support timely generation of state information about en-
tities in the environment in which the UAV is embeddedhe main purpose of DyKnow is to provide generic and
and entities internal to the UAV itself. The latter is imWell-structured software support for the processes in-
portant for monitoring the execution of the autonomow®!ved in generating object, state and event abstractions
system itself. about the external and internal environments of complex
The DyKnow system is platform independent in thgyStems, s_uch as our experimental_ UAV system. Gener-
sense that the framework can be used in many differ&n of objects, states and events is done at many levels
complex systems. Consequently, we believe it is of ge(p{_abstractmn begmmng with low Ie_vel_ gquantitative sen-
eral interest to the data fusion community at large. ORE data. The result_ is often qualitative data. structures
aspect of DyKnow which is particularly interesting is th&/hich are grounded in the world and can be interpreted
fact that it was designed and prototyped independently@¥ knowledge by the system. The resulting structures
any knowledge about the JDL data fusion model. The &€ then used by various functionalities in the delibera-
quirements for specification were those necessary to rHyge/reactive architecture for control, situation assessment,
son about world state at very high levels of abstraction aftpnitoring, and planning to achieve mission goals.
to be able to take advantage of artificial intelligence tech-Observe that the focus here is not on individual data fu-
niques for qualitative situation assessment and monitor#i§n techniques but the infrastructure which permits the
of the UAV and dynamic entities in its embedded enviSe of many different data fusion techniques in a unified
ronment. It turns out that the resulting prototype can f@mework. The idea is to provide a middleware that en-
used when implementing the JDL data fusion model aR@psulates data and information sources, existing data fu-
provides insight into many of the details that are impo®ion algorithms as well as knowledge representation and
tant in making such architectures a reality. For exampl&asoning engines to allow easy integration of them into
such systems are not strictly hierarchical and often involg@mplex and realistic data fusion applications.
complex interactions among the layers. This implies that
itis not feasible to specify and implement each level sep-1 Knowledge Processing Middleware
arately. This perceived weakness in the JDL model was
in fact pointed out by Christensen in a recent panel deb&enceptually, DyKnow processes streams generated from
concerning the JDL model [16]. different sources in a distributed architecture. These
streams may be viewed as representations of time-series
data and may start as continuous signals from sensors
1.1 Structure of the Paper or sequences of queries to databases. Eventually they
. . will contribute to definitions of more complex composite
The paper is structured as follows. In section 2, an ;
nowledge structures. Knowledge producing processes

overview of the important concepts used in the defini- ~ . . .
combine such streams, by abstracting, merging, synchro-

L“DyKnow” is pronounced as “Dino” in “Dinosaur’ and stands foiZing, filtering and approximating as we move to higher
Dynamic Knowledge and Object Structure Processing levels of abstraction. In this sense, the system supports




conventional information fusion processes, but also €22 Ontology

conventional qualitative processing techniques common

in the area of artificial intelligence. The resulting Strean%ntologlcally, we view the external and internal envi-

are used by different reactive and deliberative servid@ment of the agent as consisting of physical and non-

which may also produce new streams that can be furtipklysicalentities propertiesassociated with these entities,
processed. A knowledge producing process has difrgpd r_elatlons bereen t_hese e_r_mtles_. The properties and
ent quality of service properties, such as maximum de|§lat|ons associated with entities will be callightures

trade-off between data quality and delay, how to appro Igéatures may be static or dynamic. Due to the potentially

mate missing values and so on, which together define fymamic nature ,Of a featurg, that IS, Its ab!llty to change
semantics of the chunk of knowledge created. The salf[es through time, duentis associated with each fea-
streams of data may be processed differently by differdHf: A fluent is a function of time whose range is the
parts of the system relative to the needs and constraiffalUre’s type. Some examples of features areveiec-
associated with the tasks at hand. ity of an object, theoad segmenbf a vehicle, and the

distance betweetwo car objects.

Databases

@ 2.3 Object Identifiers and Domains

— An object identifierefers to a specific entity in the world
\ l / task procedures and provides a handle to it in DyKnow. Example entities

"o
camera |
platform { / chronicle
S ‘|  recognition

tity observed by the camera”. The same entity in the world
may have several different identifiers referring to it and a
,\ ) composite entity (consisting of a set of entities) can be re-
/, _ xecuton ferred to with a single identifier. Three examples of this
patom 7+ L : e are shown in Figure 2. In the first example we have two
e TN object identifiers referring to the same entity, in this case
e s blob1 andblob2 which could be blobs extracted from two
Figure 1: An instantiation of the DyKnow knowledge proglifferent pictures by the image processing system, that the
cessing middleware. system may or may not know refer to the same entity. In
the second example we havi®b3 andcarl which refers
to two different aspects of the same entity. An example of
In Figure 1 an example of a concrete instantiation of tiedject identifiers referring to a composite entity may oc-
DyKnow framework that we use in our experimental UAEUr when several object identifiers refer to the same entity
architecture is shown. There are three virtual sensors, #iglifferent levels of abstraction, such as the car entity re-
image processing subsystem, the camera platform andfgteed to bycar2 and the hood and wheel entities referred
helicopter platform. We have a geographical inform&e by hood andwheel
tion system (GIS) which is a database that contains in-An agent will most often not know the exact relations
formation about the geography, such as road structubetween object identifiers, whether they refer to the same
and buildings, of the region we fly in. The services irentities or not, because they are generated for different
clude the reactive task procedures which are componemgsons and often locally. In Section 2.8 we present
coordinating the deliberative services with the camera amdnechanism for reasoning about the relations between
helicopter controllers, a chronicle recognition engine ftihem. The basic constraints placed on object identifiers
reasoning about scenarios, and a temporal logic prograe that they are unique and only assigned to an entity
sion engine that can be used for execution monitoring amaice (single assignment).
other tasks based on the evaluation of temporal logic for-An object domainis a collection of object identifiers
mulas. representing that the entities referred to have some com-

are “the colored blob”, “the car being tracked” or “the en-
DyKnow

Sensors
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Representation o°! Plob2 - blob3 carl - car2 - hood wheel g,ch as a sensor or human input, while a computed flu-

(DyKnow) O O O O O O O ent approximation is a function of other fluent approxima-
L I tions. To do the actual computation a procedural element
called acomputational unitis used. The computational
unit is basically a function taking a number of fluent ap-
proximations as input and generating a new fluent approx-
imation as output. A picture of a computed fluent stream
is shown in Figure 3.
Figure 2: Examples of relations between object identifiers

and entities.

mon property, such as all red entities, colored blobs found
in images or qualitative structures such as the set of cars
identified in a mission. An object identifier may belong to
more than one domain and will always belong to the do-
main “top”. Object domains permit multiple inheritance
and have a taxonomic flavor. The domains an object iden-
tifier belongs to may change over time, since new infor-
mation provides new knowledge as to the status of th

entity. This makes it possible to create domains such a

“currently tracked entities” or “entities in regions of inter-

est”. Figure 3: A computed fluent stream in DyKnow.
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2.4 Approximating Fluents Since a fluent generator represents a total function from
time to value and a fluent stream only represents a set of
A feature has exactly one fluent in the world which is itsamples a fluent generator created from a fluent stream
true value over time. The true fluent will almost nevanust be able to estimate the value at any time-point
be known due to uncertain and incomplete informatiowhether or not a sample exists at that time-point. Since
Instead we have to create approximations of the fluetitis estimation can be made in many different ways, de-
Therefore, the primitive unit of knowledge is tfiegent pending on how the fluent is modelled and the samples
approximation In DyKnow there are two representationare interpreted, it is possible to create many different flu-
for approximated fluents, thituent strearmand thefluent ent generators from a single fluent stream. From each
generator The fluent stream is a set of observations ofgf these fluent generators we can generate many different
fluent or samples of an approximated fluent. The fluefiient streams by sampling the fluent generator at differ-
generator is a procedure which can compute an apprait time-points. How these transformations are done are
mated value of the fluent for any time-point. Since a fluedéscribed by declarative policies. THaent generator
may be approximated in many different ways each fegelicy specifies a transformation from a fluent stream to
ture may have many approximated fluents associated witfluent generator, and ttileent stream policgpecifies a
it. The purpose of DyKnow is to describe and represemansformation from a fluent generator to a fluent stream.
these fluent generators and fluent streams in such a wWafjuent generator policy may be viewed as the context in
that they correspond to useful approximations of fluenigich the observations in a fluent stream are interpreted.
in the world. The resulting fluent approximation is the meaning of the
There are two types of fluent approximations, primitivieature in that context. An overview of how approximated
and computed fluent approximations. A primitive flueriluents can be created from an existing fluent stream ap-
approximation acquires its values from an external sourpepximation is shown in Figure 4.



as produce a trajectory with all the values from the last
2 minutes which are higher than a threshold value. This
is useful when processing data since various functionali-
ties have different requirements on type, quality, density
of data, etc. Control modes have much different require-
ments on feature data than inferencing mechanisms do.
The locations are also important to support integration
since they are used to encapsulate existing databases, sen-
sors and other subsystems which contain information that
should be available within the DyKnow framework. De-
pending on the underlying component that the location is
wrapping the fluent approximations hosted there will have
different properties. For example, depending on the type
of database the type of queries the location supports will
be different. The location also affects the computational
aspects of queries such as in what order they are computed
and what temporal properties they will have. The tempo-

Figure 4: An overview of how new approximated fluent&@! Properties will depend on the type of algorithms used

can be created from an existing fluent stream approxini@-mplement the query as well as the type of scheduler
tion. used to determine the order of computation.

. 2.6 Samples
2.5 Locations
The value of a fluent approximation at a particular time-

We are primarily interested in distributed systems whepeint is represented by sample A sample is a tuple
the sources of data often determine its properties suchag.,,, t., t,), wherev is the valuet, is the valid time,
quality and latency. These and other characteristics suglis the create time ang, is the query time. The seman-
as access and update constraints must be taken intotias-of a samplév, ¢, t., t,) is that the value of the fluent
count when generating and using fluent approximatioagproximation at time-point, is v according to the infor-
associated with specific data sourcéscationsare in- mation available at time-poirtt,, which is the time-point
troduced as a means of indexing into data sources whiehen the query was computed. The create time represents
generate fluent approximations associated with spectfie time-point when this sample was created. The valid,
features. A feature may be associated with several fluergate and query times are similar to valid, transaction and
approximations located in different places in the architeeference time in temporal databases [15].

ture, but each fluent approximation must be hosted by exAs an example, assume we have a fluent strgaat
actly one location. By representing these different placadocation! which contain a samplév, ¢,,, t., t,). Then,

with locations we make it possible to model and reasaha time-point someone queries the valuetatand the
about them. Different locations might give the approxample(v, t,, t.,t) is returned. Iff in the location/ at¢
imated fluents hosted different properties such as delagesn't have a sample at the requested time-ggititen

in samples, access to history of the fluent approximaticas approximation’ has to be computed and the sample
and the possibility to enforce quality of service guarar’, ¢,,¢,t) is returned.

tees. For instance, the position of an autonomous agenAll the time-points come from the same time-line
may be accessed directly with low latency from a denadich means that they are comparable. As a consequence
stream from a virtual sensor or with higher latency frothe query time is always greater than or equal to the create
a discrete stream stored in a database. But, the datatiimse while the valid and create times are orthogonal. We
might allow more complex queries to be answered sugtquire that all create times at a location are unique, so



if the create times of two samples at a location are equales. A state synchronizes a set of fluent approximations,
then the value and valid times should also be equal. Téwee for each component feature, into a single fluent ap-
domain of the time-points can either be discrete or coproximation for the state as shown in Figure 5. The value
tinuous, and the domain of the values can be anythirag.the new fluent approximation, which actually is a vec-

In our implementation we have used discrete time-poirits of values, can be regarded as a single value for addi-
and allow any CORBA type as a value domain. tional processing, i.e. a value vector where all the com-

There are at least three reasons for separating the valithents have values at the same time-points (this might
and create times. First, several estimations of the vaherelaxed, so that all the values are within a certain time-
at a specific time-point can be made for the same fluevindow depending on the properties of the state features).
approximation. If we make a fast approximation that iBhe states are needed since we might have several sensors
later improved or we make a default assumption thatas computations each providing a part of the knowledge
later retracted we need to differentiate those values. Tdt®out an object or a situation, but whose fluent approxi-
different estimations would have the same valid time botations have different sample rates (implying samples at
different create times. This also allows us to query a loddifferent time-points) or varying delays.
tion as to what it believed at a specific time-point was the
value of a fluent approximation, i.e. at time-poinvhat
was the value off at time-pointt,. Second, it allows us
to model delays in the availability of the value. The de-
lay could be caused by the processing of the value or by
communication delays in the system. If the value is not
delayed then the valid and create times will be the same.
Third, it allows us to detect when a value is predicted. If
the create time is less than the valid time then we know
that the value must be a prediction, since it can not have
been observed already since the time-points come from
the same time-line.

In order to support default values and the representation . )
of varying delays in the computations, the fluent approxi- Figure 5: A synchronized fluent stream in DyKnow.
mations are non-monotonic. Assume we ask for the value
which is valid at time-point, if we ask this query attime- A concrete example is when we have streams of po-
point¢; then we might get one answer, which is the besitions given in pixel coordinates and streams of camera
answer available at time-point, but if we ask the samestates describing the position and orientation of the cam-
query at a later time-poirtt, we might get another answeiera. In order to find out what coordinate in the world
since we now might have more information about timé& pixel position corresponds to we need to synchronize
point¢. Therefore we need the query time to keep tratkese two streams. If we have a position at time-point
of when the value was asked for, which wouldtpén the we want to find a camera state which is also valid at time-
first case and, in the second. The query time can also eointt. In the simplest case there exists such a sample, but
used to measure the validity of the sample by compariiitgg more general (and realistic) case we have to either find
it to the current time. If the difference is small then ththe “best” camera state in the stream or estimate what the
value is probably still valid. camera state was at time-pointrom the observed sam-
ples. Three simple strategies for estimating the sample at
t are to take the first sample befarethe closest sample
either before or aftet, or to interpolate the sample based
Two important concepts in many applications are stated the closest sample before and aftefClose” is here
and events. In DyKnow atateis a composite featuredefined in the context of the valid time domain.
which is a coherent representation of a collection of fea-The problem of creating coherent states from data
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fluent stream
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2.7 States and Events



streams is non-trivial and can be realized in many difepresent.
ferent ways. In DyKnow the synchronization strategy is We require a mechanism for reasoning about the re-
described by a policy called thstate policy If the ex- lation between object identifiers, including finding those
isting pre-defined synchronization strategies are not adéject identifiers which actually codesignate with the
guate for an application then a computational unit can same entity in the world. When two object identifiers are
created and used as a general mechanism for extractiggothesized as referring to the same entity in the world,
states. In fact, the synchronization component is a spe@dink is created between them. The collection of object
case of a computational unit. identifiers referring to the same entity in the world and the
An eventis intended to represent some form of chandjaks between them is called abject linkage structure
or state transition. Events can either be primitive, e.gTais represents the current knowledge about the entity.
sample received from a sensor can be seen as an everWe have separated the object identity (i.e. which en-
or generated, e.g. the event of the approximated flugity in the world an object identifier refers to) from the
f reaching a peak in its value. Generated events aarject state (i.e. the attributes and relations of the ob-
either be extracted from fluent approximations or corjects). Classes provides a mechanism for specifying cer-
puted from other events. In DyKnow it is possible ttain relationships between the two, by regulating the mini-
define primitive events on approximated fluents, mainhgum state required for certain classes of object identifiers.
change eventsuch as the fluent approximatibnhanged Links provide the mechanism for describing relations be-
its value with more than 10% since the last change evemigen object identifiers, i.e. to reason about the identity of
or the value off was updated (but might not have beeabject identifiers.
changed). Events are most often used as triggers or input§he object linkage structure makes it possible to model
to complex event recognition engines such as the chroe&ch aspect of an entity as a class and then provide the
cle recognition engine used in our UAV architecture. conditions for when an instance of the class should be
DyKnow currently has support for two types of comlinked to an instance of another class. For example, in the
puted events. The first is the evaluation of linear tempotedffic domain we model the blobs extracted by the image
logic (LTL) formulas becoming true or false. The secongrocessing system as separate object identifiers belonging
is the recognition of scenarios, called chronicles, cono the class VisionObject and objects in the world as ob-
posed of temporally related events, expressed by a simplet identifiers belonging to the class WorldObject. We
temporal constraint network. An LTL formula is evalualso provide a link type between these classes in order to
ated on a state stream containing all the features usedibgcribe the conditions for when a vision object should be
the LTL formula, so the state extraction mechanism mehmypothesized as being a world object. This simplifies the
tioned above is a prerequisite for the LTL formula evatodeling since each aspect can be modeled separately, it
uation. The chronicle recognition engine, on the othalso simplifies the classification, tracking and anchoring
hand, takes events representing changes in fluent appaithe objects.
imations as input and produces other events representingo describe a collection of object identifiers represent-
the detection of scenarios as output. These can be usedihg-an aspect of an object, dassis used. A class de-
cursively in higher level structures representing complsgribes what fluent approximations all instances should

external activity such as vehicle behavior. have and includes four constraints, tireate add codes-
ignate andmaintain constraintsthat regulate the mem-
2.8 Objects, Classes and Identity bership of the class. If a create constraint is satisfied then

a new object identifier is created and made an instance of
Grounding and anchoring internal representations of éke class. If the add constraint for an object identifier is
ternal entities in the world and reasoning about their idesatisfied then it is considered an instance of the class and
tities is one of the great open problems in robotics. Coibis added to the class domain. A codesignation constraint
sequently, middleware systems for knowledge processigzodes when two objects of the class should be consid-
must provide suitable support for the management of regred identical. The maintain constraint describes the con-
resentations and their relation to the external entities thditions that always should be satisfied for all instances of



a class. If the maintain constraint is violated the object D et reestabiish ot vehice |
identifier is removed from the class. The maintain con- O O fnk O O
straint represents the essential and invariant properties of ‘ yd

a class. A constraint is represented by an LTL formula. § i 4 s
Constraints can only use the fluent approximations that o o

are required by a class in their definitions.

A link type represents the potential that objects from
two classes might represent the same entity. The i
specification contains three constraints, th&tablish
reestablish and maintain constraints A link specifica-
tion might also contain fluent approximations represent-
ing specific properties that result from the entities beif®9 Implementation
linked together. If an establish constraint, defined on ob- _ )
jects from the linked-from class (a link is directed), is saftll Of the concepts described above are implemented

isfied then a new instance of the linked-to class is crealBdC*+ using the TAO/ACE [14] CORBA implementa-
and a link instance is created between the objects. An #20-  The DyKnow implementation provides two ser-
ample of this is given in Figure 6 if read from left to rightYic€S- The Domain and Object Manager (DOM) and the
The establish constraint represents the conditions for R¥namic Object Repository (DOR). The DOM is a lo-
suming the existence of another, related, aspect of an 8Rlon that manages object identifiers, domains, classes
tity. For example, in our application we assume all visigd'd objects. The DOR manages fluent approximations,
objects are related to a world object, therefore a new wofittes and events. The DOM is actually also a location
object is created if a vision object is not already linked #§hich uses fluent approximations to implement the do-
one. A reestablish constraint encodes when two existifigins- This makes it possible to e.g. subscribe to changes
objects, one from each class, should be linked togetH8rdomains in order to react to these changes (which is
An example of this is given in Figure 7 if read from lefp!sed internally to implement e.g. subscription to a ;et of
to right. When a link instance is created a maintain coffatures). There can only be one conceptual DOM in the
straint, which is a relation between the two objects, is St since we need to be sure that the object identi-
up in order to monitor the hypothesis that they are actuall§s generated are unique. This means that the DOM is a
referring to the same entity in the world. If it is violatecingle point of failure, but there are techniques related to
then the link instance is removed which is the case in Fif@:_deratlon and duplication that could be used to make the

ure 7 if read from right to left. system less vulnerable. .
To evaluate LTL formulas we use our own implementa-

e tion of the progression algorithm presented in [12]. Pro-
o ot vehicle ot wide o gression evaluates a formula in a current state and returns
e OO0 Leam L O7 O O anewformula which has the same truth value when evalu-
g C ated on the future states as the original formula has on the
complete time-line being generated. Complex dynamic
Lo o o scenarios involving single or multiple entities are recog-
nized online using the C.R.S. chronicle recognition sys-
tem from France Telecom which is based on the IxTeT
e(%Jwronicle recognition system [8].

To integrate a reasoning engine, like the LTL formula
progression engine, it has to specify the appropriate poli-
cies that describe the data required by the engine to do

For a more detailed account of object linkage structurigs reasoning. These policies are then passed to the DOR
in DyKnow, see [11]. or some other location to produce the specified fluent

known designation —— inferred designation - ----= link ~-~~x

f—%ure 7: An example of reestablishing a link and violat-
ing its maintain constraint.

delete vehicle P delete car

——= known designation - inferred designation -~ 7~x link

Figure 6: An example of creating and deleting a link
object.



streams. The engine can then react to the samples sent to

DATA FUSION DOMAIN

it and do its reasoning on them. To take the LTL formula % Rtuf‘
progression engine as an example it takes a formula and e
analyzes what features it uses and creates a state policy Lovel -mpact Assossment_+—{ nerfaces
that contains fluent approximations for each of the fea- t ‘ ‘

tures and then subscribes to these states. Every time Apata —
Sources

new state is received it progresses over the state.
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JDL Data Fusion Model e

The JDL data fusion model is the most widely adopted Figure 8: Revised JDL data fusion model from [3].
functional model for data fusion. It was developed in
1985 by the U.S. Joint Directors of Laboratories (JDL) | this section we will go through each of the levels
Data Fusion Group [22] with several recent revisions prgnd describe how the implementation of its functionali-
posed [21, 3, 13]. ties can be supported by DyKnow. By this we claim that
The data fusion model originally divided the data fuhe concepts provided by DyKnow are suitable for im-
sion problem into four different functional levels [22]plementing most parts of the JDL data fusion model. It
Later a level 0 [21] and a level 5 [3] were introduced. Thg jmportant to realize that DyKnow does not solve the
levels 0-4 as presented in [21] and level 5 as presentfflerent fusion problems involved, but rather provides a
in [3] are shown in Figure 8 and described below. framework where different specialized fusion algorithms

Level 0 - Sub-Object Data AssessmeRstimation C2" be integrated and applied in a data fusion application.
and prediction of signal- or object-observable statByKnow also provides support for a number of particular

on the basis of pixel/signal-level data association afftfion Problems, such as the fusion of several objects of
characterization. the same type into a single object of that type or the fu-

sion of objects from many different types into a single ob-
Level 1- Object Assessmengstimation and predic- ject of another type. The idea is that we need to integrate
tion of entity states on the basis of inferences fromany different existing solutions to partial problems into
observations. more complex applications than what is currently possible
o N due to the lack of a common infrastructure. We believe
Level 2- Situation Assessmengstimation and pre- that DvK ides th t d h-
diction of entity states on the basis of inferred relg- &t DYRNOW provides the necessary concepts and mecf
tions among entities. anisms to de;crlbe fusion processes that integrate the dif-

ferent levels in the JDL data fusion model.
Level 3 - Impact Assessmengstimation and pre-

diction of effects on situations of planned or e O
timated/predicted actions by the participants (e.?,’1 Level 0 Sub-Object Assessment

assessing susceptibilities and vulnerabilities to &sn this level, fusion on the signal and sub-object level

timated/predicted threat actions, given one’s owghould be made. Since the object identifiers can refer to
planned actions). any entity, including sensors and entities which may be
an object on its own or not, we can represent and work on
features such as “signal from sensor S” and “property of
blob found by image processing system”. Fusion on this
Level 5 - User Refinementadaptive determinationlevel would be implemented by computational units. The

of who queries information and who has access to ipurpose of the computational units is to reduce the noise
formation and adaptive data retrieved and displayadd uncertainty in the fluent approximations in order for

to support cognitive decision making and actions. the higher layers to get the best possible approximations

Level 4- Process Refinemeradaptive data acquisi-
tion and processing to support mission objectives.



to work with. The sub-object features are used mostly agcamera position ) combined position

level 1 to create coherent object states. | PositionMerger

sonar position

3.2 Level 1 Object Assessment Figure 9: An example of level 1 fusion of two level 0

On this level, sub-object data should be fused into con8Hent approximations.
ent object states. In DyKnow there are mainly two func-

tionalities used, state aggregation and the creation of ob-

ject linkage structures. A state collects a set of sub—objec{n DyKnpw fluent approximations from Ievel_l mainly
features (which could represent properties of an obje }eract with level 2 by providing coherent object states
computing and detecting situations. Level 3 is also

into a state which can be used as a synchronized vaitie & ant si g ible for checking the h
similar to the value of a struct in C. Linkage structures afg"y Important since [t s responsibie for cnecking the fy=

then used to reason about the identity of objects andpt%thtf]t'cal ObjetCt :(mkage ztructu:gs by cort1rt]|nually Chteﬁk'
classify existing objects, ing the impact of new observations on the current hy-

In the linkage structure two special cases of data fotheses. Since the computations on this level can be time

sion are handled. The first is the fusion of codesignat‘é fisuming, thg Interactions .W'th level 4 and level 5 are
objects, i.e. when two or more objects from the sarflso important in order to maintain a steady update of the

class are hypothesized as actually being the same englé;'s_t important fluent approximations for the moment as
where the knowledge related to each of these objects glded by the system and the user.
to be fused into a single object. There are two modes for
achieving this fusion; it can either be done continuously, 3 | evel 2 Situation Assessment
so that all the individual object instances still exist but
their content is continually fused into a new object, or @n this level, relations between objects fused together
can be a one-shot fusion where all knowledge at the nan the previous levels should be detected as well as
ment of the codesignation is fused into a single new objeabre complex situations being represented and recog-
and the old objects are deleted. nized. The detection of events, both primitive and com-
The second special case is the fusion of several diffeuted, are important tools to model situations. Com-
ent objects from different classes into a single object. Thigted events can e.g. be temporal logic formulas or chron-
is the case when an object is linked-to from more than oistes describing temporal relations between events. In this
object of different classes. For example, assume our rofaghion different features are fused together over time in
has both a sonar and a camera, each sensor provides guter to extract more abstract situations that are features
object fluent approximations containing the sensor read-themselves. Collections of objects can also be aggre-
ings related to entities in the world. If the entity sensed Igated into states in order to synchronize them to a coher-
the sonar and the entity sensed by the camera are hypeti-situation, just as collections of fluent approximations
esized as being the same entity, the position accordingém be collected into states.
the camera fluent approximation and the position accordProperties, relations, states and events are all repre-
ing to the sonar fluent approximation must be merged irgented by fluent approximations in DyKnow. Sets of en-
a single position fluent approximation, representing ttiies belonging to concepts such as “the set of all cars
combined knowledge about the entity. In DyKnow thithat have been observed to make reckless overtakes in the
would be done using a computational unit which takéest 30 minutes” can be described and maintained through
two fluent streams as input, as shown in Figure 9, otle use of domains described by classes. Classes func-
with camera positions and one with sonar positions atidn as classification procedures which add all object iden-
using an appropriate algorithm to compute a new flueifters which satisfy the associated add constraint to the
approximation, the combined position in the world. Thedomain and keep them as members as long as the main-
stream will be generated as long as the hypothesis thattdia constraint is not violated. By belonging to a class,
three objects are the same is maintained. certain fluent approximations related to the object identi-
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fier are guaranteed to exist and to have certain proper@®8 Level 4 Process Refinement
described by the maintain constraint. The maintain con-

straint represents invariant properties of entities belongiQ& t_h_e fourth level th_e system shouI(_d a_dapt the c_iata ac-
to the class. quisition and processing to support mission objectives. In

. . DyKnow this usually corresponds to changing what flu-
Assuming these constructs, we can easily creatg g approximations and classes are currently being com-

stream with all updates in the car states of those objegheq  This is related to focus of attention issues where
identifiers that have been detected as reckless vehi fi& most important fluent approximations should be com-
The stream corresponds to a non-trivial set of dynamiGeq while less important fluent approximations have to
knowledge computed from sensors and continually be'%nd back in times of high loads. To support focus of
correlated to the current state of the world model as welkention, fluent approximations and class specifications
as being monitored by level 3 data fusion. can be added and deleted at run-time.

Apart from the input provided by fluent approximations Another tool used for refinement are the policies de-
at level 1, the interactions of level 2 are mainly with levaicribing the fluent approximations. By changing the poli-
3 where fluent approximations representing complex siies of the fluent approximations the load can be reduced.
uations can be used to maintain object linkage structufesy example, if the current policy for a fluent approxima-
as well as create new object identity hypotheses. For ifon of the position given by the sonar sensor is to sample
stance the example given in [21] about the detection oftal0 times a second and the latency on the higher level
missing SA-6 unit in a battery can be handled by a crgpproximations computed from this is more than 100ms
ate constraint on the SA-6 class triggered by the detectipien the sample rate could be lowered to e.g. 5 times a
of an incomplete SA-6 battery. Given a computed evesdécond until the load goes down again. It is also possible
that is detected when an incomplete battery is found, thissetup filters to remove certain samples or events. For
event could be used to trigger the creation of a new SAeRample, instead of receiving all samples, only receive a
instance. In this case a monitor could also be set upsi@mple when the value has changed with more than 10%
make sure the complete SA-6 battery is detected sincecalinpared to the last change. Changes in policies can be
units have been found. This monitoring would be handlegade dynamically and can later be changed back to the
by level 3 data fusion. original policy.

Level 4 interacts with all the other levels since it con-
trols the context within which those are being computed

as well as controlling what is actually being computed.
3.4 Level 3 Impact Assessment

On this level, objects and situations should be used to §s§ Level 5 User Refinement

sess the impact on the current actions and plans of t§g the fifth level, the system should determine who
agent. To assess the impact, different types of monitoriggeries information and who has access to information
are done, among others the execution monitoring of plagsy adapt data retrieved and displayed to support cogni-
and behaviors and the monitoring of object hypothesgge decision making and actions. In DyKnow this level is
To implement these monitors the different event detectigayy similar to the process refinement level. The main dif-
mechanisms can be used. Currently, we use LTL formul@$ence is that a user instead of the system itself is control-
to model the temporal aspects of execution and hypothqgig the quality and amount of data being produced. Con-
validation. ceptually it makes no difference in DyKnow who controls
Level 3 interacts with both level 1 and level 2 sincthe fluent approximations. Users also have the possibil-
the fluent approximations produced on those levels are ttyeto input observations to fluent streams and in that way
ones used as input to impact assessment. The detectigpro¥ide expertise about the current situation.
violations of monitored constraints will lead to changes atlt is also possible to create special fluent approxima-
the lower levels. tions which are only used to support the cognition of the
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current situation by the user, such as complex event djects are only cognized to the extent that they are mov-
scriptions or temporal logic formulas expressing condirg colored blobs of interest and the fluent approximations
tions that the user wants to monitor. For example, instesttbuld continue to be computed while tracking.
of keeping track of a number of indicators the user canNow the UAV can hypothesize, if the establish con-
express in a LTL formula the normal conditions for all thstraint of the vision to world object link is satisfied, that
indicators, i.e. that everything is in order. If this formuléhe blob actually represents an object in the world by cre-
becomes false then an alarm can be triggered that foraéag a representation of the blob in the world. New fluent
the user to look at the individual indicators to find out thepproximations, such as position in geographical coordi-
source of the problem. We believe that the complex everates, are associated with the new world object. The geo-
descriptions and temporal logics supported by DyKnographic coordinates provide a common frame of reference
are useful tools to describe high level views of a systamhere positions over time and from different objects can
which are suited for a human operator. be compared. To represent that the two objects represent
two aspects of the same entity the vision object is linked
] to the world object. Since the two objects are related, the
4 Example Scenario fluent approximations of the world object will be com-
puted from fluent approximations of the linked-from vi-
Picture the following scenario. An autonomous ursion object. The objects, links and fluent approximations
manned aerial vehicle (UAV), in our case a helicoptasreated so far are shown in Figure 10. When the vision
is given a mission to identify and track vehicles with abject is linked to a world object the entity is cognized
particular signature in a region of a small city in order tat a more qualitative level of abstraction, yet its descrip-
monitor the driving behavior of the vehicles. If the UAMion in terms of its linkage structure contains both cog-
finds vehicles with reckless behavior it should gather initive and pre-cognitive information which must be con-
formation about these, such as what other vehicles thigwously managed and processed due to the interdepen-
are overtaking and where they are going in crossings. Tdencies of the fluent approximations at various levels. We
signature is provided in terms of color and size (and pdsave now moved from level 0 to level 1 in the data fusion
sibly 3D shape). Assume that the UAV has a 3D model nfodel.
the region in addition to information about building struc- Each time a new vision object is created, it is tested
tures and the road system. These models can be providgdinst each existing world object to see if they could
or may have been generated by the UAV itself. Additiomepresent the same entity. If the world object passes the
ally, assume the UAV is equipped with a global positionest, i.e. the reestablish constraint of the link between vi-
ing system (GPS) and inertial navigation system (INS) feion and world objects is satisfied, then a link is created
navigation purposes and that its main sensor is a camiegdween it and the new vision object. In this case, the
on a pan/tilt mount. world object fluent approximations would be updated us-
One way for the UAV to achieve its task would be ting fluent approximations from the new vision object for
initiate a reactive task procedure (parent procedure) whihlong as they remain linked. This is an example where
calls an image processing module with the vehicle sigrthe world object has been reacquired, to use the anchor-
ture as a parameter. The image processing module wilj terminology. Another possibility to regain the track-
try to identify colored blobs in the region of the right sizeng is when two world objects are hypothesized as being
shape and color as a first step. The fluent approximatidhe same entity, but where only one is currently linked to
of each new blob, such as RGB values with uncertairayvision object. This happens if the codesignation con-
bounds, length and width in pixels and position in th&raint between the two world objects is satisfied. In this
image, are associated with a vision object (i.e. an objeaise, they are merged into a single world object to which
identifier which is an instance of the class VisionObjecthe vision object is linked.
The image processing system will then try to track theseSince links only represent hypotheses they are always
blobs. As long as the blob is tracked the same vision adubject to becoming invalid given additional observations.
ject is updated. From the perspective of the UAV, the3éerefore the UAV agent continually has to verify the va-
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Figure 10: The objects, link instances and fluent approximations after a vision object has been hypothesized as a world
object.

lidity of the links. This is done by associating mainte- In order to detect reckless overtakes and other relations
nance constraints with the links. If the constraint is vbetween objects, we have to find, classify and track sev-
olated then the link is removed, but not the objects. étal objects. Each on road object found will be repre-
maintenance constraint could compare the behavior of #ented like the one in Figure 11. For each pair of such
objects with the normative and predicted behavior of theskjects we can create fluent approximations representing
types of objects. This monitoring of hypotheses at levek8lations between them. The reckless overtake chronicle
in the data fusion model uses fluent approximations comil need to know the qualitative relative direction be-
puted at all the lower levels. tween the objects, such as Ais in front of and to the left of
B or B is behind and to the right of A. These relations will
The next qualitative step in creating a linkage structuggso be computed using computational units and the re-
in this scenario would be to check if the world object is osult will then be fed into the chronicle recognition engine
or close to a road, as defined by a geographical informgnhich will detect the reckless overtakes based on that and
tion system (GIS). In this case, it would be hypothesizegher fluent approximations. Most of the links and fluent
that the world object is an on-road object, i.e. an objegbproximations in the example are shown in Figure 12.
moving along roads with all the associated normative b®bserve that we need one computational unit to compute
havior. The maintenance constraint is that it is actualiye relations betweeorol andoro2 and one to compute
following the road system, otherwise it would be an ofthe symmetric relation.
road object (which we ignore in this scenario). An on-
road object could contain more abstract and qualitativeMore specifically, the establish constraint for a link
features such as position in a road segment which wofidldm the class WorldObject to the class OnRoadObject is
allow the parent procedure to reason qualitatively abaepresented by an LTL formula; O ;0jon_road(this),
its position in the world relative to the road, other vehicleghich states that in order for a world object to be hypoth-
on the road, and building structures in the vicinity of thesized as being an on-road object the world object must be
road. At this point, streams of data are being generatduserved on the road for at least 10 seconds without any
and computed for many of the fluent approximations observations that it is not on the road. If this is true then
the linked object structures at many levels of abstractiannew on-road object is created and linked to from the
as the helicopter tracks the on-road objects. In Figure Wirld object. The maintain constraint is represented as
the new link and fluent approximations have been addéite LTL formula,=<®0( 5;-on_road(this), which states
We could go on and hypothesize what type of vehicles weat a world object is not allowed to be observed off the
are tracking based on the size and driving behavior but vead for more than 5 seconds. If the maintain constraint
leave that out of this example. is violated then the link between the world and on-road
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Figure 11: The objects, link instances and fluent approximations after the world object in Figure 10 has been hypoth-
esized as an on road object.

objects is removed. These formulas provide one waymbdel, which are continually being monitored by fluent
handling the uncertainty in the observations of the posipproximations at level 3.
tion of an object in a qualitative manner since it considersAll fluent approximations, classes, links, events and
the position over an interval instead of at a single timehronicles are configured by a parent task procedure at the
point. beginning of the scenario. Thus if the situation changes,
Using on-road objects, we can define situations dde task procedure has the option of modifying the specifi-
scribing different traffic behaviors such as reckless drigations associated with the task at hand. It is also possible
ing, reckless overtakes, normal overtakes and turning liftset up monitors checking the current delays in com-
and rightin crossings. All of these situations are describpdting different fluent approximations in order to monitor
using chronicles, which are represented by simple temjploe real-time behavior of the system. If the latency goes
ral constraint networks where events are represented witiove a certain threshold the task procedure has the op-
nodes and temporal constraints are attached to edgestioe-of either removing fluent approximations it deems as
tween nodes. The chronicles can then be recognized @ss important or changing policies in such a way that the
line by a chronicle recognition engine. amount or quality of the data produced is reduced. These
We can now define a class RecklessBehavior which 1€ all examples of process refinement at level 4 of the
O (reckless_overtake(this) V reckless_driving(this)) as datafusion model. Itis equally possible for a user to mon-
the add constraint, which is satisfied if an orntor the development of the situation and manually change
road object is observed doing a reckless overtake tBe policies in order to influence the system in a desired
driving recklessly. A maintain constraint for thiglirection. This would be an example of level 5 user re-
class could be, 0 1500) (reckless_overtake(this) V finement.
reckless_driving(this)), which is violated if the object is
not observed doing any reckless driving within 30 min-
utes (the time-unit is seconds in the formulas). By cr® Related Work
ating a fluent stream with all overtake, turn left, and turn
right events related to an object in the RecklessBehavidre DyKnow framework is designed for a distributed,
domain using a set subscription, which creates a sing#@l-time and embedded environment [17, 18] and is de-
fluent stream containing samples from certain fluent ayeloped on top of an existing middleware platform, real-
proximations for all objects in a given domain, the systetime CORBA [20], using the real-time event channel [10]
is able to produce the required information and succesgd the notification [9] services.
fully carry out the mission. We are now maintaining flu- Different aspects of the framework borrow and extend
ent approximations at levels 0, 1, and 2 in the data fusimteas from a number of diverse research areas primar-
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Figure 12: The link instances and fluent approximations in one instance of the traffic monitoring scenario.

ily related to real-time, active, temporal, and time-serié® Conclusions
databases [7, 15, 19], data stream management [1, 2], and
knowledge representation and reasoning [4].

different forms.

We have presented a knowledge processing middleware
framework which provides support for many of the func-
tionalities specified in the revised versions of the JDL
data fusion model. DyKnow supports on-the-fly gener-
ation of different aspects of an agent’s world model at
different levels of abstraction. Contextual generation of
One of the many differences between DyKnow andorld model is absolutely essential in distributed con-
mainstream database and data stream approaches istéixég where contingencies continually arise which often
we use a data model based on the use of features andrigtrict the amount of time a system has for assessing sit-
ents which integrates well between quantitative and quaktions and making timely decisions. It is our belief that
itative constructions of knowledge structures. In additioaytonomous systems will have to have the capability to
there is greater flexibility since the same data streams chtermine where to access data, how much data should
be used in many different ways to generate knowledge accessed and at what levels of abstraction it should be
structures with different characteristics. This contextualodeled. We have provided initial evidence that such a
generation is represented as policies which can be gsystem can be designed and deployed and described a sce-
erated and used by sources which require knowledgenario where such functionality is useful.
We believe that DyKnow provides the necessary con-
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cepts to integrate existing software and algorithms related architecture for autonomous unmanned aerial ve-
to data fusion and world modelling in general. The loca-
tion provides an interface to existing data and knowledge
in databases, sensors and other programs. The computa- Robotic System2004.
tional units encapsulate individual algorithms and com-
putations on data and knowledge while the fluent streanig] J. Eriksson. Real-time and active databases: A sur-
provide the means of communication and dataflow. Toaid Vvey. InProc. of 2nd International Workshop on Ac-
the interaction with high level services DyKnow provides
object, state, and event abstractions. The system has been 1997.
tested in a number of complex scenarios involving our ex-
perimental UAV platform and has provided great insigh{8] M. Ghallab. On chronicles: Representation, on-
into what will be required for the realization of advanced
distributed data fusion services in intelligent robotic sys-
tems. Observe that the focus here is not on individual
data fusion techniques but the infrastructure which per-

mits use of many different data fusion techniques in a un

fied framework.
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