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Abstract and unpredictable environments. Research in robotics has
traditionally emphasized low-level sensing, sensor pro-
Any autonomous system embedded in a dynamic ageksing, control and manipulative tasks. One of the open
changing environment must be able to create qualitatisieallenges in cognitive robotics is to integrate techniques
knowledge and object structures representing aspect$rom both disciplines and develop architectures which
its environment on the fly from raw or preprocessed sesupport the seamless integration of low-level sensing and
sor data in order to reason qualitatively about the envirasensor processing with the generation and maintenance of
ment. These structures must be managed and madehégher level knowledge structures grounded in the sensor
cessible to deliberative and reactive functionalities whiciata.
are dependent on being situationally aware of the change . .
in both the robotic agent’s embedding and internal envi_l%nowledge about the internal and external environ-

ronment. DyKnow is a software framework which prOr_nents of a robotic agent is often both static and dynamic.

vides a set of functionalities for contextually accessinA ?rreleaThount ogf)iickg(rjm:ntd r?éigee}tp wc;\;\gedngdeirzs rr?'
storing, creating and processing such structures. The %&r_setamzn Ef[r?egz namuics ?nstr?e emgllaez dir? er?vironn?ent
tem is implemented and has been deployed in a delib ‘E g Y 9

ative/reactive architecture for an autonomous unmann&gc < objects ‘.Jf interest are congnized, hypothe5|zeq as
nvdelng of a particular type or types and whose dynamics

aerial vehicle. The architecture itself is distributed a b ntin VT ned about in a timelv manner
uses real-time CORBA as a communications infrastr uSt be continuously reasoned about In a imely manner.

ture. We describe the system and show how it can be u Q('JS implies signal-to-symbol transformations at many

in execution monitoring and chronicle recognition scenaf?—vels of abstraction with different and varying constraints

ios for UAV applications. on real-time processing.
Much of the reasoning involved with dynamic objects

. and the dynamic knowledge related to such objects in-

1 Introduction volves issues of situation awareness. How can a robotics
architecture support the task of getting the right informa-

Research in cognitive robotics is concerned with endovien in the right form to the right functionalities in the
ing robots and software agents with higher level cognitiegchitecture at the right time in order to support decision
functions that enable them to reason, act and perceiveariaking and goal-directed behavior? Another important
a goal-directed manner in changing, incompletely knowaispect of the problem is the fact that this is an on-going
rocess. Data and knowledge about dynamic objects has

1 42§3°fe5p°”d'”g author, tel no +46-13-282428, fax no +46'1$c') be provided continuously and on-the-fly at the rate and
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Context is important because the most optimal rates aamt the road system. These models can be provided or
forms in which a robotic functionality receives data anmay have been generated by the UAV itself. Additionally,
often task and environmentally dependent. Consequendysume the UAV is equipped with a GPS and IN&
autonomous agents must be able to declaratively specifivigating purposes and that its main sensor is a camera
and re-configure the character of the data received. Howa pan/tilt mount.
to define a change, how to approximate values at time-_et’s consider the processing from the bottom up, even
points where no value is given and how to synchronizigough in reality, there will be many feedback loops in
collections of values are examples of properties that o UAV architecture. One way for the UAV to achieve
be set in the context. By robotic functionalities, we meats task would be to initiate a reactive task procedure (par-
control, reactive and deliberative functionalities rangingnt procedure) which calls the systems image processing
from sensor manipulation and navigation to high-levelodule with the vehicle signature as a parameter. The im-
functionalities such as chronicle recognition, trajectogte processing module might then try to identify colored
planning, and execution monitoring. blobs in the region of the right size, shape and color as

The paper is structured as follows. We start with sea-first step. These object descriptions would have to be
tion 2 where a larger scenario using the proposed fransent to a module in the architecture called the dynamic
work is described. In section 3, the UAV platform usedbject repository (DOR) which is responsible for the dy-
in the project is briefly described. In section 4, DARA, aamic management of such objects. Each of tivésien
Distributed Autonomous Robotics Architecture for UAV®&bjectswould contain features related to the image pro-
is briefly described. DyKnow is an essential module icessing task such as RGB values with uncertainty bounds,
this architecture. In section 5, the underlying ontolodgngth and width in pixels, position in the image, a sub-
for dynamic knowledge and object structures is describéhage of the object which can be used as a template for
In section 6, the basic structure and implementation toficking, an estimate of velocity, etc.
the DyKnow framework is described. In sections 7.2 andFrom the perspective of the UAV, these objects are only
7.3, two deliberative functionalities which use the Dyeognized to the extent that they are moving colored blobs
Know framework are considered, chronicle recognitiasf interest and the feature data being collected should
and execution monitoring, in addition to the dynamic olgontinue to be collected while tracking those objects per-
ject repository (DOR) described in section 7.1. We coBeived to be of interest. What objects are of interest?
clude in section 8 with a discussion of the role of the DyFhe parent procedure might identify that or those objects
Know framework and some related work. which are of interest based on a similarity measure ac-

cording to size, color and movement. In order to do this,
the DOR would be instructed to create one or muoeld
2 An ldentification and Track Sce- objectsand link them to their respective vision objects.
. At this point the object is cognized at a more qualitative
nario level of abstraction, yet its description in terms of its link-
) ) ) age structure contains both cognitive and pre-cognitive in-
In order to make these ideas more precise, we will begifimation which must be continuously managed and pro-
with a scenario from an unmanned aerial vehicle projecissed due to the interdependencies of the features at var-
the authors are involved in which requires many of thg s jevels.
capabilities discussed so far. A world object could contain additional features such

Picture the following scenario. An autonomous Unys position in a geographic coordinate system rather than
manned aerial vehicle (UAV), in our case, a helicopter, i§e |ow-level image coordinate. Generating a geographic
given a mission to identify and track a vehicle with a pagqordinate from an image coordinate continuously, called

ticular signature in a region of a small city. The signatug,_|ocationis a complex process that involves combining
is provided in terms of color and size (and possibly 3D

Shap?)- As;yme that the U_AV has a 3D_ mOdeI of the ré-1gps and INS are acronyms for global positioning system and iner-
gion in addition to information about building structuresal navigation system, respectively.




dynamic data about features from several different objewethich could very well change, based on changes in the
such as the camera object, helicopter object and wocldbracter of the streams of data. Monitors, users of
objects, together with data from an onboard geograpttiese structures, would have to be set up to observe such
cal information system (GIS) module which is also pachanges and alert the parent procedure if the changes be-
of the architecture. One would require a computationame too abnormal relative to some criteria determined
unit of sorts that takes streamed data as input and outgutsthe parent procedure. Abnormality is a concept that
a new stream at a higher level of abstraction representiagvell-suited for being reasoned about at a logical level
the current geographical coordinate of the object. This and the streamed data would have to be put into a form
location process must occur in real-time and continuabynenable to this type of processing.
occur as the world object is tracked. This implies that all How then can an architecture be set up to support the
features for all dynamic objects linked to the world objegirocesses described in the UAV scenario above? This is
in focus have to be continually updated and managed. the main topic of this paper and in it we propose a soft-
At this point, the parent task may want to make a corare system calleByKnow.?
parison between the geographical coordinate and the posi-
tion of that coordinate in terms of the road system for the
region, information of which is stored in the onboard GIS  The WITAS UAV Platform
This indexing mechanism is important since it allows the
UAV to reason qualitatively about its spatial surroundings.
Let's assume this is done and after some period of track-The WITAS® Unmanned Aerial Vehicle Project [3,
ing and monitoring the stream of coordinates, the parefjtis a long-term basic research project whose main
procedure decides that this looks like a vehicle that is falbjectives are the development of an integrated hard-
lowing the road.On-road objects might then be createdvare/software VTOL (Vertical Take-Off and Landing)
for each of the world objects that pass the test and linkgltform for fully-autonomous missions and its future de-
to their respective world objects. An on-road object coufsloyment in applications such as traffic monitoring and
contain more abstract and qualitative features such as gparveillance, emergency services assistance, photogram-
sition in a road segment which would allow the parentetry and surveying.
procedure to reason qualitatively about its position in theThe WITAS UAV platform we use is a slightly modi-
world relative to the road, other vehicles on the road, afigd Yamaha RMAX (figure 1). It has a total length of 3.6
other building structures in the vicinity of the road. Atthign (incl. main rotor), a maximum take-off weight of 95
point, streams of data are being generated and compwgdand is powered by a 21 hp two-stroke engine. Yamaha
for many of the features in the linked object structures @guipped the radio controlled RMAX with an attitude sen-
many levels of abstraction as the helicopter tracks the @r (YAS) and an attitude control system (YACS).
road objects. The hardware platform consists of three PC104 em-
The parent procedure could now use static knowledgedded computers (figure 2). The primary flight con-
stored in onboard knowledge bases and the GIS together (PFC) system consists of a PlIl (700Mhz) proces-
with this dynamic knowledge to hypothesize as to the tyger, a wireless Ethernet bridge and the following sen-
of vehicle. The hypothesis would of course be based §#rs: a RTK GPS (serial), and a barometric altitude sen-
the linkage structure for an on-road object and variogsr (analog). It is connected to the YAS and YACS (se-
features at different levels of abstraction. Assume the paki), the image processing computer (serial) and the de-
ent procedure hypothesizes that the on-road object is a fBérative computer (Ethernet). The image processing

A car objectcould then be created and linked to the extP) system consists of a second PC104 embedded com-
isting linkage structure with additional high-level feature
information about the car. 2"DyKnow” is pronounced as "Dino” in "Dinosaur” and stands for

: amic Knowledge and Object Structure Processing
Whether or not the sum of streamed data which ma@gWITAS (pronouncedvee-tay is an acronym for the Wallen-

up the linkage 'struc'ture represents a PartiCUIar type'kﬁfg Information Technology and Autonomous Systems Laboratory at
conceptual entity will only ever remain a hypothesignképing University, Sweden.
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which is connected to the PFC system with Ethernet using

CORBA event channels. The D/R system is described in

more detail in the next section.

For further discussion, it is important to note that com- Figure 2: DARA Hardware Schematic

putational processes are executed concurrently on dis-

tributed hardware. Data flow is both synchronous and

asynchronous and the concurrent distributed nature of @@picts an (incomplete) high-level schematic of some of

hardware platform contributes to diverse latencies in ddkg software components used in the architecture. Each

flow throughout the system. of these may be viewed as a CORBA server/client provid-
ing or requesting services from each other and receiving
data and events through both real-time and standard event

4 DARA: A Distributed Au- channels.

. - The modular task architecture (MTA) which is part of
tonomous Robotics Architecture DARA is a reactive system design in the procedure-based

. . . paradigm developed for loosely coupled heterogeneous
The DARA system [6] consists of both deliberative an stems such as the WITAS aerial robotic system. Reac-

reactive components which interface to the control Ve behaviors are implemented sk proceduregTP)
chitecture of the primary flight coniroller (PFC). Cury hich are executed concurrently and essentially event-

rent flight modes include autonomous take-off and langfiven A TP may open its own (CORBA) event channels
ing, pre-defined and dynamic trajectory following, ve- . '

hicle tracki dh . We h h i and call its own services (both CORBA and application-
Icle tracking and novering. YWe have chosen rea-tiNige ey services such as path planners) including func-
CORBA [15}" as a basis for the design and 'mplememﬁbnalities in DyKnow,

tion of a loosely coupled distributed software archltectureGiVen the distributed nature of both the hardware and

for our aerial robotic system. . . o . .

Th ication infrastructure for th hitect software architectures in addition to their complexity, one
is pr ev?:domdn;unécgéo;;r; raii%itiruc urr:z or rvie arc Iéiec rur T the main issues is getting data to the right place at the
S provided by actiities and services. Figure ght time in the right form and to be able to transform the

4We are currently using TAO/ACEThe Ace Orb is an open source data to t.he proper IeV_eIS o.f'abstractiqn for use by hi_gh‘
implementation of CORBA 2.6. level deliberative functionalities and middle level reactive
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functionalities. In the following sections we will describéue to the potentially dynamic nature of a feature, that
a very important component of the DARA system whiclis, its ability to change value through timeflaent is as-

contributes to achieving this. sociated with each feature. A fluent is simply a function

of time whose range is the feature’s type. For a dynamic

[Task pmnerJ [Path p|_anner]£ Shronicle | J [ Prediction J ceographical | feature, the fluent values will vary through time, whereas

Service Serviee : Serviee Reposioy ) for g static feature the fluent will remain constant through

Service
Controller I Controlier Some examples of features would be éstimated ve-

Dynamic locity of a world object, thecurrent road segmenbf
e image ] reposion ) an on-road object, or theistance betweetwo car ob-
3 [ ] _ ject, or theistanc b-

Image Processing Module (IPM) jects. Each fluent associated with these examples implic-
itly generates a continuous stream of time tagged values
Figure 3: DARA Software Schematic of the appropriate type.
Additionally, we will introduce locations policies
computational uniteandfluent streamsvhich refer to as-
. ‘e . pects of fluent representations in the actual software ar-
S An Ontologlcal SpeC|f|Cat|0n for chitecture. At first glance, this may appear as an ontologi-
DyKnow cal level error because software architectures are intended
to implement declarative specifications of entities in our
ontologies. On the other hand, it is useful to use the repre-
In any knowledge representation endeavor, it is impgentational domain which the architecture implements as
tant to provide a concise specification of the entities ardomain of discourse for an autonomous agent if one is
aspects which are the focus of representation. That beingrested in reasoning about limited reflective capability
said, it is surprisingly difficult to do this in the context o&s to source, quantity and quality of data flowing through
DARA and DyKnow for the following reasons: a system and dynamically specifying its use by various
e There are often multiple representations of the same danctionalities to achieve tasks.
tities or aspects associated with those entities. Often thisA locationis intended to denote any pre-defined phys-
may be known by the system, but equally often it may ngtal or software location that hosts feature data in the
e The physical locations of representational structures asEARA architecture. Some examples would be onboard
ciated with entities must be taken into account due to ti¢ offboard databases, CORBA event channels, physical
distributed and combined asynchronous/synchronous sa&nsors or their device interfaces, etc. In fact, a location
ture of the DARA architecture which often results in unwill be used as an index to reference a representational
predictable and varying latencies. structure associated with a feature. This structure denotes
e The dual requirement of not only reasoning about the erfiie process which implements the fluent associated with
ties and aspects being represented, but the representatitimaffeature. A fluent implicitly represents a stream of data,
structures themselves since the ultimate purpose of Dyfluent stream The stream is continuous, but can only
Know is that of situational awareness, getting the I'ight i@ver be approximated in an architecture_p@]icy is in-
formation in the right form to the right place in a timelyended to represent a particular contextual window or fil-
manner. ter used to access a fluent data stream. Particular function-
Ontologically, we view the external and internal enviroralities in the architecture may need to sample the stream
ment of the agent as consisting of entities representiaiga particular rate or interpolate values in the stream in
physical and non-physical objects, properties associatedertain manner. Policies will denote such collections of
with these entities, and relations between entities. We withnstraints. Computational unitsare intended to denote
call such entitie®bjectsand those properties or relationprocesses which take fluent streams as input, perform op-
associated with objects will be callédatures Features erations on these streams and generate new fluent streams
may be static or dynamic and parameterized with objecis. output.




In summary, the ontology consists of objects, featuragjage for referring to features, locations, computational
fluents, in addition to fluent streams, locations, policiesnits and policies has to be provided.
and computational units. Each of these entities has to be
representeq gither synta_ctically or in the form of a d '1  The Specification Level
structure within the architecture and many of these data
structures are grounded through sensor data perceiketis begin at the declarative level. We use an ex-
through the robotic agent’s sensors. tended version of a logic of action and change called
An ontologically difficult issue involves the meaning ofAL [5] to provide the syntax for features and flu-
an object. In a distributed architecture such as DARAnNts. Any structured primitive featurfeis denoted as
information about a specific object is often distributetlloc, policy, argi, . ..,argr). The parametefoc de-
throughout the system, some of this information may betes a system location from a pre-defined set of locations
redundant and it may often even be inconsistent due todassociated with DARA. The location could be a database,
sues of precision and approximation. For example, given event channel, a sensor, etc. The parametéry de-
a car object, we have seen that it is part of a linkage strunetes a set of constraints one wishes to place on the fea-
ture which may contain othesbjectssuch as on-road, turef’s system representation of its associated fluent. The
world and vision objects. In addition, many of the feasystem representation of the fluent will generate a stream
tures associated with these objects are computed in @if-fluent data of the proper type. Often, one may want
ferent manners in different parts of the architecture with control the character of the fluent stream in terms of
different latencies. sampling rate, interpolation strategy, etc. The parameters
One candidate definition for an object could be the agrg:, . . ., argy, denote the arguments to the feature. For
gregate of all features parameterized with the object idegi#inplicity, we assume these asbject symbolsHere are
tifier. But an object only represents some aspects of afew examples:
entity in the world. To represent that several different estimatedVelocity(DOR, policyl, carObjl),
objects actually represent the same entity in the world,sfs1 = cameraPos1(camSensorl, policy2, camObj1),
links are created between those objects. It is these linksfs2 = cameraPos2(camSensor2, policy3, camObj1)
age structures that represent all the aspects of an entityfs3 = cameraPos2(DOR, policy4, camObj1)
which are known to the UAV agent. It can be the case thatNote that in the latter two cases, we are essentially re-
two linkage structures in fact represent the same entityf@iring to the same property of the onboard camera. In
the world but the UAV agent is unable to determine thithe first case the position is stored in the actual sensor in-
Two objects may even be of the same type but have diffégrface while in the second a representation of the sensor
ent linkage structures associated with them. For examptgprmation exists in the DOR. It is the same feature, but
given two car objects, one may not have an on-road at&ch representation may have different properties.
ject, but an off-road object, as part of its linkage structure. Additionally, we allow structured complex features,
It is important to point out that objects as intended hevéhose intended purpose is to denote features defined
have some similarities with OOP objects, but many difr terms of others through some operation on the input
ferences. For more details see [13]. features. Any structured complex featdris denoted as
f(loc, compUnit(fsi,..., fs)),policy,args,...,argg).
In this case, the only difference between a structured
6 The DyKnow Framework primitive feature and a structured complex feature is that
an additional function representing a computational unit is
added, with structured primitive or complex features as ar-
In section 5, we considered a number of ontologicguments. For example, one might like to fuse stream data
distinctions that have to be represented within DARA &om the two different sources of data for camera position,
data structures. In addition, since declarative specificienotedsfs1 andsfs2, above. This could be denoted as
tions of both features and policies that determine viewsmeraPos(DOR, fuseCameraPos(sfs1, sfs2), pol5, heli)
of fluent streams are 1st-class citizens in DyKnow, a lawhereheli refers to the UAV platform.



One could argue that too many aspects of the archisll or both push and pull subscription to data. These par-
tecture’s implementation level are being lifted into thiécular constraints can not be changed by any user of this
declarative specification language, but that is the poifgature at this location, although if there are choices as
Various high-level functionalities in autonomous systents access, these may be further constrained by the repre-
may often be required to reason about sources, quansgntational equivalent of a policy which we will consider
and quality of data in the absence of operator assistargt®rtly. Thecache specification can specify how many
Context will also determine what kind of data and hodata values are stored or for what interval of time data
much is required for the task at hand. This particulaalues should be stored in the cache. For instance, the lo-
framework provides the means of reflecting on aspectsoaftion may only allow the storage of the current value, or
the underlying architecture of the system. In fact, in corof the current and previous value, or of a bounded stream
plex distributed environments, autonomous agents mayirvalues generated in the last 3 seconds.
fact be receiving data streams from outside sources andssociated with each complex structured feature sym-
the location and policy parameters could easily reflect thisl is acomplex feature representation structure
and be used in the systems reasoning processes.

(sfs, fluent spec., compUnit(fsi,..., fsi),

. ., cach .
6.2 The Data Representation Level access spec., cache spec.)

The meanina of features. fluents. location olicie There is little difference between a complex and prim-
ng ures, T ' IonsS, POICIgR o feature representation structure other than that the

rceonr]g:;zttlgtri]::];n:t?lyjsztrjegti)]ne%i: Ad?rtﬁ(;r:én?nd tg;:]ouﬂhent generator is replaced with an instantiated computa-

grgunded through sensors on a contiﬁual basis during %nallunif[ and there is no update specification si.nce the
: T itention is that such structures represent nodes in a data

achievement of mission tasks. The nature of these eRi6w network consisting of combinations of streams and

sentational structures is the topic of this section. computational units. For example, such a structure would

A;socigtgq with each primitive stfuctured feature syfa sed to translate between coordinates in an image and
bol is aprimitive feature representation structure geographical coordinates.

The internal data structure used to represent a fluent
stream is the sample trace, which is a set of samples.
access spec., cache spec.) Sample traces are generated by the fluent generator or
computational unit relative to the sum of constraints in
A primitive feature representation structure prahe different specifications. A sample is a triggle, ¢, v)
vides information about access and update methagsisting of a value and two time-points. The first time-
(access spec., update spec.) for a feature at a locationpoint, the index time, represents the time at which its cor-
(sfs);, storage constraints for samples of the featuresponding value is relevant, e.g. the time a picture was
(cache spec.) and constraintsfiuent spec.) on a process taken from which the position of an object was extracted.
(fluent generator) which can be invoked to generate &he second time-point, the sample time, is the time at
stream of data representing the fluent associated with Wigich the sample was created. This information is im-
feature in question. From a semantic perspective, a fgartant when reasoning about latencies. The time-points
ture representation structure denotes in some sense,titlegnselves can be sampled either from a discrete or a con-
meaning of the fluent associated with the feature in ttiauous clock.
sfs. The system can not represent the fluent more preAssociated with each policy is @olicy descriptor A
cisely due to the inherent limitations of its implementatiopolicy descriptor instantiates an interface to a specific
at this specific location in the architecture. feature representation and can be used to place further
For example, different types of sensors may place annstraints on the fluent stream generated by the specific
upper or lower bound on legal sampling capability, or paieature representation. Any functionality in DARA that
ticular types of event channels may only allow push @rants to access a specific feature must do so through a

(sfs, fluent spec., fluent generator, update spec.,



policy descriptor. The policy descriptor is thus conteyartial temporal models in the logical sense. These partial
tual in nature and there can be many users of a spedémporal models can then be used on the fly to interpret
feature representation, each with its own unique poliggmporal logical formulas in TAL or other temporal for-
There are many uses of policy descriptors. For instanogalisms. Such a functionality can be put to good use in
they can be used to implement specific sampling rates aahstructing execution monitors, predictive modules, di-
when specific values are not provided by the associatghostic modules, etc. The net result is a very powerful
feature representation, the policy descriptor can interpnechanism for dealing with a plethora of issues associ-
late stream values in different ways to assure values &ied with focus of attention and situational awareness.
each sample. A descriptor can be used as a filter and only

generate values within upper and/or lower bounds, or onl . . .

generate values when there is a change in the stream.7>|/n Applications using DyKnow

the forthcoming examples, some of these techniques will
be demonstrated. In the following two subsections, we will show how

the DyKnow framework can be used to generate fluent
. streams for further processing by two important delibera-
6.3 The Semantic Level tive functionalities in the DARA system, chronicle recog-

The specification level provides the DARA system with @ition and execution monitoring. Both are implemented in
logical tool consisting of an extended version of a logibe UAV system. Before doing this, we provide a short de-
of action and change, TAL (temporal action logic) whicAcription of the Dynamic Object Repository (DOR), an es-
can be used to specify features used in DARA, data fl@@ntial part of the DARA which uses the DyKnow frame-
networks constructed from computational units and flwork to provide other functionalities in the system with
ent streams, and policies which contextually modify flunformation about the properties of dynamic objects most
ent streams for particular constraints associated with mpten constructed from sensor data streams.
sion tasks. In addition, TAL can be used as a basis for plan
generation, execution monitoring, diagnosis, and chroryi_—l The Dynamic Object Repository
cle recognition, although currently, it is primarily used for
specification purposes. The Dynamic Object Repository (DOR) is essentially a
The data representation level implements the DyKnaaft real-time database used to construct and manage the
framework which relates the formal specification to senbject linkage structures described in the introduction.
sory input via a suite of representational structures dehe DOR is implemented as a CORBA server and the
scribed in the previous section. The data representatiorage processing module interfaces to the DOR and sup-
level can also be used separately from the specificatigies vision objects. Task procedures in the MTA access
level by the different deliberative, reactive and contréature information about these objects via the DyKnow
functionalities in the DARA system. framework, creating descriptors on-the-fly and construct-
In fact, one can view DyKnow as implementing a digng linkages. Computational units are used to provide val-
tributed qualitative signal processing tool where the syses for more abstract feature properties associated with
tem is given the functionality to generate dynamic repréiese objects. For example, the co-location process in-
sentations of parts of its internal and external environmestiving features from the vision, helicopter and camera
in a contextual manner through the use of policy descripbjects, in addition to information from the GIS, use com-
tors and feature representation structures. The dynamigational units to output geographical coordinates. These
representations can be viewed as collections of time sge then used to update the positional features in world
ries data at various levels of abstraction, each time seridgects linked to the specific vision objects in question.
representing a particular feature and each bundle repre©bjects are referenced via uniqgue symbols which are
senting a particular history or progression. Another viegveated by the symbol generation module which is part
of such dynamic representations and one which is actualfythe DOR. Each symbol is typed using pre-defined do-
put to good use is to interpret the fluent stream bundlesmagins such as car, world-object, vision-object, vehicle,



etc. Symbols can be members of more than one domtie car object as argument and uses this as an index into
and are used to instantiate feature representations anthasGIS to return the road segment that the vehicle is in.
indexes for collecting information about features whic8imilarly, incross is a complex feature structure whose
take these symbols as arguments. Since domains colmilean value is calculated by using a computational unit
symbols whichreferencea certain type of object, one carthat takes theoadseg fluent stream as input and returns a
also conveniently ask for information about collections dmoolean output stream calculated via a lookup in the GIS.
aggregates of objects. For example, “take all vision ob-For the sake of brevity, a car is defined to pass through
jects and process a particular feature for each in a certaiintersection if its road segment type is not a crossing
manner”. then it eventually is in a road segment that is a crossing
and then it is again in a road segment that is not a cross-
o ) ~ing. In this case, if the fluent stream generatedhoyoss
7.2 An Application to Chronicle Recogni- generates samples going from false to true and then even-
tion tually true to false within a certain time frame then the car
is recognized as passing through a crossing. The chron-
icle recognition system would receive such streams and
Chronicles are used to represent complex occurrengggognize two change events which match its chronicle

of activity described in terms of temporally constrainegefinition.

event structures. In this context, an event is defined as ghe stream itself requires some modification g
change in the value of a feature. For example, in a traffiy3 specifies this via anonotonic timeconstraint and a
monitoring application, a UAV might fly to an intersectiorchangeconstraint. The monotonic time constraint would
and try and identify how many vehicles turn left, right omake sure the stream is ordered, i.e. the time stamp
drive straight through a specific intersection. In anoth@f events increase monotonically. The change constraint
scenario, the UAV may be interested in identifying vehgpecifies how change is defined for this stream. There are
cle overtaking. Each of these complex activities can BEVEral alternatives which can be used:

defined in terms of one or more chronicles. In the WITAS e any change policy- any difference between the previous
UAV, we use the CRS chronicle recognition system devel- and current value is a change;

oped by France Telecom. CRS is an extension of IxXTeTe absolute change policy an absolute difference between
[8]. Our chronicle recognition module is wrapped as a the previous and current value larger than a parameter
CORBA server. delta is a change;

As an example, suppose we would like to recognize ve-e relative change policy- a normalized difference between
hicles passing through an intersection. Assume cars are the previous and current value larger than a parameter
being identified and tracked through the UAV's camera deltais a change.
as it hovers over a particular intersection. Recall that theThere are obvious variations on these policies for dif-
DOR generates and maintains linkage structures for vefairent types of signal behavior. For example, one might
cles as they are identified and tracked. It can be assumetht to deal with oscillatory values due to uncertainty of
that the following structured features exist: data, etc. The example used above is only intended to
pos = position(DOR, policyl, carl) provide an overview as to how DyKnow is used by other
roadseg = road_segment(DOR, roadSegment(pos), pol- modules and is therefore simplified.
icy2, carl)
incross = in_crossing(DOR, inCrossing(roadseg), policy3, 7.3 An Application to Execution Monitor-
carl) . . ing

pos is a feature of a car object and its fluent stream can
be accessed via the DOR as part of its linkage structure.
roadseg is a complex feature whose value is calculated The WITAS UAV architecture has an execution mon-
via a computational unitoadSegment which takes the itoring module which is based on the use of a tempo-
geographical position of a world object associated withl logic, LTL (linear temporal logic with intervals [14]),



which provides a succinct syntax for expressing highf§2], the notification [11] and the forthcoming real-time
complex temporal constraints on activity in the UAV’s innotification [9] services. One of the purposes for this
ternal environment and even aspects of its embedding work is in the creation of a knowledge processing mid-
vironment. For example safety and liveness conditiodkeware capability, i.e. a framework for interconnect-
can easily be expressed. Due to page limitations g different knowledge representation and reasoning ser-
can only briefly describe this functionality. Essentiallyices, grounding knowledge in sensor data and provid-
we appeal to the intuitions about viewing bundles of fling uniform interfaces for processing and management of
ent streams as partial models for a temporal logic agdnerated knowledge and object structures. The frame-
evaluating formulas relative to this model. In this caseork is quite general and is intended to serve as a plat-
though, the model is fed piecewise (state-wise) to the égrm for investigating a number of pressing issues as-
ecution monitor via a state extraction mechanism assasiciated with the processing and use of knowledge on
ated with the execution monitor. A special progressignbotic platforms with soft and hard real-time constraints.
algorithm [14] is used which evaluates formulas in a cuFhese issues include anchoring, or more generally symbol
rent state and returns a new formula which if true on tlgeounding, signal to symbol transformations, information
future states would imply that the formula is true for thieision, contextual reasoning, and focus of attention. Ex-
complete time-line being generated. amples of application services which use the middleware

The DyKnow system is ideal for generating sucbapabilities are execution monitoring services, anchoring
streams and feeds these to the execution monitor. Ss@rvices and chronicle recognition services.
pose we would like to make sure that two task proce-We are not aware of any similar frameworks, but the
dures (all invocations) in the reactive layer of the DARAramework itself uses ideas from many diverse research
called A and B, can never execute in parallel. For eareas mainly related to real-time, active, temporal, and
ample, A and B may both want to use the camera méme-series database [7, 16, 20], data stream management
source. This safety condition can be expressed in LTL 2, 10], and work in the area of knowledge representa-
as the temporal formulalways—-(3x3y tp_name[x]=AA tion and reasoning.
tp_running[x]=trueA tp_name[y]=BA tp_runing[y]=true), = The main differences between DyKnow and the
where ‘always’ in the formula is the modal operator fordatabase and data stream approaches are that we have a
“at all times”. To monitor this condition the executiortifferent data model based on the concepts of features and
monitor requires fluent streams for each of the possilfleents and we have many views or representations of the
instantiations of the parameterized featuyemame and same feature data in the system each with different prop-
tp_running which can be generated by the reactive layerties depending on the context where the feature is used
of the DARA. These are fed to the instantiated executi@s described by a policy.
monitor which applies the progression algorithm to the
temporal formula above relative to the fluent streams gen-
erated via the DyKnow framework. This algorithm is ruReferences
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