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Abstract

Any autonomous system embedded in a dynamic and
changing environment must be able to create qualitative
knowledge and object structures representing aspects of
its environment on the fly from raw or preprocessed sen-
sor data in order to reason qualitatively about the environ-
ment. These structures must be managed and made ac-
cessible to deliberative and reactive functionalities which
are dependent on being situationally aware of the changes
in both the robotic agent’s embedding and internal envi-
ronment. DyKnow is a software framework which pro-
vides a set of functionalities for contextually accessing,
storing, creating and processing such structures. The sys-
tem is implemented and has been deployed in a deliber-
ative/reactive architecture for an autonomous unmanned
aerial vehicle. The architecture itself is distributed and
uses real-time CORBA as a communications infrastruc-
ture. We describe the system and show how it can be used
in execution monitoring and chronicle recognition scenar-
ios for UAV applications.

1 Introduction

Research in cognitive robotics is concerned with endow-
ing robots and software agents with higher level cognitive
functions that enable them to reason, act and perceive in
a goal-directed manner in changing, incompletely known,
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and unpredictable environments. Research in robotics has
traditionally emphasized low-level sensing, sensor pro-
cessing, control and manipulative tasks. One of the open
challenges in cognitive robotics is to integrate techniques
from both disciplines and develop architectures which
support the seamless integration of low-level sensing and
sensor processing with the generation and maintenance of
higher level knowledge structures grounded in the sensor
data.

Knowledge about the internal and external environ-
ments of a robotic agent is often both static and dynamic.
A great amount of background or deep knowledge is re-
quired by the agent in understanding its world and in un-
derstanding the dynamics in the embedding environment
where objects of interest are congnized, hypothesized as
being of a particular type or types and whose dynamics
must be continuously reasoned about in a timely manner.
This implies signal-to-symbol transformations at many
levels of abstraction with different and varying constraints
on real-time processing.

Much of the reasoning involved with dynamic objects
and the dynamic knowledge related to such objects in-
volves issues of situation awareness. How can a robotics
architecture support the task of getting the right informa-
tion in the right form to the right functionalities in the
architecture at the right time in order to support decision
making and goal-directed behavior? Another important
aspect of the problem is the fact that this is an on-going
process. Data and knowledge about dynamic objects has
to be provided continuously and on-the-fly at the rate and
in the form most efficient for the receiving cognitive or
reactive robotics functionality in a particular context.



Context is important because the most optimal rates and
forms in which a robotic functionality receives data are
often task and environmentally dependent. Consequently,
autonomous agents must be able to declaratively specify
and re-configure the character of the data received. How
to define a change, how to approximate values at time-
points where no value is given and how to synchronize
collections of values are examples of properties that can
be set in the context. By robotic functionalities, we mean
control, reactive and deliberative functionalities ranging
from sensor manipulation and navigation to high-level
functionalities such as chronicle recognition, trajectory
planning, and execution monitoring.

The paper is structured as follows. We start with sec-
tion 2 where a larger scenario using the proposed frame-
work is described. In section 3, the UAV platform used
in the project is briefly described. In section 4, DARA, a
Distributed Autonomous Robotics Architecture for UAVs
is briefly described. DyKnow is an essential module in
this architecture. In section 5, the underlying ontology
for dynamic knowledge and object structures is described.
In section 6, the basic structure and implementation of
the DyKnow framework is described. In sections 7.2 and
7.3, two deliberative functionalities which use the Dy-
Know framework are considered, chronicle recognition
and execution monitoring, in addition to the dynamic ob-
ject repository (DOR) described in section 7.1. We con-
clude in section 8 with a discussion of the role of the Dy-
Know framework and some related work.

2 An Identification and Track Sce-
nario

In order to make these ideas more precise, we will begin
with a scenario from an unmanned aerial vehicle project
the authors are involved in which requires many of the
capabilities discussed so far.

Picture the following scenario. An autonomous un-
manned aerial vehicle (UAV), in our case, a helicopter, is
given a mission to identify and track a vehicle with a par-
ticular signature in a region of a small city. The signature
is provided in terms of color and size (and possibly 3D
shape). Assume that the UAV has a 3D model of the re-
gion in addition to information about building structures

and the road system. These models can be provided or
may have been generated by the UAV itself. Additionally,
assume the UAV is equipped with a GPS and INS1 for
navigating purposes and that its main sensor is a camera
on a pan/tilt mount.

Let’s consider the processing from the bottom up, even
though in reality, there will be many feedback loops in
the UAV architecture. One way for the UAV to achieve
its task would be to initiate a reactive task procedure (par-
ent procedure) which calls the systems image processing
module with the vehicle signature as a parameter. The im-
age processing module might then try to identify colored
blobs in the region of the right size, shape and color as
a first step. These object descriptions would have to be
sent to a module in the architecture called the dynamic
object repository (DOR) which is responsible for the dy-
namic management of such objects. Each of thesevision
objectswould contain features related to the image pro-
cessing task such as RGB values with uncertainty bounds,
length and width in pixels, position in the image, a sub-
image of the object which can be used as a template for
tracking, an estimate of velocity, etc.

From the perspective of the UAV, these objects are only
cognized to the extent that they are moving colored blobs
of interest and the feature data being collected should
continue to be collected while tracking those objects per-
ceived to be of interest. What objects are of interest?
The parent procedure might identify that or those objects
which are of interest based on a similarity measure ac-
cording to size, color and movement. In order to do this,
the DOR would be instructed to create one or moreworld
objectsand link them to their respective vision objects.
At this point the object is cognized at a more qualitative
level of abstraction, yet its description in terms of its link-
age structure contains both cognitive and pre-cognitive in-
formation which must be continuously managed and pro-
cessed due to the interdependencies of the features at var-
ious levels.

A world object could contain additional features such
as position in a geographic coordinate system rather than
the low-level image coordinate. Generating a geographic
coordinate from an image coordinate continuously, called
co-locationis a complex process that involves combining

1GPS and INS are acronyms for global positioning system and iner-
tial navigation system, respectively.
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dynamic data about features from several different objects
such as the camera object, helicopter object and world
objects, together with data from an onboard geographi-
cal information system (GIS) module which is also part
of the architecture. One would require a computational
unit of sorts that takes streamed data as input and outputs
a new stream at a higher level of abstraction representing
the current geographical coordinate of the object. This co-
location process must occur in real-time and continually
occur as the world object is tracked. This implies that all
features for all dynamic objects linked to the world object
in focus have to be continually updated and managed.

At this point, the parent task may want to make a com-
parison between the geographical coordinate and the posi-
tion of that coordinate in terms of the road system for the
region, information of which is stored in the onboard GIS.
This indexing mechanism is important since it allows the
UAV to reason qualitatively about its spatial surroundings.
Let’s assume this is done and after some period of track-
ing and monitoring the stream of coordinates, the parent
procedure decides that this looks like a vehicle that is fol-
lowing the road.On-roadobjects might then be created
for each of the world objects that pass the test and linked
to their respective world objects. An on-road object could
contain more abstract and qualitative features such as po-
sition in a road segment which would allow the parent
procedure to reason qualitatively about its position in the
world relative to the road, other vehicles on the road, and
other building structures in the vicinity of the road. At this
point, streams of data are being generated and computed
for many of the features in the linked object structures at
many levels of abstraction as the helicopter tracks the on-
road objects.

The parent procedure could now use static knowledge
stored in onboard knowledge bases and the GIS together
with this dynamic knowledge to hypothesize as to the type
of vehicle. The hypothesis would of course be based on
the linkage structure for an on-road object and various
features at different levels of abstraction. Assume the par-
ent procedure hypothesizes that the on-road object is a car.
A car objectcould then be created and linked to the ex-
isting linkage structure with additional high-level feature
information about the car.

Whether or not the sum of streamed data which makes
up the linkage structure represents a particular type of
conceptual entity will only ever remain a hypothesis

which could very well change, based on changes in the
character of the streams of data. Monitors, users of
these structures, would have to be set up to observe such
changes and alert the parent procedure if the changes be-
come too abnormal relative to some criteria determined
by the parent procedure. Abnormality is a concept that
is well-suited for being reasoned about at a logical level
and the streamed data would have to be put into a form
amenable to this type of processing.

How then can an architecture be set up to support the
processes described in the UAV scenario above? This is
the main topic of this paper and in it we propose a soft-
ware system calledDyKnow.2

3 The WITAS UAV Platform

The WITAS3 Unmanned Aerial Vehicle Project [3,
4] is a long-term basic research project whose main
objectives are the development of an integrated hard-
ware/software VTOL (Vertical Take-Off and Landing)
platform for fully-autonomous missions and its future de-
ployment in applications such as traffic monitoring and
surveillance, emergency services assistance, photogram-
metry and surveying.

The WITAS UAV platform we use is a slightly modi-
fied Yamaha RMAX (figure 1). It has a total length of 3.6
m (incl. main rotor), a maximum take-off weight of 95
kg, and is powered by a 21 hp two-stroke engine. Yamaha
equipped the radio controlled RMAX with an attitude sen-
sor (YAS) and an attitude control system (YACS).

The hardware platform consists of three PC104 em-
bedded computers (figure 2). The primary flight con-
trol (PFC) system consists of a PIII (700Mhz) proces-
sor, a wireless Ethernet bridge and the following sen-
sors: a RTK GPS (serial), and a barometric altitude sen-
sor (analog). It is connected to the YAS and YACS (se-
rial), the image processing computer (serial) and the de-
liberative computer (Ethernet). The image processing
(IP) system consists of a second PC104 embedded com-

2”DyKnow” is pronounced as ”Dino” in ”Dinosaur” and stands for
Dynamic Knowledge and Object Structure Processing.

3WITAS (pronouncedvee-tas) is an acronym for the Wallen-
berg Information Technology and Autonomous Systems Laboratory at
Linköping University, Sweden.
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Figure 1: The WITAS RMAX Helicopter

puter (PIII 700MHz), a color CCD camera (S-VIDEO,
serial interface for control) mounted on a pan/tilt unit (se-
rial), a video transmitter (composite video) and a recorder
(miniDV). The deliberative/reactive (D/R) system runs
on a third PC104 embedded computer (PIII 700MHz)
which is connected to the PFC system with Ethernet using
CORBA event channels. The D/R system is described in
more detail in the next section.

For further discussion, it is important to note that com-
putational processes are executed concurrently on dis-
tributed hardware. Data flow is both synchronous and
asynchronous and the concurrent distributed nature of the
hardware platform contributes to diverse latencies in data
flow throughout the system.

4 DARA: A Distributed Au-
tonomous Robotics Architecture

The DARA system [6] consists of both deliberative and
reactive components which interface to the control ar-
chitecture of the primary flight controller (PFC). Cur-
rent flight modes include autonomous take-off and land-
ing, pre-defined and dynamic trajectory following, ve-
hicle tracking and hovering. We have chosen real-time
CORBA [15]4 as a basis for the design and implementa-
tion of a loosely coupled distributed software architecture
for our aerial robotic system.

The communication infrastructure for the architectures
is provided by CORBA facilities and services. Figure 3

4We are currently using TAO/ACE.TheAceOrb is an open source
implementation of CORBA 2.6.
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Figure 2: DARA Hardware Schematic

depicts an (incomplete) high-level schematic of some of
the software components used in the architecture. Each
of these may be viewed as a CORBA server/client provid-
ing or requesting services from each other and receiving
data and events through both real-time and standard event
channels.

The modular task architecture (MTA) which is part of
DARA is a reactive system design in the procedure-based
paradigm developed for loosely coupled heterogeneous
systems such as the WITAS aerial robotic system. Reac-
tive behaviors are implemented astask procedures(TP)
which are executed concurrently and essentially event-
driven. A TP may open its own (CORBA) event channels,
and call its own services (both CORBA and application-
oriented services such as path planners) including func-
tionalities in DyKnow.

Given the distributed nature of both the hardware and
software architectures in addition to their complexity, one
of the main issues is getting data to the right place at the
right time in the right form and to be able to transform the
data to the proper levels of abstraction for use by high-
level deliberative functionalities and middle level reactive
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functionalities. In the following sections we will describe
a very important component of the DARA system which
contributes to achieving this.
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Figure 3: DARA Software Schematic

5 An Ontological Specification for
DyKnow

In any knowledge representation endeavor, it is impor-
tant to provide a concise specification of the entities or
aspects which are the focus of representation. That being
said, it is surprisingly difficult to do this in the context of
DARA and DyKnow for the following reasons:

• There are often multiple representations of the same en-
tities or aspects associated with those entities. Often this
may be known by the system, but equally often it may not.

• The physical locations of representational structures asso-
ciated with entities must be taken into account due to the
distributed and combined asynchronous/synchronous na-
ture of the DARA architecture which often results in un-
predictable and varying latencies.

• The dual requirement of not only reasoning about the enti-
ties and aspects being represented, but the representational
structures themselves since the ultimate purpose of Dy-
Know is that of situational awareness, getting the right in-
formation in the right form to the right place in a timely
manner.

Ontologically, we view the external and internal environ-
ment of the agent as consisting of entities representing
physical and non-physical objects, properties associated
with these entities, and relations between entities. We will
call such entitiesobjectsand those properties or relations
associated with objects will be calledfeatures. Features
may be static or dynamic and parameterized with objects.

Due to the potentially dynamic nature of a feature, that
is, its ability to change value through time, afluent is as-
sociated with each feature. A fluent is simply a function
of time whose range is the feature’s type. For a dynamic
feature, the fluent values will vary through time, whereas
for a static feature the fluent will remain constant through
time.

Some examples of features would be theestimated ve-
locity of a world object, thecurrent road segmentof
an on-road object, or thedistance betweentwo car ob-
jects. Each fluent associated with these examples implic-
itly generates a continuous stream of time tagged values
of the appropriate type.

Additionally, we will introduce locations, policies,
computational unitsandfluent streamswhich refer to as-
pects of fluent representations in the actual software ar-
chitecture. At first glance, this may appear as an ontologi-
cal level error because software architectures are intended
to implement declarative specifications of entities in our
ontologies. On the other hand, it is useful to use the repre-
sentational domain which the architecture implements as
a domain of discourse for an autonomous agent if one is
interested in reasoning about limited reflective capability
as to source, quantity and quality of data flowing through
a system and dynamically specifying its use by various
functionalities to achieve tasks.

A location is intended to denote any pre-defined phys-
ical or software location that hosts feature data in the
DARA architecture. Some examples would be onboard
or offboard databases, CORBA event channels, physical
sensors or their device interfaces, etc. In fact, a location
will be used as an index to reference a representational
structure associated with a feature. This structure denotes
the process which implements the fluent associated with
the feature. A fluent implicitly represents a stream of data,
a fluent stream. The stream is continuous, but can only
ever be approximated in an architecture. Apolicy is in-
tended to represent a particular contextual window or fil-
ter used to access a fluent data stream. Particular function-
alities in the architecture may need to sample the stream
at a particular rate or interpolate values in the stream in
a certain manner. Policies will denote such collections of
constraints.Computational unitsare intended to denote
processes which take fluent streams as input, perform op-
erations on these streams and generate new fluent streams
as output.
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In summary, the ontology consists of objects, features,
fluents, in addition to fluent streams, locations, policies,
and computational units. Each of these entities has to be
represented either syntactically or in the form of a data
structure within the architecture and many of these data
structures are grounded through sensor data perceived
through the robotic agent’s sensors.

An ontologically difficult issue involves the meaning of
an object. In a distributed architecture such as DARA,
information about a specific object is often distributed
throughout the system, some of this information may be
redundant and it may often even be inconsistent due to is-
sues of precision and approximation. For example, given
a car object, we have seen that it is part of a linkage struc-
ture which may contain otherobjectssuch as on-road,
world and vision objects. In addition, many of the fea-
tures associated with these objects are computed in dif-
ferent manners in different parts of the architecture with
different latencies.

One candidate definition for an object could be the ag-
gregate of all features parameterized with the object iden-
tifier. But an object only represents some aspects of an
entity in the world. To represent that several different
objects actually represent the same entity in the world,
links are created between those objects. It is these link-
age structures that represent all the aspects of an entity
which are known to the UAV agent. It can be the case that
two linkage structures in fact represent the same entity in
the world but the UAV agent is unable to determine this.
Two objects may even be of the same type but have differ-
ent linkage structures associated with them. For example,
given two car objects, one may not have an on-road ob-
ject, but an off-road object, as part of its linkage structure.
It is important to point out that objects as intended here
have some similarities with OOP objects, but many dif-
ferences. For more details see [13].

6 The DyKnow Framework

In section 5, we considered a number of ontological
distinctions that have to be represented within DARA as
data structures. In addition, since declarative specifica-
tions of both features and policies that determine views
of fluent streams are 1st-class citizens in DyKnow, a lan-

guage for referring to features, locations, computational
units and policies has to be provided.

6.1 The Specification Level

Let’s begin at the declarative level. We use an ex-
tended version of a logic of action and change called
TAL [5] to provide the syntax for features and flu-
ents. Any structured primitive featuref is denoted as
f(loc, policy, arg1, . . . , argk). The parameterloc de-
notes a system location from a pre-defined set of locations
associated with DARA. The location could be a database,
an event channel, a sensor, etc. The parameterpolicy de-
notes a set of constraints one wishes to place on the fea-
turef ’s system representation of its associated fluent. The
system representation of the fluent will generate a stream
of fluent data of the proper type. Often, one may want
to control the character of the fluent stream in terms of
sampling rate, interpolation strategy, etc. The parameters
arg1, . . . , argk denote the arguments to the feature. For
simplicity, we assume these areobject symbols. Here are
a few examples:

estimatedVelocity(DOR, policy1, carObj1),
sfs1 = cameraPos1(camSensor1, policy2, camObj1),
sfs2 = cameraPos2(camSensor2, policy3, camObj1)
sfs3 = cameraPos2(DOR, policy4, camObj1)
Note that in the latter two cases, we are essentially re-

ferring to the same property of the onboard camera. In
the first case the position is stored in the actual sensor in-
terface while in the second a representation of the sensor
information exists in the DOR. It is the same feature, but
each representation may have different properties.

Additionally, we allow structured complex features,
whose intended purpose is to denote features defined
in terms of others through some operation on the input
features. Any structured complex featuref is denoted as
f(loc, compUnit(fs1, . . . , fsl), policy, arg1, . . . , argk).
In this case, the only difference between a structured
primitive feature and a structured complex feature is that
an additional function representing a computational unit is
added, with structured primitive or complex features as ar-
guments. For example, one might like to fuse stream data
from the two different sources of data for camera position,
denotedsfs1 and sfs2, above. This could be denoted as
cameraPos(DOR, fuseCameraPos(sfs1, sfs2), pol5, heli)
whereheli refers to the UAV platform.

6



One could argue that too many aspects of the archi-
tecture’s implementation level are being lifted into the
declarative specification language, but that is the point.
Various high-level functionalities in autonomous systems
may often be required to reason about sources, quantity,
and quality of data in the absence of operator assistance.
Context will also determine what kind of data and how
much is required for the task at hand. This particular
framework provides the means of reflecting on aspects of
the underlying architecture of the system. In fact, in com-
plex distributed environments, autonomous agents may in
fact be receiving data streams from outside sources and
the location and policy parameters could easily reflect this
and be used in the systems reasoning processes.

6.2 The Data Representation Level

The meaning of features, fluents, locations, policies,
computational units, and objects is determined through
representational structures in DARA. These in turn are
grounded through sensors on a continual basis during the
achievement of mission tasks. The nature of these repre-
sentational structures is the topic of this section.

Associated with each primitive structured feature sym-
bol is aprimitive feature representation structure

〈sfs,fluent spec.,fluent generator , update spec.,

access spec., cache spec.〉

A primitive feature representation structure pro-
vides information about access and update methods
(access spec., update spec.) for a feature at a location
(sfs); storage constraints for samples of the feature
(cache spec.) and constraints (fluent spec.) on a process
(fluent generator ) which can be invoked to generate a
stream of data representing the fluent associated with the
feature in question. From a semantic perspective, a fea-
ture representation structure denotes in some sense, the
meaning of the fluent associated with the feature in the
sfs. The system can not represent the fluent more pre-
cisely due to the inherent limitations of its implementation
at this specific location in the architecture.

For example, different types of sensors may place an
upper or lower bound on legal sampling capability, or par-
ticular types of event channels may only allow push or

pull or both push and pull subscription to data. These par-
ticular constraints can not be changed by any user of this
feature at this location, although if there are choices as
to access, these may be further constrained by the repre-
sentational equivalent of a policy which we will consider
shortly. Thecache specification can specify how many
data values are stored or for what interval of time data
values should be stored in the cache. For instance, the lo-
cation may only allow the storage of the current value, or
of the current and previous value, or of a bounded stream
of values generated in the last 3 seconds.

Associated with each complex structured feature sym-
bol is acomplex feature representation structure

〈sfs,fluent spec., compUnit(fs1, . . . , fsl),
access spec., cache spec.〉

There is little difference between a complex and prim-
itive feature representation structure other than that the
fluent generator is replaced with an instantiated computa-
tional unit and there is no update specification since the
intention is that such structures represent nodes in a data
flow network consisting of combinations of streams and
computational units. For example, such a structure would
be used to translate between coordinates in an image and
geographical coordinates.

The internal data structure used to represent a fluent
stream is the sample trace, which is a set of samples.
Sample traces are generated by the fluent generator or
computational unit relative to the sum of constraints in
the different specifications. A sample is a triple〈ti, ts, v〉
consisting of a value and two time-points. The first time-
point, the index time, represents the time at which its cor-
responding value is relevant, e.g. the time a picture was
taken from which the position of an object was extracted.
The second time-point, the sample time, is the time at
which the sample was created. This information is im-
portant when reasoning about latencies. The time-points
themselves can be sampled either from a discrete or a con-
tinuous clock.

Associated with each policy is apolicy descriptor. A
policy descriptor instantiates an interface to a specific
feature representation and can be used to place further
constraints on the fluent stream generated by the specific
feature representation. Any functionality in DARA that
wants to access a specific feature must do so through a
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policy descriptor. The policy descriptor is thus contex-
tual in nature and there can be many users of a specific
feature representation, each with its own unique policy.
There are many uses of policy descriptors. For instance,
they can be used to implement specific sampling rates and
when specific values are not provided by the associated
feature representation, the policy descriptor can interpo-
late stream values in different ways to assure values for
each sample. A descriptor can be used as a filter and only
generate values within upper and/or lower bounds, or only
generate values when there is a change in the stream. In
the forthcoming examples, some of these techniques will
be demonstrated.

6.3 The Semantic Level

The specification level provides the DARA system with a
logical tool consisting of an extended version of a logic
of action and change, TAL (temporal action logic) which
can be used to specify features used in DARA, data flow
networks constructed from computational units and flu-
ent streams, and policies which contextually modify flu-
ent streams for particular constraints associated with mis-
sion tasks. In addition, TAL can be used as a basis for plan
generation, execution monitoring, diagnosis, and chroni-
cle recognition, although currently, it is primarily used for
specification purposes.

The data representation level implements the DyKnow
framework which relates the formal specification to sen-
sory input via a suite of representational structures de-
scribed in the previous section. The data representation
level can also be used separately from the specification
level by the different deliberative, reactive and control
functionalities in the DARA system.

In fact, one can view DyKnow as implementing a dis-
tributed qualitative signal processing tool where the sys-
tem is given the functionality to generate dynamic repre-
sentations of parts of its internal and external environment
in a contextual manner through the use of policy descrip-
tors and feature representation structures. The dynamic
representations can be viewed as collections of time se-
ries data at various levels of abstraction, each time series
representing a particular feature and each bundle repre-
senting a particular history or progression. Another view
of such dynamic representations and one which is actually
put to good use is to interpret the fluent stream bundles as

partial temporal models in the logical sense. These partial
temporal models can then be used on the fly to interpret
temporal logical formulas in TAL or other temporal for-
malisms. Such a functionality can be put to good use in
constructing execution monitors, predictive modules, di-
agnostic modules, etc. The net result is a very powerful
mechanism for dealing with a plethora of issues associ-
ated with focus of attention and situational awareness.

7 Applications using DyKnow

In the following two subsections, we will show how
the DyKnow framework can be used to generate fluent
streams for further processing by two important delibera-
tive functionalities in the DARA system, chronicle recog-
nition and execution monitoring. Both are implemented in
the UAV system. Before doing this, we provide a short de-
scription of the Dynamic Object Repository (DOR), an es-
sential part of the DARA which uses the DyKnow frame-
work to provide other functionalities in the system with
information about the properties of dynamic objects most
often constructed from sensor data streams.

7.1 The Dynamic Object Repository

The Dynamic Object Repository (DOR) is essentially a
soft real-time database used to construct and manage the
object linkage structures described in the introduction.
The DOR is implemented as a CORBA server and the
image processing module interfaces to the DOR and sup-
plies vision objects. Task procedures in the MTA access
feature information about these objects via the DyKnow
framework, creating descriptors on-the-fly and construct-
ing linkages. Computational units are used to provide val-
ues for more abstract feature properties associated with
these objects. For example, the co-location process in-
volving features from the vision, helicopter and camera
objects, in addition to information from the GIS, use com-
putational units to output geographical coordinates. These
are then used to update the positional features in world
objects linked to the specific vision objects in question.

Objects are referenced via unique symbols which are
created by the symbol generation module which is part
of the DOR. Each symbol is typed using pre-defined do-
mains such as car, world-object, vision-object, vehicle,
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etc. Symbols can be members of more than one domain
and are used to instantiate feature representations and as
indexes for collecting information about features which
take these symbols as arguments. Since domains collect
symbols whichreferencea certain type of object, one can
also conveniently ask for information about collections or
aggregates of objects. For example, “take all vision ob-
jects and process a particular feature for each in a certain
manner”.

7.2 An Application to Chronicle Recogni-
tion

Chronicles are used to represent complex occurrences
of activity described in terms of temporally constrained
event structures. In this context, an event is defined as a
change in the value of a feature. For example, in a traffic
monitoring application, a UAV might fly to an intersection
and try and identify how many vehicles turn left, right or
drive straight through a specific intersection. In another
scenario, the UAV may be interested in identifying vehi-
cle overtaking. Each of these complex activities can be
defined in terms of one or more chronicles. In the WITAS
UAV, we use the CRS chronicle recognition system devel-
oped by France Telecom. CRS is an extension of IxTeT
[8]. Our chronicle recognition module is wrapped as a
CORBA server.

As an example, suppose we would like to recognize ve-
hicles passing through an intersection. Assume cars are
being identified and tracked through the UAV’s camera
as it hovers over a particular intersection. Recall that the
DOR generates and maintains linkage structures for vehi-
cles as they are identified and tracked. It can be assumed
that the following structured features exist:
pos = position(DOR, policy1, car1)
roadseg = road segment(DOR, roadSegment(pos), pol-
icy2, car1)
incross = in crossing(DOR, inCrossing(roadseg), policy3,
car1)

pos is a feature of a car object and its fluent stream can
be accessed via the DOR as part of its linkage structure.
roadseg is a complex feature whose value is calculated
via a computational unitroadSegment which takes the
geographical position of a world object associated with

the car object as argument and uses this as an index into
the GIS to return the road segment that the vehicle is in.
Similarly, incross is a complex feature structure whose
boolean value is calculated by using a computational unit
that takes theroadseg fluent stream as input and returns a
boolean output stream calculated via a lookup in the GIS.

For the sake of brevity, a car is defined to pass through
an intersection if its road segment type is not a crossing
then it eventually is in a road segment that is a crossing
and then it is again in a road segment that is not a cross-
ing. In this case, if the fluent stream generated byincross
generates samples going from false to true and then even-
tually true to false within a certain time frame then the car
is recognized as passing through a crossing. The chron-
icle recognition system would receive such streams and
recognize two change events which match its chronicle
definition.

The stream itself requires some modification andpol-
icy3 specifies this via amonotonic timeconstraint and a
changeconstraint. The monotonic time constraint would
make sure the stream is ordered, i.e. the time stamp
of events increase monotonically. The change constraint
specifies how change is defined for this stream. There are
several alternatives which can be used:

• any change policy– any difference between the previous
and current value is a change;

• absolute change policy– an absolute difference between
the previous and current value larger than a parameter
delta is a change;

• relative change policy– a normalized difference between
the previous and current value larger than a parameter
delta is a change.

There are obvious variations on these policies for dif-
ferent types of signal behavior. For example, one might
want to deal with oscillatory values due to uncertainty of
data, etc. The example used above is only intended to
provide an overview as to how DyKnow is used by other
modules and is therefore simplified.

7.3 An Application to Execution Monitor-
ing

The WITAS UAV architecture has an execution mon-
itoring module which is based on the use of a tempo-
ral logic, LTL (linear temporal logic with intervals [14]),
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which provides a succinct syntax for expressing highly
complex temporal constraints on activity in the UAV’s in-
ternal environment and even aspects of its embedding en-
vironment. For example safety and liveness conditions
can easily be expressed. Due to page limitations we
can only briefly describe this functionality. Essentially,
we appeal to the intuitions about viewing bundles of flu-
ent streams as partial models for a temporal logic and
evaluating formulas relative to this model. In this case
though, the model is fed piecewise (state-wise) to the ex-
ecution monitor via a state extraction mechanism associ-
ated with the execution monitor. A special progression
algorithm [14] is used which evaluates formulas in a cur-
rent state and returns a new formula which if true on the
future states would imply that the formula is true for the
complete time-line being generated.

The DyKnow system is ideal for generating such
streams and feeds these to the execution monitor. Sup-
pose we would like to make sure that two task proce-
dures (all invocations) in the reactive layer of the DARA,
called A and B, can never execute in parallel. For ex-
ample, A and B may both want to use the camera re-
source. This safety condition can be expressed in LTL
as the temporal formulaalways¬(∃x∃y tp name[x]=A∧
tp running[x]=true∧ tp name[y]=B∧ tp runing[y]=true),
where “always” in the formula is the modal operator for
“at all times”. To monitor this condition the execution
monitor requires fluent streams for each of the possible
instantiations of the parameterized featurestp name and
tp running which can be generated by the reactive layer
of the DARA. These are fed to the instantiated execution
monitor which applies the progression algorithm to the
temporal formula above relative to the fluent streams gen-
erated via the DyKnow framework. This algorithm is run
continuously. If the formula evaluates to false at some
point, an alert message is sent to a monitor set up by the
functionality interested in this information and modifica-
tions in the system configuration can be made.

8 Related Work

The DyKnow framework is designed for a distributed,
real-time and embedded environment [17, 18] and is de-
veloped on top of an existing middleware platform, real-
time CORBA [19], using the real-time event channel

[12], the notification [11] and the forthcoming real-time
notification [9] services. One of the purposes for this
work is in the creation of a knowledge processing mid-
dleware capability, i.e. a framework for interconnect-
ing different knowledge representation and reasoning ser-
vices, grounding knowledge in sensor data and provid-
ing uniform interfaces for processing and management of
generated knowledge and object structures. The frame-
work is quite general and is intended to serve as a plat-
form for investigating a number of pressing issues as-
sociated with the processing and use of knowledge on
robotic platforms with soft and hard real-time constraints.
These issues include anchoring, or more generally symbol
grounding, signal to symbol transformations, information
fusion, contextual reasoning, and focus of attention. Ex-
amples of application services which use the middleware
capabilities are execution monitoring services, anchoring
services and chronicle recognition services.

We are not aware of any similar frameworks, but the
framework itself uses ideas from many diverse research
areas mainly related to real-time, active, temporal, and
time-series database [7, 16, 20], data stream management
[1, 2, 10], and work in the area of knowledge representa-
tion and reasoning.

The main differences between DyKnow and the
database and data stream approaches are that we have a
different data model based on the concepts of features and
fluents and we have many views or representations of the
same feature data in the system each with different prop-
erties depending on the context where the feature is used
as described by a policy.
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[16] Gultekin Özsoyoglu and Richard T. Snodgrass.
Temporal and real-time databases: A survey.IEEE
Trans. Knowl. Data Eng., 7(4):513–532, 1995.

[17] Douglas C. Schmidt. Adaptive and reflective
middleware for distributed real-time and embed-
ded systems.Lecture Notes in Computer Science,
2491:282–??, 2002.

[18] Douglas C. Schmidt. Middleware for real-time and
embedded systems.Communications of the ACM,
45(6):43–48, June 2002.

[19] Douglas C. Schmidt and Fred Kuhns. An overview
of the real-time CORBA specification.IEEE Com-
puter, 33(6):56–63, June 2000.

[20] Duri Schmidt, Angelika Kotz Dittrich, Werner
Dreyer, and Robert W. Marti. Time series, a ne-
glected issue in temporal database research? InPro-
ceedings of the International Workshop on Temporal
Databases, pages 214–232. Springer-Verlag, 1995.

11


