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Abstract

Urban Search And Rescue (USAR) is a time critical task. One goal in Rescue
Robotics is to have a team of heterogeneous robots that explore autonomously
the disaster area, while jointly creating a map of the terrain and to register
victim locations, which can further be utilized by human task forces for rescue.
Basically, the robots have to solve autonomously in real-time the problem of
Simultaneous Localization and Mapping (SLAM), consisting of a continuous
state estimation problem, and a discrete data association problem.

In this paper we contribute a novel method for efficient loop closure in harsh
large-scale environments that utilizes RFID technology for data association
and slippage-sensitive odometry for 2D pose tracking. Furthermore, we intro-
duce a computational efficient method for building elevation maps by utilizing
an Extended Kalman Filter for 3D pose tracking, which can be applied in
real-time while navigating on rough terrain.

The proposed methods have been extensively evaluated within outdoor en-
vironments, as well as within USAR test arenas designed by the National
Institute of Standards and Technology (NIST). Our results show that the pro-
posed methods perform robustly and efficiently within the utilized benchmark
scenarios.

1 Introduction

Urban Search And Rescue (USAR) is a time critical task. Rescue teams have to explore
a large terrain within a short amount of time in order to locate survivors after a disaster.
In this scenario, the number of survivors decreases drastically by each day due to hostile
environmental conditions and injuries of victims. Therefore, the survival rate depends sig-
nificantly on the efficiency of rescue teams. One goal in Rescue Robotics is to have a team
of heterogeneous robots that explore autonomously, or partially guided by an incident com-
mander, the disaster area. Their task is to jointly create a map of the terrain and to register
victim locations, which can further be utilized by human task forces for rescue.



Basically, the robots have to solve autonomously in real-time the problem of Simultaneous
Localization and Mapping (SLAM), consisting of a continuous state estimation problem and a
discrete data association problem. Within disaster areas, these problems are extraordinarily
challenging. On the one hand, state estimation is difficult due to the extremely unreliable
odometry measurements usually found on robots operating on rough terrain. On the other
hand, data association, i.e. to recognize locations from sensor data, is challenging due to
the unstructured environment. Firemen of 9/11 reported that they had major difficulties
to orientate themselves after leaving collapsed buildings. The arbitrary structure of the
environment, and limited visibility conditions due to smoke, dust, and fire, prevent an easy
distinction of different places. This problem is also relevant to standard approaches for
SLAM, which recognize places by associating vision-based and LRF-based features. These
extraordinary circumstances make it very hard to apply common techniques from robotics.
Many of these techniques have been developed under strong assumptions, for example, they
require polygonal structures, such as typically found in office-like environments (Gutmann
and Schlegel, 1996; Grisetti et al., 2002) or depend on predictable covariance bounds from
pose tracking for solving the data association problem by validation gating (Dissanayake
et al., 2001).

In this paper we contribute a novel method for robust and efficient loop closure in large-
scale environments that utilizes RFID technology for data association and slippage-sensitive
odometry for 2D pose tracking. Furthermore, we introduce a computational efficient method
for building elevation maps by utilizing an Extended Kalman Filter for 3D pose tracking
based on scan matching supported by visual odometry, which can be applied in real-time
while navigating on rough terrain.

RFID tags have a worldwide unique number, and thus offer an elegant way to label and to
recognize locations within harsh environments. Their size is already below 0.5mm, as shown
by the µ-chip from Hitachi (Hitachi, 2003), and their price is lower than 13 Cents (Alien-
Technology, 2003). Passive RFID tags do not require to be equipped with a battery since
they are powered by the reader if they are within a certain distance. Their reading and
writing distance, which depends on the employed communication frequency, can be assumed
to be within a range of meters.

Within the proposed approach, RFIDs are actively deployed by robots at adequate locations,
as for example narrow passages that are likely to be passed. Displacements between these
RFIDs are estimated by pose tracking, and utilized for globally optimizing the locations of
the RFIDs by minimizing the Mahalanobis distance (Lu and Milios, 1997). Then, the whole
robot trajectory is interpolated by using the globally corrected poses as constraint points.
Pose tracking is carried out from wheel odometry and IMU (Inertial Measurement Unit)
data. Since wheel odometry becomes arbitrarily inaccurate if robots navigate on slippery
ground or have to overcome smaller obstacles, a method for slippage-sensitive odometry
has been developed. The introduced method, which is designed for 4WD robot platforms
with over-constrained odometry, i.e. four shaft-encoders instead of two, infers slippage of
the wheels from differences in the measured wheel velocities. Inference is carried out by a
decision tree that has been trained from labeled odometry data.

Besides the solution of the data association problem, the RFID-technology based approach



comes with three further advantages: First, in a multi-robot (Ziparo et al., 2007) or multi-
human (Kleiner and Sun, 2007) exploration scenario, multiple maps can easily be merged
into one consistent map by utilizing found correspondences from RFID tags registered on
those maps. Furthermore, they can be utilized for a communication-free coordination of
these robots (Kleiner et al., 2006; Ziparo et al., 2007). Second, RFID tags that have been
put into the environment can be used in a straightforward manner by humans to follow
routes towards victim locations, i.e. they do not need to localize themselves within a metric
map. Third, RFID tags can be used by human task forces to store additional user data, such
as the number of victims located in a room or information about hazardous areas.

Moreover, we propose an efficient method for building elevation maps in real-time, i.e. to map
the environment while the robot is in motion. The method tracks the 3D pose of the robot
by integrating the robot’s orientation, and the 2D pose generated from visual odometry
and scan matching. Furthermore, the 3D pose is updated from height observations that
have been registered on the map. Given the 3D pose, the height value of each map cell is
estimated by a Kalman filter that integrates readings from a downwards tilted LRF. Due
to the integration of the full 3D pose, the method allows to create elevation maps while the
robot traverses rough terrain, as for example, while driving over ramps and stairs.

The introduced methods have been extensively evaluated within outdoor environments, as
well as within USAR test arenas designed by the National Institute of Standards and Tech-
nology (NIST) (Jacoff et al., 2001). Our results show that the proposed methods perform
robustly and efficiently within the utilized benchmark scenarios. Moreover, we show that
RFID-SLAM is capable of closing large loops within a few seconds.

The remainder of this paper is structured as follows. In Section 2 we discuss related work.
In Section 3 we introduce the experimental platforms utilized for the evaluation of the
introduced methods. In the Section 4 we describe the approach for slippage-sensitive pose
tracking on wheeled robots. The RFID technology-based SLAM approach is introduced in
Section 5 and the real-time building of elevation maps is described in Section 6. Finally, we
provide results from real world experiments in Section 7 and conclude in Section 8.

2 Related Work

Borenstein et al. introduced a method for improving the odometry on differential-drive
robots (Borenstein and L., 1996). A method for odometry improvement and optimization of
motor control algorithms on 4WD robots has been introduced by Ojeda et al. (Ojeda and
Borenstein, 2004). They apply “Expert Rules” in order to infer the occurrence of wheel slip.

Inspired from the fundamental work by Smith et al. (Smith et al., 1988), early work on
SLAM was mainly based on the Extended Kalman Filter (EKF) (Dissanayake et al., 2001),
which updates the state vector after each measurement in O (n2). Based on the observation
that landmark estimates are conditionally independent given the robot pose, Montemerlo
et al. introduced FastSLAM, which reduces the computational complexity of EKF-based
SLAM to O (nk), whereas k is the number of robot trajectories considered at the same
time (Montemerlo et al., 2002). The framework has been further extended to using evidence



grids (Haehnel et al., 2003; Grisetti et al., 2005). Thrun et al. introduced an approach
following the idea of representing uncertainty with an information matrix instead of a co-
variance matrix (Thrun et al., 2004). By exploiting the sparsity of the information matrix
the algorithm, called Sparse Extended Information Filter (SEIF), allows updates of the state
vector in constant time. Another variant of SLAM, the Treemap algorithm, has been intro-
duced by Frese (Frese, 2006). This method divides a map into local regions and subregions,
whereas the landmarks of each region are stored at the according level of the tree hierarchy.
Lu and Milios introduced a method for globally optimizing robot trajectories by building a
constraint graph from LRF and odometry observations (Lu and Milios, 1997). Our method
is closely related to their work, however, enables efficient route graph corrections by de-
composing the problem into pose tracking, optimization, and interpolation. In contrast to
incrementally full state updates performed by EKF-based methods after each observation,
the decomposition reduces the computational requirements during runtime to a minimum,
thus allowing the efficient optimization of even large-scale environments. Whereas existing
methods typically rely on a high density of landmarks, the RFID-based approach is tailored
for very sparse landmark distributions with reliable data association.

In connection with radio transmitters, the SLAM problem has mainly be addressed as ”range-
only” SLAM (Kehagias et al., 2006; Djugash et al., 2005; Kurth et al., 2003; Kantor and
Singh, 2002) since the bearing of the radio signal cannot accurately be determined. RFIDs
have already been successfully utilized for localizing mobile robots (Hähnel et al., 2004;
Bohn and Mattern, 2004) and emergency responders (Kantor et al., 2003; Miller et al.,
2006). Hähnel and colleagues (Hähnel et al., 2004) successfully utilized Markov localiza-
tion for localizing a mobile robot in an office environment. Their approach deals with the
problem of localization within a map previously learned from laser range data and known
RFID positions, whereas the work presented in this paper describes a solution that per-
forms RFID-based localization and mapping simultaneously while exploration. Also sensor
networks-based Markov localization for emergency response has been studied (Kantor et al.,
2003). In their work, existing sensor nodes in a building are utilized for both localization
and computation of a temperature gradient from local sensor node measurements. Bohn and
colleagues examined localization based on super-distributed RFID tag infrastructures (Bohn
and Mattern, 2004). In their scenario tags are deployed beforehand in a highly redundant
fashion over large areas, e.g. densely integrated into a carpet. They outline the applica-
tion of a vacuum-cleaner robot following these tags. Miller and colleagues examined the
usability of various RFID systems for the localization of first responders within different
building classes (Miller et al., 2006). During their experiments, persons were tracked with a
Dead Reckoning Module (DRM) while walking through a building. They showed that the
trajectories can be improved by utilizing the positions of RFID tags detected within the
building. While these map improvements have been carried out with only local consistency,
the approach presented in this work yields a globally consistent map improvement.

Elevation maps are indispensable, particularly for robots operating within unstructured en-
vironments. They have been utilized on wheeled robot platforms (Pfaff et al., 2007; Wolf
et al., 2005), on walking machines (Krotkov and Hoffman, 1994; Gassmann et al., 2003), and
on car-like vehicles (Thrun et al., 2006; Ye and Borenstein, 2003). These methods differ in
the way how range data is acquired. If data is acquired from a 3D scan (Pfaff et al., 2007;
Krotkov and Hoffman, 1994), it usually suffices to employ standard error models, which



reflect uncertainty from the measured beam length. Data acquired from a 2D LRF, e.g.
tilted downwards, requires more sophisticated error models, such as the compensation of
pose uncertainty (Thrun et al., 2006), and handling of missing data by map smoothing (Ye
and Borenstein, 2003). Furthermore, full 3D data processing is usually not possible in real-
time since 3D data acquisition, as well as 3D data registration, is still time consuming, thus
requiring interruptions of continuous navigation. In contrast to previous work, our approach
deals with the problem of building elevation maps in real-time, allowing the robot continuous
planning and navigation. Furthermore, we relax the assumption that the robot has to be
situated on a flat surface while mapping rough terrain.

3 Experimental Platform

The work proposed in this paper has been extensively tested on two different robot platforms,
a 4WD (four wheel drive) differentially steered robot for RFID technology-based exploration
and mapping of large-scale environments (see Section 5), and a tracked robot for climbing
and mapping of rough terrain (see Section 6). Figure 1(a) shows the tracked Lurker robot,
which is based on the Tarantula R/C toy. Although based on a toy, this robot is capable of
climbing difficult obstacles, such as stairs, ramps, and random stepfields, i.e. rough terrain
simulated by an arrangement of vertically aligned blocks of wood. This is possible due to
its tracks, which can operate independently on each side, and the “Flippers”, i.e. the four
arms of the robot, which can be freely rotated at 360◦. We modified the base in order to
enable autonomous operation. First, we added a 360◦ freely turnable potentiometer to each
of the two axes for measuring the angular position of the flippers. Second, we added touch
sensors to each flipper, allowing to measure force when touching the ground or an object.
Furthermore, the robot is equipped with a 3-DOF Inertial Measurement Unit (IMU) from
Xsens, allowing drift-free measurements of the three Euler angles yaw, roll, and pitch, and
two Hokuyo URG-X004 Laser Range Finders (LRFs), one for scan matching, and one for
elevation mapping, which can be vertically tilted within 90◦. For feature tracking (Dornhege
and Kleiner, 2006) we utilized a Logitech QuickCam Pro 4000 web cam (Logitech, 2006).

Figure 1(b) shows the Zerg robot, a 4WD differentially steered platform, which has been
completely hand-crafted. The 4WD drive provides more power to the robot and therefore
allows to drive up ramps and to operate on rough terrain. Each wheel is driven by a Pitman
GM9434K332 motor with a 19.7:1 gear ratio and a shaft encoder. The redundancy given by
four encoders allows to detect heavy slippage and situations in which the robot gets stuck (see
Section 4). In order to reduce the large odometry orientation error that naturally arises from
a four-wheeled platform, the robot is also equipped with an IMU from XSens. Moreover,
the robot is equipped with a Thermal-Eye infrared thermo camera for victim detection, and
also with a Hokuyo URG-X004 LRF.

The active distribution of RFID tags is carried out by a custom-built actuator based on a
metal slider that can be moved by a conventional servo (Figure 1(e)). The slider is connected
with a magazine that maximally holds around 50 tags. Each time the mechanism is triggered,
the slider moves back and forth while dropping a single tag from the magazine. The device
is constructed in a way that for each trigger signal only one tag is released. A software
module triggers the device at adequate locations, which are determined according to the
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Figure 1. (a-c) Robots designed for rescue scenarios: (a) The Lurker robot, and (b) the Zerg robot. (c) The team
of robots waiting for the mission start during the RoboCup competition in Osaka 2005 (Pictures a,c were taken by
Raymond Sheh, and Adam Jacoff, respectively). (d-f) A novel mechanism for the active distribution of RFID tags.
(d) The utilized RFID tags. (e) The mechanism with servo. (f) The mechanism, together with an antenna, mounted
on a Zerg robot.

existing density of RFIDs, i.e. maintaining a maximal defined density of RFIDs, and also, if
operating in indoor scenarios, with respect to the structure of the environment. For example,
narrow passages, such as doorways and corridors, are likely to be passed by the robot. Hence,
RFIDs are deployed with higher probability within these kind of environmental structures.
The width of the free space surrounding the robot is computed from the distance between the
obstacles located most left and most right to the robot, found on a line which goes through
the center of the robot, and which is orthogonal to the robot’s orientation.

The antenna of the reader is mounted in parallel to the ground, allowing to detect RFIDs
lying beneath the robot. In order to enable the robot to perceive the deployment of a
RFID, the deploy device has been directly mounted above the RFID antenna, forcing de-
ployed RFIDs to pass through the antenna directly. We utilized Ario RFID chips from
Tagsys (Figure 1 (d)) with a size of 1.4 × 1.4cm, 2048Bit RAM, and a response frequency
of 13.56MHz. For the reading and writing of these tags, we employed a Medio S002 reader,
likewise from Tagsys, which operates within a range of approximately 30cm while consuming
less than 200mA. Figure 1 (f) shows the complete construction consisting of deploy device
and antenna mounted on the Zerg robot.

4 Slippage-sensitive Wheel Odometry

In this section, we introduce a method for slippage-sensitive odometry that has been devel-
oped for increasing the reliability of pose tracking on wheeled robots. The two-dimensional



pose of the robot can be represented by the vector l = (x, y, θ)T . In order to represent uncer-
tainties, the pose is modeled by a Gaussian distribution N (µl,Σl), where µl is the mean and
Σl a 3× 3 covariance matrix (Maybeck, 1979). Robot motion is measured by the odometry
and given by the traveled distance d and angle α, likewise modeled by a Gaussian distribu-
tion N(u,Σu), where u = (d, α) and Σu is a 2 × 2 covariance matrix expressing odometry
errors. The pose at time t can be updated from input ut as follows:

lt = F (lt−1, ut) =

 xt−1 + cos(θt−1)dt

yt−1 + sin(θt−1)dt

θt−1 + αt

 , (1)

Σlt = ∇FlΣlt−1∇F T
l +∇FuΣu∇F T

u , (2)

where Σu =

(
dσ2

d 0
0 ασ2

α

)
(3)

and ∇Fl and ∇Fu are partial matrices of the Jacobian matrix ∇Flu.

If the robot operates on varying ground, as for example concrete or steel sporadically covered
with newspapers and cardboard, or if it is very likely that the robot gets stuck on obstacles,
odometry errors are not linearly growing anymore, but are dependent on the particular
situation. Therefore, we designed the Zerg robot with an over-constrained odometry for
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Figure 2. Slip detection on a 4WD robot: each line in the upper graph corresponds to the velocity measurement of
one of the four wheels by shaft encoders. The black arrows indicate the true situation, e.g. driving forward, slippage,
etc., and the lower graph depicts the automatic slip detection by the decision tree classifier, given the velocities as
input.

the detection of slippage of the wheels by utilizing four shaft-encoders, one for each wheel.
From these four encoders, we recorded data while the robot was driving on varying ground,
and labeled the data sets with the classes C = (slippage, normal). This data was taken to
learn a decision tree (Quinlan, 2003) with the inputs I = (∆vLeft,∆vRight,∆vFront,∆vRear),



representing the velocity differences of the four wheels, respectively. Figure 2 depicts the
slippage detection from velocity differences by the classifier.

Given the detection of slippage, the traveled distance d is computed from the minimum
wheel velocity, e.g. vt = min (vLeftFront, vRightFront, vLeftRear, vRightRear), and the robot’s pose
is updated according to Equation 3, however, with σ2

dslip
, within covariance matrix Σu, in

order to increase uncertainty in translation. Note that the rotation update needs not to
be modified since the traveled angle α is measured by the IMU, which is not affected by
wheel slippage. The values for σ2

d and σ2
dslip

have been determined experimentally. During

extensive runs with slippage events, we recorded the true traveled distance, determined with
scan matching, and the distance estimated by the odometry. The data set was labeled by the
slippage detection and then has been utilized for computing the Root Mean Square (RMS)
error for determining the variances σ2

d and σ2
dslip

. We finally determined σd = 0.816 cm
m

and

σdslip
= 24.72 cm

m
. As we will show in Section 7, the improved odometry reduces the error

significantly, while maintaining appropriate covariance bounds.

5 RFID Technology-based SLAM

In this section we introduce a method for globally optimizing robot trajectories based on
RFID observations (Kleiner et al., 2006). This method requires as input the noisy odometry
trajectory, and the set of RFIDs that have been observed on this trajectory. The uncorrected
trajectory can be generated, for example, from slippage-sensitive pose tracking, as described
in Section 4.

RFID tags have a world-wide unique encoded number, which significantly simplifies the data
association problem in SLAM. When utilizing RFID tags, data association can reliably be
achieved even if landmarks are only sparsely distributed in the environment. Therefore, it
is possible to track the noisy robot pose over comparably large distances without landmark
observation. RFIDs can be placed manually into the environment or actively distributed by
the robots, e.g. by the deploy device described in Section 3.

The basic idea of the proposed approach is to compute local displacements between RFIDs by
Kalman-based dead reckoning (see Section 4). From the correspondences of observed RFID
tags and the estimated displacements, a globally consistent map is calculated by minimizing
the Mahalanobis distance (Lu and Milios, 1997). The optimization method can be illustrated
by considering the analogy to a spring-mass system. Consider the locations of RFIDs as
masses and the measured distances between them as springs, whereas the uncertainty of a
measurement corresponds to the hardness of the spring. Then, finding a globally consistent
map is equivalent to finding an arrangement of these masses that requires minimal energy.
The introduced method has the following advantages: On the one hand, optimized RFID
locations are globally consistent given the estimated displacements between them. On the
other hand, utilizing RFIDs as constraint points rather than odometry poses enables efficient
and robust route graph optimization since the number of elements in the joint state vector
is drastically reduced.



5.1 RFID graph optimization

The proposed method successively builds a graph G = (V,E) consisting of vertices V and
edges E, where each vertex represents an RFID tag, and each edge (Vi, Vj) ∈ E repre-

sents a measurement d̂ij of the relative displacement (∆x,∆y,∆θ)T with covariance matrix
Σ(∆x,∆y,∆θ) between the two RFID tags associated with the two vertices Vi and Vj, respec-
tively. The relative displacement between two tags is estimated by a Kalman filter, inte-
grating data from slippage-sensitive wheel odometry and the IMU (Section 4). If the robot

passes a tag, the Kalman Filter is reset in order to estimate the relative distance d̂ij to the
subsequent tag on the robot’s trajectory.

We denote the true pose vectors of n + 1 RFID nodes with x0, x1, . . . , xn, and the function
calculating the true distance between a pair of nodes (xi, xj) as measurement function dij.

The noisy measurement of the distance between two nodes (xi, xj) is denoted by d̂ij =
dij+∆dij. We assume that the error ∆dij is normally distributed and thus can be modeled by
a Gaussian distribution with zero mean and covariance matrix Σij. Loops on the trajectory
are detected if the same RFID has been observed twice. A detected loop is modeled by a
pseudo edge between the same RFID node, which will be described further in Section 5.3.

Our goal is to find the true locations of the xij given the set of measurements d̂ij and
covariance matrices Σij. This can be achieved with the maximum likelihood concept by
minimizing the following Mahalanobis-distance:

x = arg min
x

∑
i,j

(dij − d̂ij)
T Σ−1

ij (dij − d̂ij), (4)

where x denotes the concatenation of poses x0, x1, . . . , xn. Moreover, we consider the graph
as fully connected, and if there does not exist a measurement between two nodes, the inverse
covariance matrix Σ−1

ij is set to zero. If the robot’s pose is modeled without orientation θ,
e.g. because measurements from the IMU are sufficiently accurate, the optimization problem
can be solved linearly by inserting dij = xi − xj in Equation 4:

x = arg min
x

∑
i,j

(xi − xj − d̂ij)
T Σ−1

ij (xi − xj − d̂ij). (5)

Since measurements are taken relatively, we assume without loss of generality that x0 = 0
and x1, · · · , xn are relative to x0. In order to solve the minimization problem analytically,
Equation 5 can be rewritten in matrix form:

x = arg min
x

(d̂− hx)TΣ−1(d̂− hx), (6)

where hx denotes the measurement function in matrix form with h as an index function
whose elements are {1,−1, 0} and x as the concatenation of pose vectors. Furthermore, d̂

denotes the concatenation of observations d̂ij, and Σ−1 denotes the inverse covariance matrix

of d̂ij, consisting of the inverse sub-matrices Σij. Finally, the minimization problem can be
solved by:

x = (hTΣ−1h)−1hTΣ−1d̂ . (7)

and covariance of x can be calculated by:

cx = (hTΣ−1h)−1 (8)



Equation 7 can be solved in O (n3) if the covariances Σij are invertible. In practice, we
assume that measurements are independent from each other, consequently the Σij are given
as diagonal matrices. Moreover, since many nodes in the graph are unconnected, most Σ−1

ij

are set to zero. Therefore, Σ is a sparse matrix and can in general be inverted efficiently.
In order to utilize Equation 7 for the correction of the orientation angle θ, measurement
equation dij has to be linearized by a Taylor expansion (Lu and Milios, 1997). Since the
linearization leads to errors, the procedure has to be applied iteratively. We noticed during
our practical experiments that five to six iterations are sufficient.

5.2 Trajectory interpolation

The corrected RFID network can be used as a basis for correcting the odometry trajectory.
This is carried out by utilizing the corrected RFID locations as constraint points for the
correction of the trajectory. Since these constraint points are already globally consistent
according to the input data, it is not necessary to optimize the trajectory, augmented with
these constraints, globally again. It turns out to be much more efficient to perform a local
interpolation of the trajectory poses between the corrected RFIDs.

Given a sequence of corrected RFID locations, denoted by r1:t, and an uncorrected trajectory,
denoted by x1:t, the corrected trajectory, denoted by y1:t, is computed by interpolating each
pose xk ∈ x1:t between its next preceding and succeeding RFID location, respectively. In
order to correct each pose xk of the trajectory, we first determine the corrected locations
ri and rj of the two closest RFIDs before and after the pose, whereas j ≥ k ≥ i, and the
uncorrected poses xi and xj at corresponding time, respectively. Finally, the corrected pose
is computed by:

yk = xk −
(w1 (xi − ri) + w2 (xj − rj))

w1 + w2

, (9)

whereas weights w1 and w2 are computed by w1 = |rj − xk| and w2 = |ri − xk|. Experimental
results in Section 7 will show that this method together with the RFID graph optimization
allows to efficiently and robustly correct large trajectories.

5.3 RFID observation model

Each time a loop has been detected on the trajectory, i.e. a RFID has been observed twice,
a pseudo edge is added to the corresponding RFID node. We model this edge by accounting
for the spatial expansion of the utilized RFID antenna. During our experiments, we utilized
an antenna with a rectangular expansion mounted parallel to the ground, allowing to suc-
cessfully detect RFID tags lying within this expansion beneath the robot. Unfortunately, it
is not possible to tell the exact position of the detected RFID within this expansion. Hence,
it is assumed that, in the average case, RFIDs are detected within the antenna’s center, and
that RFID detections can occur at arbitrary orientations of the robot. Therefore, we model
the distance between identical tags by d̂ii = (0, 0,∆θ) and covariance matrix Σii, whereas
∆θ denotes the angle difference between the two pose estimates at the same RFID. The



covariance matrix Σii is modeled in the following way:

Σii =

σ2
ant 0 0
0 σ2

ant 0
0 0 σ2

∆θ

 , (10)

whereas σ2
ant reflects the size of the antenna, and σ2

∆θ the uncertainty of the angular difference,
which has to be linearized. In our implementation, we have chosen, according to the size of
the antenna, σant = 15cm.

6 Building Elevation Maps In Real-Time

In this section we describe a Kalman filter-based approach for building elevation maps by
integrating range measurements from a downwards tilted LRF, whereas the map is incremen-
tally build in real-time while the mobile robot explores an uneven surface. The motivation of
the presented approach is to provide a basis for enabling the robot to continuously plan and
execute skills on rough terrain. Therefore, the method has to be computational efficient and
capable of building elevation maps that are sufficiently accurate for structure classification
and behavior planning, as we have already demonstrated within another work (Dornhege
and Kleiner, 2007). We argue that building globally consistent elevation maps, e.g. by loop
closure, is computationally hard within large-scale environments since it requires to maintain
the whole map in memory. Therefore, the goal of the proposed method is to build maps
that are locally consistent within the vicinity of the robot for continuous planning and nav-
igation. In a further processing step, e.g. offline, a globally consistent map can be generated
by merging locally consistent map patches according to a globally consistent route graph, as
for example, computed by the RFID-SLAM method introduced in Section 5. Nevertheless,
in the following we will denote poses as global in order to distinguish between the local and
global coordinate frame of the robot.

An elevation map is represented by a two-dimensional array storing for each global location
(xg, yg) a height value h with variance σ2

h. In order to determine the height for each location,
endpoints from the LRF readings are transformed from robot-relative distance measurements
to global locations, with respect to the robot’s global pose, and the pitch (tilt) angle of the
LRF (see Figure 3). This section is structured as follows. In Section 6.1 we describe the
update of single cell values relative to the location of the robot, in Section 6.2 we show the
filtering of the map with a convolution kernel and in Section 6.3 we describe an algorithm
for the estimation of the robot’s 3D pose from dead reckoning and map observations.

Figure 3. Transforming range measurements to height values.



6.1 Single cell update from sensor readings

Our goal is to determine the height estimate for a single cell of the elevation map with a
Kalman filter (Maybeck, 1979), given all height observations of this cell in the past. We
model height observations zt by a Gaussian distribution N

(
zt, σ

2
zt

)
, as well as the current

estimateN
(
ĥ (t) , σ2

ĥ(t)

)
of each height value. Note that the height of cells cannot be observed

directly, and thus has to be computed from the measured distance d and LRF pitch angle
α. Measurements from the LRF are mainly noisy due to two error sources. First, the
returned distance depends on the reflection property of the material, ranging from very
good reflections, e.g. white sheet of paper, to nearly no reflections, e.g. black sheet of paper.
Second, in our specific setting, the robot acquires scans while navigating on rough terrain.
This will lead to strong vibrations on the LRF, causing an oscillation of the laser around
the servo-controlled pitch angle. Consequently, we represent measurements from the LRF
by two normal distributions, one for the measured distance N(µd, σd), and one for the pitch
angle N(µα, σα).

The measurements from the LRF are transformed to robot-relative locations (xr, yr). First,
we compute the relative distance dx and the height z of each measurement according to the
following equation (see Figure 3):(

dx

z

)
= Fdα

(
d
α

)
=

(
d cosα

hR − d sinα

)
, (11)

where hR denotes the height of the LRF mounted on the robot. Second, from distance dx

and the horizontal angle β of the laser beam, the relative cell location (xr, yr) of each cell
can be calculated by:

xr = dx cos β (12)

yr = dx sin β (13)

Equation 11 can be utilized for computing the normal distributed distance N(µdx , σdx), and
height N(µz, σz), respectively. However, since this transformation is non-linear, Fdα has to
be linearized by a Taylor expansion at µdx , µz:(

µdx

µz

)
= Fdα

(
d
α

)
(14)

Σdxz = ∇FdαΣdα∇F T
dα (15)

with ∇Fdα =

(
cosα −d sinα
− sinα −d cosα

)
(16)

and Σdα =

(
σ2

d 0
0 σ2

α

)
(17)

Then, the height estimate ĥ can be updated from observation zt, taken at time t, with the
following Kalman filter:

ĥ (t) =
1

σ2
zt

+ σ2
ĥ(t−1)

(
σ2

zt
ĥ (t− 1) + σ2

ĥ(t−1)
zt

)
(18)

σ2
ĥ(t)

=
1

1
σ2

ĥ(t−1)

+ 1
σ2

zt

, (19)



Equation 18 cannot be applied if the tilted LRF scans vertical structures since they lead
to different height measurements for the same map location. For example, close to a wall
the robot measures the upper part, far away from the wall the robot measures the lower
part. We restrict the application of the Kalman Filter by the Mahalanobis distance. If the
Mahalanobis distance between the estimate and the new observation is below a threshold
c, the observation is considered to be within the same height. We use c = 1, which has
the effect that all observations with a distance to the estimate that is below the standard
deviation σĥ, are merged. Furthermore, we are mainly interested in the maximum height
of a cell, since this is exactly what elevation maps represent. These constraints lead to the
following update rules for cell height values:

ĥ (t) =


zt if zt > ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

ĥ (t− 1) if zt < ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

1
σ2

zt
+σ2

ĥ(t−1)

(
σ2

zt
ĥ (t− 1) + σ2

ĥ(t−1)
zt

)
else,

(20)

and variance σ2
ĥ(t)

with:

σ2
ĥ(t)

=


σ2

zt
if zt > ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

σ2
ĥ(t−1)

if zt < ĥ (t) ∧ dM

(
zt, ĥ (t)

)
> c

1
1

σ2
ĥ(t−1)

+ 1

σ2
zt

else,

(21)

where dM denotes the Mahalanobis distance, defined by:

dM

(
zt, ĥ(t)

)
=

√√√√√(
zt − ĥ(t)

)
σ2

ĥ(t)

2

. (22)

The cell update introduced so far assumes perfect information on the global pose of the robot.
However, since we integrate measurements from the robot while moving in the environment
in real-time without loop-closure 1, we have to account for positioning errors from pose
tracking that do accumulate over time. Continuous Kalman updates without regarding pose
uncertainty due to robot motion in between update steps will successively reduce the cell’s
variance leading to variance estimates which highly underestimate the actual uncertainty
about a cell’s height. Thus we increase the variance in the Kalman propagation step based
on the robot’s motion to reflect the true uncertainty in the variance estimate. The height
itself is not changed as the old estimate still gives the best possible estimation for a cell’s
height. We assume that the positioning error grows linearly with the accumulated distance
and angle traveled. Hence, observations taken in the past loose significance with the distance
the robot traveled after they were made.

ĥ(t) = ĥ(k) (23)

σ2
ĥ(t)

= σ2
k̂(t)

+ σ2
dd(t− k) + σ2

αα(t− k), (24)

where t denotes the current time, k denotes the time of the last height measurement at the
same location, d(t− k) and α(t− k) denotes the traveled distance and angle within the time

1Note that global localization errors can be reduced by loop-closure, i.e. by re-computing the elevation map based
on the corrected trajectory, which, however, can usually not be applied in real-time.



interval t− k, and σ2
d, σ

2
α are variances that have to be determined experimentally according

to the utilized pose tracker. Since it would be computationally expensive to update the
variances of all grid cells each time the robot moves, updates according to Equation 24
are only carried out on variances before they are utilized for a Kalman update with a new
observation. The traveled distances can efficiently be generated by maintaining the integral
functions Id(t) and Iα(t) that provided the accumulated distance and angle for each discrete
time step t , respectively. Then, for example, d(k − t) can be calculated by Id(k) − Id(t).
The integrals are represented by a table, indexed by time t with a fixed discretization, e.g.
∆t = 1s.

6.2 Map filtering with a convolution kernel

The limited resolution of the LRF occasionally leads to missing data in the elevation map,
e.g. conspicuous by surface holes. Furthermore, the effect of “mixed pixels”, which frequently
happens if the laser beam hits edges of objects, whereas the returned distance measure is
a mixture of the distance to the object and the distance to the background, might lead
to phantom peaks within the elevation map (Ye and Borenstein, 2003). Therefore, the
successively integrated elevation map has to be filtered.

In computer vision, filtering with a convolution kernel is implemented by the convolution of
an input image with a convolution kernel in the spatial domain, i.e. each pixel in the filtered
image is replaced by the weighted sum of the pixels in the filter window. The effect is that
noise is suppressed and the edges in the image are blurred at the same time. We apply the
same technique on the elevation map in order to reduce the errors described above. Hence,
we define a convolution kernel of the size of 3× 3 cells, whereas each value is weighted by its
certainty and distance to the center of the kernel. Let h(x + i, y + j) denote a height value
relative to the kernel center at map location (x, y), with i, j ∈ {−1, 0, 1}. Then, the weight
for each value is calculated as follows:

wi,j =


1

σ2
h(x+i,y+j)

if |i|+ |j| = 0
1

2σ2
h(x+i,y+j)

if |i|+ |j| = 1
1

4σ2
h(x+i,y+j)

if |i|+ |j| = 2

(25)

Consequently, the filtered elevation map hf can be calculated by:

hf (x, y) =
1

C

∑
i,j

h(x+ i, y + j)wi,j, (26)

whereas C =
∑
wi,j.

6.3 3D Pose estimation

So far we have shown an incremental procedure for updating elevation map cells relative to
the coordinate frame of the robot. In order to update map cells globally, the full 3D pose of
the robot has to be considered, which is described by the vector l = (x, y, h, θ, φ, ψ)T , where
θ denotes the yaw angle, φ denotes the pitch angle, and ψ denotes the roll angle, respectively.



We assume that IMU measurements of the three orientation angles are given with known
variance. The position (x, y, h) is estimated by dead reckoning, which is based on the pitch
angle and traveled distance measured by visual odometry and scan matching. The scan
matching algorithm, which originates from former work (Kleiner et al., 2005), can reliably
be applied on robots operating in the plane. However, when traversing three-dimensional
terrain, it is very likely that the two-dimensional reference frame changes and thus scan
matching leads to inaccurate distance estimates. To obtain correct poses on rough terrain,
we employ visual odometry for estimating the distances traversed by the robot. The method
detects robot motion based on a voting procedure applied on tracked features generated
from camera images and estimates the traveled distance δ from the detected motion and the
robot’s velocity. A detailed description of the visual odometry is available in (Dornhege and
Kleiner, 2006).

Since scan matching and visual odometry are estimating the relative displacement δ with
respect to the 3D surface, δ has to be projected onto the plane, as depicted by Figure 4.
Given the input u = (θ, φ, δ)T , represented by the Gaussian distribution N(µu, σu), the

Figure 4. Dead reckoning of the projected Cartesian position (xp, yp, hp) from yaw angle θ, pitch angle φ, and
traveled distance δ.

projected position l = (xp, yp, hp)T , represented by the Gaussian distribution N (µl,Σl), can
be calculated as follows:

xp
t

yp
t

hp
t

 = Flu


xp

t−1

yp
t−1

ht−1

φ
θ
δ

 =

xp
t−1 + δ cos θ cosφ
yp

t−1 + δ sin θ cosφ
hp

t−1 + δ sinφ

 (27)

Σlu = ∇FluΣlu∇F T
lu (28)

Σlu = ∇FlΣl∇F T
l +∇FuΣu∇F T

u , (29)



where

∇Fl =

1 0 0
0 1 0
0 0 1

 , (30)

∇Fu =

−δ cos θ sinφ −δ sin θ cosφ cos θ cosφ
−δ sin θ sinφ δ cos θ cosφ sin θ cosφ

δ cosφ 0 sinφ

 , (31)

Σu =

σ2
φ 0 0
0 σ2

θ 0
0 0 σ2

δ

 , (32)

Σl =

 σ2
xp σ2

xpyp σ2
xphp

σ2
xpyp σ2

yp σ2
yphp

σ2
xphp σ2

yphp σ2
hp

 (33)

Equation 27 allows to predict the current height of the robot. However, due to the accumu-
lation of errors, the accuracy of the height estimate will decrease continuously. Therefore, it
is necessary to update this estimate from direct observation. For this purpose, we utilize the

height estimate
(
ĥ (t) , σ2

ĥ(t)

)
at the robot’s position from Equation 20 and 21, respectively.

Then, the new estimate can be calculated by Kalman-fusing
(
ĥ (t) , σ2

ĥ(t)

)
with the predicted

height estimate (hp, σ2
hp) analogous to Equation 18.

The global location (xg, yg) of a measurement, i.e. the elevation map cell for which the height

estimate ĥ (t) will be updated, can be calculated straightforward by:

xg = xr + xp (34)

yg = yr + yp (35)

7 Experimental Results

In this section we provide results from both simulated and real-robot experiments. All
real-robot experiments have been carried out on the robot platforms described in Section 3
within outdoor scenarios, and testing arenas that are equal or similar to those proposed by
NIST. In Sections 7.1 results from wheel odometry-based pose tracking are presented. In
Section 7.2 we provide results from indoor and outdoor RFID-SLAM experiments, and in
Section 7.3 results from elevation mapping during the Rescue Robotics Camp 2006 in Rome,
are presented.

7.1 Results from wheel odometry-based pose tracking

The slippage detection method has been extensively evaluated on the Zerg robot. During
this experiment, the robot performed different maneuvers, such as moving straight, turning,
and accelerating while driving first on normal and then on slippery ground. Afterwards,
each situation has been manually labeled with one of the six classes slip-straight, slip-turn,



slip-accelerate, noslip-straight, noslip-turn, and noslip-accelerate. Table 1 summarizes the
results of the classification, whereas bold numbers indicate the correct classification, i.e.
true-positives. As can be seen, the method is able to reliably detect slippage even while the
robot is accelerating or performing turns.

hhhhhhhhhhhhhhhhhTrue situation
Classification

Slip No Slip

Straight
No Slip 10 (0.5%) 2051 (99.5%)

Slip 2363 (90.1%) 236 (8.9%)

Turn
No Slip 28 (0.9%) 3226 (99.1%)

Slip 2684 (96.4%) 102 (3.6%)

(De-)Acceleration
No Slip 75 (14.9%) 426 (85.1%)

Slip 126 (98.5%) 2 (1.5%)

Table 1. Classification error of the slippage detection under different maneuvers of the robot. Bold numbers indicate
the correct classifications, i.e. true-positives.

In order to evaluate the slippage detection-based odometry improvement, we conducted
experiments for the comparison of both improved and conventional odometry and their
covariance bounds. Figure 5 shows the performance of slippage sensitive odometry compared
to conventional odometry. As can be seen from Figure 5 (a), the error of the conventional
odometry increases drastically during slippage (taking place between 10 and 20 meters).
Moreover, the covariance bound significantly underestimates the error. However, within the
same situation, slippage sensitive odometry is capable of reducing the error Figure 5 (b),
while providing valid covariance bounds.
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Figure 5. Conventional odometry (a) compared to slippage sensitive odometry (b) during the event of slippage
(between 10 and 20 meters): In contrast to conventional odometry, improved odometry reduces the position error
(asterisks) and provides valid covariance bounds (crosses) during slippage.

The approach of slipping detection has been utilized during the RoboCup Rescue compe-
tition. Figure 6 depicts the Zerg robot during the final of the “Best in Class Autonomy”
competition, held in the NIST arena for Urban Search and Rescue (USAR) (Jacoff et al.,
2001) during RoboCup 2005. In this scenario robots had to explore an unknown area within



(a) (b)

Figure 6. Zerg robot during the final of the Best in Class autonomy competition at RoboCupRescue 2005 in Osaka:
(a) slipping on newspapers and (b) the autonomously generated map. Crosses mark locations of victims which have
been found by the robot.

20 minutes autonomously, to detect all victims, and finally to deliver a map sufficient for
human teams to locate and rescue the victims. Conditions for exploration and SLAM were
intentionally made difficult. For example, the occurrence of wheel slip was likely due to
newspapers and cardboards covering the ground, which was partially made of steel and con-
crete. Stone bricks outside the robot’s FOV caused the robot to get stuck, and walls made
of glass caused the laser range finder to frequently return far readings. We applied computer
vision techniques on images generated by a thermo (IR) camera in order to estimate the
relative locations of victims, if they were detected withing the camera’s FOV. As shown in
Figure 6, the system was able to cope with these difficulties and also to build a map reli-
ably, augmented with victim locations detected by the robot. Finally, the system won the
autonomy competition in 2005.

7.2 Results from RFID technology-based SLAM

The proposed method for RFID technology-based SLAM has been tested extensively with
data generated by a simulator (Kleiner and Buchheim, 2003) as well as on the Zerg robot
platform. The simulated robot explored three different building maps, a small map, normal
map, and large map of the sizes 263m2, 589m2 1240m2, while automatically distributing
RFID tags in the environment. Figures 7 (a-c) show the averaged results from 100 executions
of RFID-SLAM on the three maps at five different levels of odometry noise. We measured
a computation time of 0.42 seconds on the small map, 2.19 seconds for the normal map, and
13.87 seconds for the large map, with a Pentium4 2.4GHz. The small map after and before
the correction is shown in Figure 8 (b,d). For this result, the robot distributed approximately
50 RFID tags.

In order to evaluate the performance of RFID-SLAM in a real environment, we collected
data from a robot autonomously exploring a cellar for 20 minutes while detecting RFID
tags on the ground. The robot continuously tracked its pose as described in Section 4. As
depicted by Figure 8 (a,c), the non-linear method successfully corrected the angular error
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Figure 7. (a) - (c) Result from applying RFID-SLAM at different levels of odometry noise within a simulated office
environment: (a) The small map (263m2), (b) the normal map (589m2), and (c) the large map (1240m2).

(a) (b)

(c) (d)

(e) (f)

Figure 8. (a,c,e) Result from RFID-SLAM on a robot driving in a cellar: (a) the noisy map, (c) the corrected map,
and (e) the ground truth created by iterative scan matching. (b,d,f) Result from applying the RFID-SLAM to data
generated in the simulation. (b) The small map with odometry noise, (d) the corrected map, and (f) the ground
truth taken directly from the simulator’s map editor. Note that the cellar’s ground truth map displays unoccupied
rooms. The rectangular structures that can be seen in the upper left room in the constructed maps (a) and (c) origin
from crates stored in those rooms.



based on RFID data association. The correction was based on approximately 20 RFID tags.

Figure 9. Result from applying RFID-SLAM outdoors while driving with 1m/s on a parking lot. Trajectories are
visualized with GoogleEarth, showing RFID locations estimated by the odometry (red), the ground truth (blue),
and corrected by RFID-SLAM (green). Whereas the odometry diverges from the driven rectangle, the corrected
trajectory is close to the ground truth.

Additionally, we conducted an outdoor experiment with a Zerg robot driving with an av-
erage speed of 1 m/s on a parking lot. The odometry has been generated from the wheel
encoders (translation) and IMU (rotation). Furthermore, the robot detected RFIDs with
the antenna described in Section 5. We obtained position ground truth from both Differ-
ential GPS (DGPS) and manual measurements, whereas faulty GPS positions, e.g. due to
multi-path propagations close to buildings, have been corrected from the manual measure-
ments. Figure 9 shows the RFID locations estimated by the odometry (red), the ground
truth (blue), and corrected by RFID-SLAM (green). The corrected trajectory has a mean
Cartesian error of 1.8 ± 3.1m, compared to the uncorrected trajectory, which has a mean
Cartesian error of 8.3± 8.5m.
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Figure 10. Result from applying RFID-SLAM outdoors while driving with 1m/s for approximately 1km on a parking
lot with a Zerg robot. (a) the Cartesian error, (b) the cross-track error (XTE), and (c) the along-track error (ATE)
with respect to the number of utilized RFIDs.



Furthermore, we evaluated the influence of the number of detected RFIDs with respect
to the stability of the SLAM approach. Figures 10 (a), (b), and (c) show the Cartesian
error, the cross-track error (XTE), and the along-track error (ATE) at decreasing number of
RFIDs, respectively. As can be seen, the route graph optimization consistently improves the
accuracy of the trajectory, even with a comparably little number of RFIDs, e.g. one RFID
each 500m. The correction of 18 RFIDs took 2.1 seconds on a PentiumM 1.7MHz, and
the interpolation of the odometry trajectory took 0.2 seconds. Figure 10 (a) also indicates
that the accuracy only slightly improves with increasing number of RFIDs, e.g. the average
Cartesian positioning error with 18 RFIDs is 1.2 meters, whereas the error with 2 RFIDs
is 2.4 meters. This is due to the fact that during this experiment the rectangular loop has
been successfully closed with any number of RFIDs, leading to a near-optimal improvement
of the track with respect to the sensor model of the utilized RFID antenna. Note that within
arbitrary environments, e.g. non-rectangular shaped, there can be indeed a larger variance
of the accuracy given a different amount of RFIDs.

In order to evaluate the scalability of the approach within large-scale environments, we
conducted a second outdoor experiment. During this experiment, the robot was driving a
total distance of more than 2.5 km with an average speed of 1.58 m/s. Note that this velocity
requires human beings to walk comparably fast in order to follow the robot. Furthermore,
the robot was heavily shaking from fast navigation over uneven ground, such as road holes,
small debris, and grass. Also during this experiment, pose tracking has been performed
from data of the wheel encoders (translation) and IMU (rotation), and position ground
truth has been obtained from DGPS. The optimization yielded an average Cartesian error of
9.3± 4.9m, compared to the uncorrected trajectory, which has an average Cartesian error of
147.1± 18.42m. The correction of 10 RFIDs took 0.3 seconds on a PentiumM 1.7MHz, and
the interpolation of the odometry trajectory took 2.4 seconds. Figure 11 shows the covariance
bounds during EKF-based dead reckoning of the improved odometry (a), and after the global
optimization (b), and Figure 12 shows the trajectory of the odometry (red), the ground truth
(blue), and the corrected RFID graph (green). As can be seen, the optimization reduces
successfully the uncertainties of the poses. Note that for the sake of readability, Figure 11
only shows the first loop of the performed trajectory.
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Figure 11. Result from applying RFID-SLAM outdoors while driving with 1.58m/s for more than 2.5km with a
Zerg robot. Covariance bounds before (a) and after the correction (b) of the outdoor experiment.



Figure 12. Result from applying RFID-SLAM outdoors while driving with 1.58m/s for more than 2.5km with a
Zerg robot. Trajectories are visualized by GoogleEarth, showing the odometry trajectory (red), the ground truth
trajectory (blue), and the corrected RFID trajectory (green). Whereas the odometry strongly diverges from the
driven path, the corrected trajectory is close to the ground truth.

7.3 Results from elevation mapping

Elevation mapping has been evaluated on a Lurker robot, which is capable to overcome
autonomously rough terrain containing ramps and rolls. The system has been successfully
demonstrated during the RoboCup Rescue autonomy competition in 2006, where the robot
won the first prize. The testing arena, which was utilized for the experiments presented in
this section, has been installed by NIST during the Rescue Robotics Camp 2006 with the
same degree of difficulty as presented at RoboCup‘06, i.e. also containing rolls and ramps.
During all experiments, the robot was equipped with an IMU sensor, a side camera for visual
odometry, and two LRFs, one for scan matching and one for elevation mapping. The latter
sensor has been tilted downwards by 35◦.

Figure 13 depicts the Kalman filter-based pose estimation of the robot as described in Sec-
tion 6.3. For this experiment, conditions have been made intentionally harder. Map smooth-
ing has been turned off, which had the effect that missing data, due to a limited resolution
of 2D scans, lead to significant holes on the surface of the map. Furthermore, we added a
constant error of −2◦ to pitch angle measurements of the IMU. As shown in Figure 13, the
Kalman filter was able to cope with these errors, and finally produced a trajectory close to
ground truth (indicated by the gray surface).

In order to quantitatively evaluate elevation mapping performed with visual odometry, we
recorded the hight estimates of the robot while autonomously exploring an area and finally



(a) (b)

Figure 13. Evaluation of the efficiency of the Kalman filter for estimating the robot’s height. (a) Height values
predicted from the IMU (lower line in red) are merged with height values taken from the generated map (non-
continuous line in blue). Errors from inaccuracies in the map, as well as a simulated continuous drift error of the
IMU sensor are successfully reduced (middle line in green). (b) Merged trajectory compared to ground truth (gray
ramp).

climbing-up an open ramp. Figure 14 shows the results of the Kalman filter-based height
estimation (blue line with crosses) in comparison to the manually measured ground truth
(black line with triangles). As shown by Figure 14, the Kalman filter computes continuously
an estimate close to ground truth, which stays consistently within the expected covariance
bounds.
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Figure 14. Quantitative evaluation of the Kalman-filtered height estimation. During this experiment the robot
started exploration on the floor and then climbed a ramp at around 220s. The graph shows the ground truth (black
line with triangles) in comparison to the height estimation by the Kalman filter (blue line with crosses).

Another experiment has been performed for evaluating the influence of visual odometry on
elevation mapping. Figure 15 depicts two elevation maps generated on the same ramp, one
with support of visual odometry, and the other without. The corresponding error graphs
show, that scan matching cannot correctly reflect the robot’s motion, when the robot drives
on the ramp between 2.75m and 4.75m. Usually estimating the robot’s pose based on two
dimensional scan alignment can be done reliably, but this is no longer possible when the 2D



reference system changes. The result is a rapid error growth (Figure 15(c)) that leads to
distortions in the map due to the incorrect pose assumption. Fusing distance estimates from
the visual odometry, that are not influenced by this effect, into the scan matching’s pose
clearly reduces the error. Mapping based on scan matching only yields a compressed map
since in this environment 2D laser scans do not provide sufficient information on the motion
of the robot, whereas generating a map based on visual odometry reveals the true size of the
ramp, which has been verified by measuring the ramp’s dimensions manually.
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Figure 15. Comparing elevation mapping based on scan matching only (a) and scan matching combined with visual
odometry (b). The scan matching’s small error (c) grows rapidly out of its usual error bound, when the robot drives
on the ramp, while the visual odometry (d) is not influenced by this effect. Scan matching without visual odometry
support does not correctly reflect the true length of the ramp, because insufficient motion evidence causes the map
to be partially compressed.

Figure 16 and 17 show the final result from applying the proposed elevation mapper during
the Rescue Robotics camp. Figure 16 (a) depicts an overview on the arena, and Figure 16
(b) shows the calculated height values, whereas the height of each cell is indicated by a gray
value, the darker the cell, the bigger the elevation. Figure 16 (c) depicts the variance of each
height cell, going from pink (hight variance) to yellow (low variance), whereas the current
position of the robot is indicated by a blue circle in the lower left corner. The further away
cell updates on the robot’s trajectory, the lower their variance (see Section 6.1). Figure 17
shows a 3D visualization of the generated elevation map. Structures, such as the long ramp



at the end of the robot’s trajectory, and the stairs, can clearly be identified. We measured
on an AMD64X2 3800+ a total integration time (without map smoothing) of 1.88±0.47ms
for a scan measurement with 683 beams, including 0.09±0.01ms for the 3D pose estimation.
Map smoothing has generally the time complexity of O (N2M), where N is the number of
rows and columns of the map and M the size of the kernel. We measured on the same
architecture 34.79± 14.84ms for smoothing a map with N = 300 and M = 3. However, this
can be improved significantly during runtime by only smoothing recently modified map cells
and their immediate neighbors within distance M .

(a) (b) (c)

Figure 16. Elevation mapping during the Rescue Robotics Camp 2006 in Rome: (a) The arena build-up by NIST,
(b) The corresponding digital elevation model (DEM), build by the lurker robot, going from white (low altitude)
to black (hight altitude). (c) The variances of each height value, going from pink (hight variance) to yellow (low
variance).

Figure 17. Elevation mapping during the Rescue Robotics Camp 2006 in Rome: 3D perspective.



8 Conclusion

We proposed solutions to the problems of slippage sensitive pose tracking on wheeled plat-
forms, the building of globally consistent maps based on a network of RFID tags, and the
building of elevation maps from readings of a tilted LRF. While these methods have been
particularly designed for two specific application scenarios, e.g. the rapid mapping of a large-
scale environment by wheeled robots, and the mapping of rough terrain by tracked robots,
they basically serve as building blocks for tailoring systems according to specific needs.

The quantitative evaluation of indoor and outdoor experiments, partially conducted within
testing arenas proposed by NIST for Urban Search and Rescue (USAR), showed that the
proposed methods are deployable in real-time, while leading to a robust mapping of the envi-
ronment. We believe that elevation maps provide the right trade-off between computational
complexity and expressiveness. We demonstrated that they can be build reliably in real-time
while the robot is in continuous motion, even on rough terrain under consideration of the full
3D pose of the robot. This has partially been achieved by the applying the visual odometry
method, which significantly improved the accuracy of scan matching. As we showed within
another work, resulting elevation maps can be utilized for structure classification, and the
planning of skill execution (Dornhege and Kleiner, 2007).

We showed that RFID-based SLAM allows the efficient generation of globally consistent
maps, even if the density of landmarks is comparably low. For example, the method cor-
rected an outdoor large-scale map within a few seconds from odometry data and RFID
perceptions only. This has been partially achieved due to reliable pose tracking based on
slippage sensitive odometry, but also due to the data association solved by RFIDs. Solving
data association by RFIDs allows to speed-up the route graph corrections by decomposing
the problem into optimization and interpolation. Besides, RFID-SLAM offers many ad-
vantages, particularly within the disaster response scenario. One practical advantage is that
humans can be integrated easily into the search, whereas the exchange of maps can be carried
out via the memory of RFIDs, hence without need for direct communication (Kleiner and
Sun, 2007). Furthermore, they can communicate with RFIDs by a PDA and leave behind
information related to the search or to victims. The idea of labeling locations with informa-
tion that is important to the rescue task, has already been applied in practice. During the
disaster relief in New Orleans in 2005, rescue task forces marked buildings with information
concerning, for example, hazardous materials or victims inside the buildings (FEMA, 2003).
The RFID-based marking of locations is a straight forward extension of this concept.

Within former work, we have already shown the applicability of our method for localiz-
ing pedestrians equipped with Personal Dead Reckoning Modules (PDRMs) (Kleiner and
Sun, 2007). In future work, we will consider the jointly mapping of places by humans and
robots, exchanging map data via the memory of RFIDs. Furthermore, we will evaluate RFID
technology operating in the UHF frequency domain, allowing reading and writing within dis-
tances of meters, and to extend our approach accordingly. As we have already demonstrated
in former work (Ziparo et al., 2007), the combination of a RFID route graph representation
with local mapping opens the door to efficient large scale exploration and mapping. In fu-
ture work, we will deal with the problem of building globally consistent elevation maps by



utilizing RFID technology-based route graph optimization for loop-closure.
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