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Robot safety is of growing concern given recent developments in intelligent autonomous 
systems. For complex agents operating in uncertain, complex and rapidly-changing 
environments it is difficult to guarantee safety without imposing unrealistic assumptions 
and restrictions. It is therefore necessary to complement traditional formal verification 
with monitoring of the running system after deployment. Runtime verification can be used 
to monitor that an agent behaves according to a formal specification. The specification can 
contain safety-related requirements and assumptions about the environment, environment-
agent interactions and agent-agent interactions. A key problem is the uncertain and 
changing nature of the environment. This necessitates requirements on how probable a 
certain outcome is and on predictions of future states. We propose Probabilistic Signal 
Temporal Logic (ProbSTL) by extending Signal Temporal Logic with a sub-language to 
allow statements over probabilities, observations and predictions. We further introduce 
and prove the correctness of the incremental stream reasoning technique progression over 
well-formed formulas in ProbSTL. Experimental evaluations demonstrate the applicability 
and benefits of ProbSTL for robot safety.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Robot safety is paramount when robotic platforms such as industrial robots, intelligent vehicles and aerial drones are 
intended to co-exist, side-by-side, with people in human-tailored environments. Consider the following example scenario. 
An Unmanned Aerial Vehicle (UAV) is tasked with delivering a package from a warehouse to a designated drop-site. The 
UAV is however not allowed to fly around freely; it has to adhere to various constraints on where to fly, how to behave 
and how to interact with other agents. Some constraints are for safety reasons such as staying at an altitude above peoples’ 
heads but below other air traffic, while other constrains may include no-fly-zones (Fig. 1) and the requirement to behave 
predictable close to other UAVs. Adding to the difficulty is the fact that the current and predicted position, altitude and 
other states of the UAV, and of other nearby agents, are uncertain due to imprecise perception, noisy GPS-signals and the 
sheer complexity of the real world.

Complex agents operating in uncertain, complex and changing environments make it difficult to guarantee safety before 
deployment without unrealistic assumptions and restrictions. It is therefore necessary to complement traditional formal 
verification with monitoring of the running system after deployment. In particular, robotic systems perceive the world 
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Nomenclature

Signal

x(t), x(tn) Signal
xc(t) A continuous-time signal which is sampled to 

produce a time-discrete signal x(tn).
x(t) Stochastic signal
S Tuple of signals
Sn Tuple of signals’ states
S≤n Tuple of signal prefixes

Sets

B The Boolean numbers
N The natural numbers
R The real numbers
S Stochastic variables
E Events
T ,Tx Time domain (of signal x)
D,Dx Value domain (of signal x)
FB, FR, FS Functions

Other Symbols

E Event

fB, fR, fS Functions
M Logical model
φ,ψ Well formed formula in a logic
x, xt , xt′ |t Stochastic variable.
p(x) Probability density function over stochastic 

variable x.
t, tn, t′ Time point (real valued)
X Tuple of stochastic variables
I Interval Coverage (a sequence of intervals)
In Interval (left-closed right-open)
I Interval closed at both ends

Syntax

const Numerical-constant symbol (const ∈ C)
C Set of numerical constants
E Event symbol (E ∈ E )
E Set of event symbols
fB, fR, fS Function symbol
FB,FR,FS Set of function symbols
Xd,Xp Set of Signal-state symbols
xt , xt′|t Signal state symbol
p Proposition

Fig. 1. Is the UAV inside the no-fly-zone? The truth of statements about uncertain states such as GPS-positions are unclear unless uncertainty is taken into 
account explicitly. According to the point estimate (left) the UAV is not inside the no-fly-zone. With some position uncertainty it is however 10% probable 
that it is inside (middle) and 40% probable with even higher uncertainty (right). It is not uncommon for state uncertainty to vary over time in robotic 
systems. Robustness to perception uncertainty and its possible variation over time is very important for runtime verification of robot safety.

through sensors and produce state streams about the environment. Properties can be monitored in a timely manner by 
incremental reasoning over the rapidly-changing information in the stream, known as stream reasoning. A recent survey [1]
in the stream reasoning field identified the need for robustness to imperfect data such as noisy data. Previously, the logic 
P-MTL was proposed [2] for supporting progression-based runtime verification over uncertain streams where the semantics 
was informally grounded in a stream reasoning architecture. P-MTL has since been used to improve UAV motion planning 
robustness and enable anticipatory behavior by reasoning over uncertain predictions [3].

The main contribution of this paper is the Probabilistic Signal Temporal Logic ProbSTL for predictive stream reasoning 
to assure the safe behavior of robotic systems in shared environments. ProbSTL extends Signal Temporal Logic and provides 
a formal semantic grounding for a fragment of P-MTL.

Runtime verification is an active research field [4] concerned with monitoring that properties hold over traces, streams 
or signals. The focus is mostly on monitoring software program traces, but it also covers monitoring streams or signals from 
cyber-physical systems and simulators of such systems [5]. Most real-world physical systems are stochastic in nature, both 
in terms of process noise and observations noise. To deal with uncertainty in the stream/signal values it is common in the 
runtime verification literature to either have error margins in the formulas or to use fuzzy logic for expressing the formulas 
[6,7]. Neither approach considers the probability-theoretic modeling of the uncertainty in the causal physical system and 
the stochastic signals they produce. Yet this is what is done in estimation theory and statistical sensor fusion [8], which 
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is typically applied to produce useful estimates about physical properties of concern in the field of robotics. For example, 
incremental probabilistic inference using Bayesian filtering [9] allows for on-line estimation of physical states over time.

To make use of the probabilistic information produced by state estimation it is necessary to formulate the monitoring 
formulas using probabilistic logic. There are many different probabilistic logics such as probabilistic distributional clauses 
[10] or temporal logics with uncertainty about time [11] rather than state. There are also full probabilistic logic programming 
languages [12] which are powerful enough to describe many cases of state estimation directly in the language. The main 
limitation of these are restrictions on what state estimation is supported, and the reliance on statistical sampling methods as 
a general purpose inference engine. Such inference methods are typically too slow for real-time state estimation and runtime 
verification in applications such as robotics where there is a need for timely formula violation detection. These probabilistic 
logics do not make use of the highly optimized inference methods from the fields of signal processing, automatic control 
or robotics. Examples of such methods are analytical closed-form solutions, variational approximations or Rao-Blackwellized 
particle filters [8].

Temporal logics have been used to do runtime verification for execution monitoring in robotics [13] using the stream 
reasoning technique progression over Metric Temporal Logic (MTL) formulas. MTL [14] extends LTL with time-intervals on 
the temporal operators. Metric Interval Temporal Logic (MITL) [15] is a decidable fragment of MTL1 where the temporal 
operator interval cannot be a single time-point. Signal Temporal Logic (STL) [16] extends MITL with real-time (dense-time) 
semantics, grounding statements in the logic to continuous-time signals. There are many extensions to STL such as a freeze 
operator for signal values [17] and work where STL specifications (set of formulas) are inferred from example signals and 
used to classify new signals [18]. STL allows for specifying requirements over deterministic signals such as real and Boolean 
signals. To the best of the authors knowledge there exist no extension to stochastic signals where the signal values are 
probabilistically described as uncertain.

PrSTL [19] is a Probabilistic Signal Temporal Logic where STL is extended with a probabilistic proposition. This is used for 
specifying probabilistic safety properties for controllers in controller synthesis. The interpretation of the proposition is that 
a stochastic function is applied to the STL signal for each time point and the probability of the resulting stochastic variable’s 
value being less than 0 is constrained to be larger than a threshold,

Interpretation[pthreshold
xt

] = Pr
(

fxt (signal(t)) < 0
)
> threshold,

where xt is a stochastic variable which makes the function fxt stochastic. The stochastic variable xt is external to the 
deterministic STL signal.

In this work we extend STL to stochastic signals, grounded in estimation theory and physical signals. ProbSTL has a much 
richer syntax for probabilistic events, signal transformations, and expressions for thresholds than PrSTL. ProbSTL further 
allows for incremental runtime verification where constraints over deterministic observations and uncertain predictions are 
expressed explicitly in the logic, can be efficiently checked incrementally and constraint violations are detected rapidly.

2. Preliminaries

Sensors allow information-processing systems such as robotic systems to observe properties of the physical environment. 
Many physical properties vary over time, such as the position of an object in relation to some fixed frame of reference. 
Some of these continuous-time signals are directly observable from sensors which produce discrete-time signals through 
sampling. Other properties are only indirectly observed by signal transformations of the observable signals.

Definition 1 (Signal). A signal x(t) with time domain T and value domain D is a function x : T → D. A tuple of signals is 
denoted by S and St denote the tuple of signal values x(t) for all x ∈ S at time t ∈T . When considering multiple signals we 
let Tx denote the time domain and Dx denote the value domain of signal x(t).

Definition 2 (Continuous-time signal). A continuous-time signal is a signal with time domain T =R.

Definition 3 (Discrete-time signal). A discrete-time signal (or stream) x(tn) = x0x1x2 . . . is a signal with time domain 
{t0, t1, . . . , tn, . . . } = T ⊂ R where n ∈ N≥0. The notation x(tn) = xn is used. The tuple of signal values Sn at time-point 
tn is called a state. The first n states in a discrete-time signal (stream) is denoted as a stream prefix S≤n .

Let xc(t) denote a continuous-time signal of interest, e.g. the actual altitude of a UAV, and let x(tn) denote the observ-
able discrete-time signal which is a (potentially noisy) discretized surrogate of xc(t). A fundamental problem is to draw 
conclusions given x(tn) which are also valid for xc(t).

1 It is however decidable to verify that a formula holds over a (possibly infinite) trace/stream in MTL.
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2.1. Signal Temporal Logic

Signal Temporal Logic (STL) [16] is an extension of MITL where propositions are grounded in Boolean-valued functions 
over signals. The continuous-time signals are typically assumed to be of finite length in time (T = {t ∈R | 0 ≤ t ≤ tN < ∞}) 
and a common value domain of the signals is the real numbers, D =R. It is further typically assumed in the STL literature 
that the continuous-time signals are of finite variability, allowing the signals to be fully represented by a finite length 
discrete-time signal.

A continuous-time signal xc(t) is of finite variability if it has a finite interval coverage [16]. A finite interval coverage is 
a finite set of non-overlapping intervals which spans T and for which the signal is constant for the duration within each 
individual interval, see Definition 4.

Definition 4 (Finite interval coverage). The sequence of left-closed right-open intervals I = I1, I2, . . . is a finite interval cover-
age of continuous-time signal x(t) with time domain T if the following properties hold

1. |I| < ∞
2. T = ⋃

In∈I
In

3. For all (In, Im) ∈ I × I where n 
= m it is the case that In ∩ Im = ∅.
4. For all t, t′ ∈ In for all In ∈ I it is the case that x(t) = x(t′).

A continuous-time signal xc(t) with a finite interval coverage can always be fully represented by a discrete-time signal 
x(tn). That is, a discrete-time signal x(tn) can always be constructed such that, for any t ∈ Txc there exists a tn ∈ Tx such 
that xc(t) = x(tn). This is the case since the xc(t) has a finite number of signal values coinciding with the finite set of 
time points which mark the start of each of the intervals in the finite interval coverage. That is, the time domain of the 
discrete-time signal x(tn) is the set of time points tn ∈ Tx = {tn | [tn tn+1) = In ∈ I} and the discrete-time signal x(tn) is 
defined as ∀tn ∈ Tx[x(tn) = xc(tn)]. For any t ∈ Txc then tn is uniquely determined by [tn tn+1) = In ∈ I for the In where 
t ∈ In .

Definition 5 (STL model). STL is defined over a model M = 〈S, FB〉 where S is a tuple of finite discrete-time signals with 
the same time domain T and FB is a set of functions from real-valued signal values to Boolean-values 

(
fB ∈ FB ⊂ { f | f :

R|S| → {�, ⊥}}). Each of the finite discrete-time signals in S represents a continuous-time signal with finite variability.

Definition 6 (STL syntax). An STL statement φ for an STL model M is a well-formed formula (wff) iff it follows the syntax:

φ := � | p | ¬φ | φ ∨ ψ | φ UI ψ

where I = [a b] is an interval with a < b, a, b ∈R and p is a proposition. Additionally, we allow for the usual logical connec-
tives ∧, →, ↔ as well as the temporal operators �I φ = � UI φ, �I φ = ¬ �I ¬ φ, � φ = �[0,∞) φ, � φ = �[0,∞) φ

as syntactic sugar.

Definition 7 (STL semantics). The semantics of STL are defined for an STL model, discrete time-point {n ∈ N≥0 | n < |T |}, a 
tuple of signals S (with Sn denoting a tuple of signal values), intervals I ∈ {[a b] | a < b ∧ a, b ∈R}, functions fp ∈ FB (each 
proposition p is associated with a function fp ∈ FB) and well-formed formulas φ, ψ :

M,n |= �
M,n |= p iff fp(Sn)

M,n |= ¬φ iff M,n 
|= φ

M,n |= φ ∨ ψ iff M,n |= φ or M,n |= ψ

M,n |= φ UI ψ iff ∃n′ ∈ n + I(
M,n′ |= ψ and ∀n′′ ∈ [n,n′) M,n′′ |= φ

)
where we also define the following operations on intervals I = [a b]

n + I := [tn+a tn+b]
n ∈ I := n ∈ { j | t j ∈ T ∧ t j ∈ I}
I < 0 := b < 0
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The STL monitoring algorithm [16] determines the truth value of a well-formed STL formula by a backwards-going 
procedure. The procedure requires the complete (finite-length) signal to have been observed, which may be undesirable 
depending on application.

2.2. Progression

Progression [20] is an incremental formula rewriting procedure for determining the truth value of a well-formed MTL 
formula over the trace of a discrete-time signal. Satisfaction can be determined in a timely manner before the signal has 
terminated (the continuous-time signal can in-fact be of infinite length in time, tN = ∞) and the discrete-time signal is 
allowed to be of countably infinite length.

A discrete-time signal of countably infinite length can fully represent a continuous-time signal of local finite variability. 
The finite variability property can straight-forwardly be generalized to local finite variability as follows. Let I be an interval 
coverage of a continuous-time signal with infinite length in time. Let a subset of the interval coverage be denoted Ita≤t≤tb =
{[a b] | ta ≤ a, b ≤ tb, [a b] ∈ I}. Any interval subset Ita≤t≤tb ⊂ I , over a finite-time interval [ta tb], has to be finite. A 
countably-infinite length discrete-time signal x(tn) with time domain T can then similarly as before be constructed from 
the interval coverage, ∀tn ∈T [x(tn) = xc(tn)].

Repeated application of progression yields a path checking procedure which, given a stream (interpretation) and a for-
mula, checks if this formula is true or false given this interpretation at time-point zero [21]. Progression works by syntactic 
re-writing and has linear time complexity in the length of the formula. But since progression is an iterative procedure the 
re-written formula can grow to be exponentially large. For typical applications this has however been shown [22] not to be 
an issue. We introduce a progression procedure for STL in Algorithm 1 and show its correctness in Theorem 1.

Algorithm 1: Progression for STL.

1 function PROGRESS(φ , Sn , �):
2 if φ = φ1 ∨ φ2 then
3 return PROGRESS(φ1, Sn, �) ∨ PROGRESS(φ2, Sn, �)

4 else if φ = ¬φ1 then
5 return ¬PROGRESS(φ1, Sn, �)

6 else if φ = φ1 UI φ2 then
7 if I < 0 then
8 return ⊥
9 else if 0 ∈ I then

10 return PROGRESS(φ2, Sn, �) ∨ (PROGRESS(φ1, Sn, �) ∧ φ1 UI−� φ2)

11 else
12 return PROGRESS(φ1, Sn, �) ∧ φ1 UI−� φ2

13 end
14 else if φ = p then
15 return f p(Sn)

16 else
17 return �
18 end

Theorem 1 (Correctness of STL progression). The PROGRESS procedure (Algorithm 1) is correct with respect to the semantics of STL,

M,n |= φ iff M,n+1 |= PROGRESS(φ, Sn+1,�),

for STL-model M, logical time-points n, n+1, wff φ , tuple of signal values Sn+1 at time point tn+1 and � = tn+1 − tn.

Proof. [20] prove the correctness of PROGRESS for MTL and consequently for MITL. MITL is a fragment of MTL for which 
all intervals I = [a b] have to fulfill the criteria that a < b, i.e. no point-intervals may exist. STL extends MITL with the 
semantics for M, n |= p which is affected only when φ = p in an STL-statement. This affects line 14-17 only, which are 
time-independent, while the rest of PROGRESS is the same as for MTL/MITL.

If φ is a wff then f p ∈ FB according to Definition 6. According to the definition of the model M it follows that f p :
R|S| → {�, ⊥}. From Definition 3 and the definition of STL it is the case that the state of a signal Sn ∈R|S| for all n ∈N≥0
such that n < |T |. Since n ∈N≥0 such that n < |T |, by Definition 7 it is the case that Sn ∈R|S| and therefore f p(Sn) ∈ {�, ⊥}. 
Consequently, f p(Sn) = � on line 15 iff M, n |= PROGRESS(p, Sn, �).

Finally, the only other symbol in the syntax of STL apart from the cases on line 2,4,6,14 is φ = � for which 
PROGRESS(�, Sn, �) = � according to line 17. �
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2.3. Stochastic variables and events

Consider a scenario where the altitude of a UAV is of interest, and also if the altitude is above a certain threshold. We 
are however uncertain about the altitude and are consequently also uncertain if it is above the threshold or not. Due to 
the uncertainty the altitude is one of many possible altitude-values, and only some of these constitutes the event of the 
UAV being above the threshold. Further, some of the altitude-values may be more probable than other values based on our 
assumptions, historical data or a sensor model.2 Representing and reasoning about uncertainty is formalized in probability 
theory, where the altitude of the UAV can be represented by a stochastic variable.

A stochastic variable x is a measurable function from the sample space � to a value domain Dx (all possible values x
can take),

x : � → Dx.

If x represents the altitude of a UAV then the different values the altitude may take can for example be Dx =R≥0.
A set of events Fx with respect to x is an σ -algebra on measurable subsets of Dx . In the UAV example, the event 

E := {x | x > threshold, x ∈ Dx} given a threshold ∈ Dx is an element of Fx . Given a realization of x, x ∈ Dx , it is the case 
that E holds iff x ∈ E and the opposite ¬E iff x /∈ E .

A probability measure P [·] is a mapping from events to probabilities, assigning each event a real value between 0 and 1,

P [·] : F → [0, 1].
P [E] for E ∈Fx consequently denotes the probability that E is true with respect to Dx . If Dx is a measurable subset of Rn

for some n ≥ 1 then x is called a continuous stochastic variable. It is common to specify a continuous stochastic variable in 
terms of its probability density function p(x) which is a mapping from the domain to a non-negative real value,

p : Dx → [0, ∞)].
The probability of an event E ∈Fx is then related to the density by

P [E] =
∫

w∈E

p(x = w)dw ≤
∫

w∈Dx

p(x = w)dw = 1.

Definition 8 (Probability-theoretic event). A probability-theoretic event E with respect to stochastic variable x is a measurable 
subset of the value domain Dx of x, and an element of an σ -algebra Fx with respect to x. The probability of E is P [E] =∫

w∈E p(x = w)dw and the probability of ¬E is P [¬E] = 1 −P [E], where P [·] is a probability measure on Fx and p(x) is a 
probability density function over x.

A tuple of stochastic variables3

z = 〈x1,x2, . . . 〉
is also a stochastic variable

z : � →Dx1 ×Dx2 × . . .

with for example an associated joint probability density function

p(z) = p(x1,x2, . . . ).

Another way to specify a stochastic variable is in terms of its cumulative distribution function Fx , which is a mapping 
from the value domain to probabilities,

Fx : Dx → [0, 1]
and defined as the probability that x is less than or equal to the value θ ,

P [x ≤ θ] = Fx(θ), θ ∈ Dx.

The cumulative probability distribution function is related to the probability density function by

2 A model for how uncertainty is propagated through a sensor.
3 A random vector.
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Fig. 2. The continuous-time signal xc(t) of a physical property is indirectly observed by noisy sensor measurements ytn sampled at time-points tn ∈T . The 
sensor measurements ytn are realizations of the stochastic variables ytn

of the stochastic signal y(t) which represents the sensor noise. The value xc
t and 

our uncertainty in it is inferred for arbitrary time-points t using state estimation and it is represented as a stochastic variable xt of the stochastic signal 
x(t).

Fx(θ) =
∫

w≤θ

p(x = w)dw, θ, w ∈ Dx

The event x ≤ θ can be viewed as a parameterized event, which is made concrete E ∈ Fx for any concrete value θ and 
concrete stochastic variable x. The cumulative distribution function then defines the probability for any concrete event in 
the event class E(x, θ) := x ≤ θ , θ ∈Dx .

Definition 9 (Parameterized probability-theoretic event). A parameterized event E(x, θ) is a concise representation of a set of 
events parameterized by a tuple x of stochastic variables and on a tuple of parameters θ . For any concrete tuple x and θ
then E(x, θ) corresponds to a concrete probability-theoretic event E ∈Fx with respect to stochastic variable x.

In this work we are primarily interested in cases n ≥ 1 where Dx ⊆ Rn with Fx being a subset of all Lebesgue mea-
surable subsets of Dx and P [·] the n-dimensional Lebesgue measure. It is straightforward to extend the work to include 
discrete stochastic variables (finite Dx).

2.4. Stochastic signals and state estimation

Physical sensors are imperfect and the signals they produce contain noise. There also exist other sources of uncertainty in 
the environment such as the unobservable mental state of other agents or chaotic processes such as wind. Representing and 
managing uncertainty is consequently important, both for safety and to reach high task efficiency. Further, some properties 
of the environment are directly observable from sensors and some only indirectly observed by signal transformations. The 
uncertainty about the value of a signal resulting from a signal transformation is dependent on the uncertainty about the 
value of the transformed signals. A stochastic signal (Definition 10) is a signal in which the uncertainty about the signal 
value is made explicit.

Definition 10 (Stochastic signal). A stochastic signal x(t) with time domain T is a stochastic function x : T → Sx mapping 
from time-points to stochastic variables. For all t ∈T the stochastic variable x(t) ∈ Sx has value domain Dx . Any finite tuple 
of stochastic variables 〈x(tk), . . . , x(tk+n)〉, for tk, . . . , tk+n ∈T , have a joint probability density function p(x(tk), . . . , x(tk+n)).

State estimation machinery is commonly used to handle noise and recover a good estimate of the continuous-time signal 
of the physical property of interest. Fig. 2 shows a simplified overview of the signals relevant to state estimation, where 
noisy sensor measurements ytn are observed instead of direct measurements of the physical property xc

t or its discretization 
xtn . The uncertainty in the signal value of xc(t) is represented by a stochastic signal x(t) and the value at time-point t is 
represented as a stochastic variable xt .

The uncertainty in the value of xc(t) at the time-point of the latest sensor measurement tn , or any other time point 
t′ , can be estimated (predicted) given the sensor measurements yt0 , . . . , ytn and we use the following short-hand notation 
through-out the paper:

p(xtn|tn ) := p(xtn |yt0 , . . . , ytn ),

p(xt′|tn ) := p(xt′ |yt0 , . . . , ytn ),

where tn ∈T and t′ ∈R.
The sensor observations ytn are assumed to be sampled from the sensor model (which relates the uncertainty in the 

observation value ytn to the uncertainty in the value of xc
tn

):

ytn ∼ p(ytn
|xtn = xc

tn
).

An example is shown in Fig. 3 where xtn is modeled as a Gaussian distributed stochastic variable 
(
xtn ∼ N (μ, σ 2)

)
and 

the sensor model used is

p(ytn
|xtn = xc

tn
) = N (xc

tn
,0.52)
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Fig. 3. Illustration of signals at various stages in the signal processing pipeline. From underlying continuous signal xc(t) (e.g. actual UAV altitude) to noisy 
observation ytn and estimated signal xt|tn (e.g. recovered altitude point estimate). The 95% probability intervals (approximately two standard deviations) 
are shown with dashed lines. 
The underlying signal can be seen to be outside of the 95% probability interval within the time interval 0.6 < t < 0.8. If we neither underestimate nor 
overestimate our uncertainty in xc(t) then this is not unexpected, given the Markov assumption common to Kalman filters. It is rather unlikely that xc(t)
will not be outside the 95% probability interval: P (xc(t) inside PI95% for 25 observations) = 1 − 0.9525 = 0.72. It is more likely that xc(t) is inside the 99% 
probability interval and so on. Another way to make it likely that we capture xc(t) within a certain probability interval is to overestimate our uncertainty in 
xc(t), that is to dilute the stochastic variables with additional uncertainty. This would make the estimation statistically more conservative than previously. 
It is a common method when the true probabilistic model is not known (or too computationally expensive) and an approximate model is used instead.

Fig. 4. A UAV has to adhere to various constraints on where to fly, how to behave and how to interact with other agents. Some constraints are for 
safety reasons such as staying at an altitude above peoples’ heads but below other air traffic, while other constrains may include no-fly-zones and the 
requirement to behave predictable close to other UAVs. The figure illustrates a setting where �altitude > 3� = � but � Pr(altitude > 3) ≥ 0.99� = ⊥ because 
� Pr(altitude > 3)� = 0.90. The operation �·� is defined as the interpretation of a well-formed formula in a logic.

where the observation noise is assumed to be statistically independent across time. xtn is estimated using a Kalman filter 
with a constant-position motion model with process noise variance 1.

Stochastic signals can be approximated with deterministic signals and as such be used in STL. For example, by taking 
the mean (expectation) of the estimated property xtn|tn as xtn = mean(xtn|tn ) =

∫
Dx

x p(xtn|tn = x)dx, the largest mode xtn =
arg maxx p(xtn|tn = x), using the observations directly xtn = ytn or some other point estimator. These choices are however not 
explicit in the STL syntax, and the grounding of the signals in STL in the state estimation is not part of the STL semantics.

3. Probabilistic extension for STL

Consider a low-flying UAV drone, for example for delivery or surveillance, in public spaces with people walking around 
(Fig. 4). A reasonable safety constraint is that the UAV is not supposed to fly at an altitude lower than or equal to 3 meters,

� (altitude > 3),
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or else it might hurt or cause discomfort to people. However, if the altitude is uncertain then this constraint makes little 
sense in terms of safety. If the uncertainty is large then it is not unlikely that the UAV is at a dangerously low altitude. It 
is common that the uncertainty changes over time, as a result of variation in perception quality. If using a safety margin it 
must account for the worst-case uncertainty, say maybe 5 meters extra, and consequently might be too large and cause the 
task efficiency to drop below useful levels. These issues can be remedied by specifying how likely it has to be that the UAV 
is fulfilling the altitude requirement,

� (Pr(altitude > 3) ≥ 0.99),

where the specification is that the probability that the altitude is greater than 3 meters is at least 99%.
It is even more useful to detect a possible (and probable) altitude violation before it happens. It might be too late to 

react to a dangerous situation if it has already occurred, but it could be possible to prevent it if reacting before it happens. 
For example, by monitoring the predicted altitude 2 seconds into the future,

� (Pr(altitude2|0 > 3) ≥ 0.99),

where 0 indicates that the prediction is made from the current time-point. The formula now relies on the underlying state 
estimation machinery to be able to make conservative predictions (in a probabilistic sense) such that the probability of 
violating the constraint is never underestimated. It also relies on the control and decision making processes to be planning 
ahead since the condition is about the altitude of itself and not of another agent. Consequently, it can be important to 
also monitor if the predictions fluctuate over time and also if the predictions are in fact conservative enough. Monitoring 
the predictability is useful for checking that the prediction machinery works according to specification. It is even more 
important in multi-agent settings where the safety and task-efficiency of agents will depend on how precise and correctly 
they can predict the behaviors and intentions of each other.

We introduce ProbSTL, a probabilistic extension to STL where the signals are considered stochastic and predictions about 
unobserved signals’ values are accessible (produced from for example underlying state estimation processes). We begin by 
defining the ProbSTL stream consisting of the signals over which the logic is defined. Then we continue by defining the 
sub-language Lprob which allows for expressing the exemplified statements of the previous paragraphs. Finally we present 
ProbSTL as a formal extension of STL. Computational and precision properties are analyzed both with the finite variability 
assumption on the underlying continuous signal and when relaxing it.

Before defining the ProbSTL Stream we first define a prediction stream. A prediction stream X is a tuple of length |TX|, 
where each element of the stream is a tuple of infinite length representing the prediction from time point tn ∈TX about all 
possible real time-points t′ ∈R. The inner tuple is ordered over the value of t′ ∈R. The outer tuple (the prediction stream) 
is ordered over the value of tn ∈TX .

Definition 11 (Prediction stream). A prediction stream X(tn) = 〈〈xt′ |tn | t′ ∈ R〉 | tn ∈ TX〉 with time domain TX is a discrete-
time signal representing all temporal predictions about the value of xc(t) given the observations available at every time point 
tn . More precisely, every stream state 〈xt′ |tn | t′ ∈R〉 is a tuple of stochastic variables consisting of predictions xt′ |tn ∼ p(xt′ |tn )

about all possible time points t′ from the specific stream time tn .

Definition 12 (ProbSTL stream). A ProbSTL stream S = 〈x(1)(tn), . . . , x( J )(tn), X(1)(tn), . . . , X(K )(tn)〉 is a tuple consisting of de-
terministic discrete-time signals x( j) and prediction streams X(k) where all signals share the same timed domain T . If 
x( j)(tn) and X(k)(tn) share the same name x, then x( j)(tn) are sensor measurements (observations) of xc(t) and X(k)(tn) are 
estimates (predictions) of xc(t).

Let Sn = 〈xtn ∈ x( j) | j = 1, . . . , J 〉 · 〈xt′ |tn ∈ X(k) | k = 1, . . . , K , t′ ∈R〉 denote a tuple of signal states at time point tn ∈T . 
The operator · denote tuple concatenation.4

The predictions xt′ |tn are usually represented by a generative model in the state estimation machinery, and only calculated 
explicitly for a few time points t′ of interest. Since formulas, in which predictions are referred to, are finite in the number 
of symbols they are made up of, there will ever only be a finite number of predictions necessary to calculate for any tn .

Definition 13 (ProbSTL model). Let A be a set and An the n-ary Cartesian power, where A0 = {∅} and consequently A0 × An =
An . We denote A∗ = An for n ≥ 0 and A+ = An for n ≥ 1. Let S be a set of stochastic variables.

ProbSTL is defined over a model M = 〈S, FB, FR, FS, E〉 where S is a ProbSTL stream, FB is a set of functions from real-
values to Boolean-values 

(
fB ∈ FB ⊂ { f | f : R → {�, ⊥}}), FR is a set of functions from stochastic variables to real-values (

fR ∈ FR ⊂ { f | f : S∗ ×R∗ →R}), FS is a set of functions mapping from stochastic variables and real-values to stochastic 
variables 

(
fS ∈ FS ⊂ { f | f :S∗ ×R∗ → S}) and E is a set of probability-theoretic events (Definition 8).

4 〈a1, . . . , aN 〉 · 〈b1, . . . , bM 〉 = 〈a1, . . . , aN , b1 . . . , bM 〉.
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3.1. Probability statements

Definition 14 (Probabilistic language Lprob). A statement � in the expandable probabilistic language Lprob over the vocabulary 
〈E, FR, FS, Xd, Xp, C〉 is a well formed statement (wfs) if it adheres to the following syntax, where time points are relative,

� := Pr(E(τp, . . . , τd, . . . )) | fR(τ , . . . )

τ := τd | τp

τd := � | xt | const

τp := xt′|t | fS(τ , . . . )

where E is an element in the set of event symbols E , fR is an element in the set of real-valued function-symbols FR , const
is an element in the set of numerical constants C, fS is an element in the set of stochastic-function-symbols FS , xt is an 
element in the set of deterministic-signal symbols Xd and xt′ |t is an element in the set of stochastic-signal symbols Xp with 
time point symbols t ∈R≤0 and t′ ∈R.

Definition 15 (Real interpretation of Lprob). We define a real-valued evaluation function eval(S≤n, tn, �) := eval(S≤n, tn, �′)
given a set of stream prefixes S≤n , a time-point tn ∈T and wfs � ∈ Lprob recursively over valid symbols �′ ∈ �.

eval(S≤n, tn, const) = const

eval(S≤n, tn, fR(τ , . . . )) = fR(eval(S≤n, tn, τ ), . . . )

eval(S≤n, tn, fS(τ , . . . )) = fS(eval(S≤n, tn, τ ), . . . )

eval(S≤n, tn, xt′|t) = xtn+t′|tn−k , k = fT (n, t)

eval(S≤n, tn, xt) = xtn−k , k = fT (n, t)

eval(S≤n, tn, Pr(E(τp, . . . , τd, . . . )))

=
∫

w∈E(X,θ)

p(X = w)dw,

X = 〈eval(S≤n, tn, τ
i
p)〉i, θ = 〈eval(S≤n, tn, τ

j
d )〉 j

where E(X, θ) is a parameterized event made concrete with the given X and θ (Definition 9), k (for xtn−k and xtn+t′ |tn−k ) is 
calculated by

fT (n, t) := arg min
k∈〈0,1,...,n〉

∣∣tn−k − (tn + t)
∣∣, (1)

(where t ≤ 0 from Definition 14) and, for m = n − k,

fR ∈ FR, fS ∈ FS, E ∈E, xtm ∈ Sm, xtn+t′|tm ∈ Sm, const ∈ R+

If there are multiple k which minimizes (1) then the smallest such k is chosen.

The terms xt and xt′ |t refer to earlier states in the stream prefix S≤n than the current state Sn if t < 0. How much of the 
prefix is necessary to ground the terms is determined by the past-reach over Lprob (Theorem 2).

Theorem 2 (Past-reach for Lprob). Let � ∈ Lprob and S≤n be the current stream prefixes (signal prefixes). The past-reach pr(τ ) of a 
symbol τ in � is the minimal required prefix-length of S≤n for which the interpretation of τ exists. Given a symbol τ of the form τ = xt

or τ = xt′|t then pr(τ ) = k, where k is calculated from t according to (1). The past-reach pr(�) for � ∈ Lprob is the largest k of all τ in 
�. The earliest state required in the prefix S≤n for � ∈Lprob is S(n−pr(x)) .

Proof. There is no temporal operators in Lprob and consequently no nested temporal operators. By Definition 15 at time-
point tn and with signal prefixes S≤n the interpretation of xt is xtn−k , using the definition of k from (1). Further, xtn−k ∈ S(n−k)

since 0 ≤ n − k ≤ n according to (1). The proof is analog for xt′|t . �
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3.2. Lprob core

The semantics of events E ∈E will vary depending on the choice of E including the kinds of stochastic variables x ∈ S
(in terms of their probability density functions p(x)) under consideration. Lprob is consequently separated in a core part 
and optional plugins to provide flexible extendability.

The core probabilistic language has the events,

E = {comparator},
parameterized by a stochastic variable x ∈S and a constant c ∈ Dx , with probabilistic interpretation

P [comparator(x,�, c)] =
∫

x�c

p(x = x)dx,

where � ∈ {<, ≤, =, ≥, >} element-wise. The core language is sufficient for expressing the previously shown example state-
ments of the form Pr(xt′ |t > c).

3.3. Lprob spatial plugin

To provide an example of a plugin we introduce a small spatial plugin. Many other are possible to define for what-
ever need an application might have, such as collisions between spherical objects with non-isometric Gaussian-distributed 
position uncertainty[23].

In [24] they do maritime monitoring by complex event processing based on first constructing primitive events. These 
events are based on vessel positions as points being for example inside a crisp region. The positions of the vessels are based 
on GPS-measurements. Sometimes GPS-measurements are imprecise and the truth of such a statement is then unclear. 
Following their example we introduce probabilistic spatial events where this uncertainty is considered explicitly and for 
which the truth of statements about them is clear.

The real-valued functions and stochastic functions are

{mean} ⊆ FR, {distance, centered} ⊆ FS,

and are defined as

mean(x) =
∫

x p(x = x)dx

distance(x, y) ∼ p(x − y)

distance(x, y) ∼ p(x − y)

centered(x) ∼ p(x − mean(x))

where x, y ∈ S are stochastic variables (e.g. xt′ |t ) and y ∈Dx .
The probabilistic events of the plugin are

{greaterThan, lessThan, insideInterval, insideRectangle} ⊂E

and are defined for Dx =R, c, r1, r2 ∈R, r1 < r2, as

P [greaterThan(x, r1)] =
∫

x>r1

p(x = x)dx

P [lessThan(x, r2)] =
∫

x<r2

p(x = x)dx

P [insideInterval(x, r1, r2)] =
∫

r1<x<r2

p(x = x)dx

and defined for Dx =R2, c, r ∈R2 as

P [insideRectangle(x, c, r)] =
∫

|x−c|�r

p(x = x)dx

where � is the element-wise less-than operator.
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3.4. Integration with STL

In STL the signals and the Boolean-valued functions applied to these signals are hidden behind proposition symbols in 
the syntax. The proposition symbols are associated with specific Boolean-valued functions, providing their interpretation in 
the semantics. In ProbSTL we want the individual signals to be addressable directly in the logical language. Similarly for 
functions over signals, and also which signals the functions are applied to. The syntax is consequently constructed with 
symbols of Boolean-valued functions present in the syntax, which have a direct interpretation as Boolean-valued functions 
in the semantics. These functions are applied to statements in Lprob and therefore map from a real value to a Boolean, 
as opposed to from a signal tuple to a Boolean value as is the case in STL. Functions over multiple signals are instead 
expressible in Lprob allowing ProbSTL to express everything that STL can express.

Definition 16 (ProbSTL syntax). A ProbSTL statement is a well-formed formula iff it adheres to the following syntax:

φ := � | fB(�) | ¬φ | φ ∨ ψ | φ UI ψ

where fB is a element in the set of Boolean-valued function-symbols FB and � is a Lprob statement. Additionally, we allow 
for the usual logical connectives ∧, →, ↔ as well as the temporal operators �Iφ = � UIφ and �Iφ = ¬�I¬φ as syntactic 
sugar.

Definition 17 (ProbSTL semantics). The semantics of ProbSTL extend the semantics of STL with

M,n |= fB(�) iff fB(eval(S≤n, tn, �)),

where fB ∈ FB from Definition 13.

4. Implementation

In the implementation the assumption is made that all stochastic variables x ∈ S are Gaussian distributed and conse-
quently have the probability density function

p(x = x) = N (x;μx,
x)

= |2π
x|− 1
2 exp

(−1

2
(x − μx)

T 
−1
x (x − μx)

)
,

where μx and 
x are the mean and covariance function respectively of the stochastic variable x. We further assume for 
simplicity that the Gaussian distributions of the stochastic variables are isometric which means that the covariance matrix 

x is diagonal. The real-valued functions and stochastic functions of the spatial plugin are realized as

mean(x ∼ N (μx,
x)) = μx

distance(x ∼ N (μx,
x), y ∼ N (μy,
y)) ∼ N (μx − μy,
x + 
y)

distance(x ∼ N (μx,
x), y) ∼ N (μx − y,
x)

centered(x ∼ N (μx,
x)) ∼ N (0,
x)

where x, y, z ∈ S are stochastic variables (e.g. xt′ |t ). The events in E are realized as

P [greaterThan(x, r1)]

=
∫

x>r1

p(x = x)dx =
∞∫

r1

p(x = x)dx = 1 − �(r1)

P [lessThan(x, r2)]

=
∫

x<r2

p(x = x)dx =
r2∫

−∞
p(x = x)dx = �(r2)

P [insideInterval(x, r1, r2)]

=
∫

p(x = x)dx =
r2∫

p(x = x)dx = �(r2) − �(r1)
r1<x<r2 r1
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P [insideRectangle(x, c, r)]
=

∫
|x−c|�r

p(x = x)dx =
∫

|x1−c1|<r1

∫
|x2−c2|<r2

p(x = x)dx1dx2

= (�(c1 + r1) − �(c1 − r1))(�(c2 + r2) − �(c2 − r2))

where �(x) = 1
2

(
1 + erf( x−μ

σ
√

2
)
)

is the Gaussian cumulative probability distribution function 
( ∫ x

−∞ N (x|μ, σ 2)dx
)

and erf(x)

is the Gauss error function.
We prove the correctness of Progression for ProbSTL (Algorithm 3) in Theorem 3, and it makes use of the Eval algorithm 

(Algorithm 2) which realizes Definition 15.

Algorithm 2: Eval for Lprob.

1 function EVAL(S≤n , tn , �):
2 if � = const then
3 return const
4 else if � = fR(�1, �2, . . . ) then
5 return fR(EVAL(S≤n, tn, �1), EVAL(S, tn, �2), . . . )
6 else if � = fS(�1, �2, . . . ) then
7 return fS(EVAL(S≤n, tn, �1), EVAL(S≤n, tn, �2), . . . )
8 else if � = xt then
9 return xtn−k , k ← fT (t, n) (Equation 1)

10 else if � = xt′ |t then
11 return xtn+t′ |tn−k , k ← fT (t, n) (Equation 1)

12 else if � = Pr(E(�p1 , . . . , �pN , �d1 , . . . , �dM )) then
13 X = 〈eval(S≤n, tn, �p j )〉N

j=1

14 θ = 〈eval(S≤n, tn, �d j )〉M
j=1

15 return
∫

w∈E(X,θ)
p(X = w) dw

16 end

Algorithm 3: Progression for ProbSTL.

1 function PROGRESS(φ , S≤n , �, tn):
2 if φ = φ1 ∨ φ2 then
3 return PROGRESS(φ1, S≤n, �, tn) ∨ PROGRESS(φ2, S≤n, �, tn)

4 else if φ = ¬φ1 then
5 return ¬PROGRESS(φ1, S≤n, �, tn)

6 else if φ = φ1 UI φ2 then
7 if I < 0 then
8 return ⊥
9 else if 0 ∈ I then

10 return PROGRESS(φ2, S≤n, �, tn) ∨ (PROGRESS(φ1, S≤n, �, tn) ∧ φ1 UI−� φ2)

11 else
12 return PROGRESS(φ1, S≤n, �, tn) ∧ φ1 UI−� φ2

13 end
14 else if φ = p� then
15 return f p(EVAL(S≤n, tn, �))
16 else
17 return �
18 end

Theorem 3 (Correctness of ProbSTL progression). The PROGRESS procedure (Algorithm 3) is correct with regards to the semantics of 
ProbSTL,

M,n |= φ iff M,n+1 |= PROGRESS(φ, S≤n+1,�, tn+1),

for ProbSTL-model M, time-points n, n+1, real-valued time-point tn, wff φ , tuple of signal prefixes S≤n and � = tn+1 − tn.

Proof. ProbSTL extends STL with a sub-language Lprob which always evaluates to real-valued terms in place of real-valued 
signals in STL as long as the statement is a wfs. The sub-language can consequently clearly be plugged into STL. The 
ProbSTL extension of STL only affects line 15 in Algorithm 3 where Sn is replaced by Eval(S≤n, tn, �) with respect to line 
15 in Algorithm 1. It is sufficient to show that Eval(S≤n, tn, �) ∈ R defined by Algorithm 2 for a wfs � ∈ Lprob and the 
rest follows from Theorem 1. For � to be a wfs (Definition 14) it can only appear in EVAL as an argument on lines 4 and 



338 M. Tiger, F. Heintz / International Journal of Approximate Reasoning 119 (2020) 325–352
12. The interpretation of the respective (wfs) � is a real valued number (Definition 15). Consequently, the associated return 
statement of each of these three cases all return a value in R. �

The computational complexity of incremental evaluation of wffs in ProbSTL depends on the plugins used. The integrals 
of all the listed events, e.g. InsideInterval, has constant time complexity (O(1)), but other integrals do not have cheap closed 
form solutions and the computational complexity of numerical integration depends on the integrand [25]. Integrals are 
also commonly approximated using techniques such as variation methods, Monte Carlo based sampling methods [26] or 
efficient hybrid methods [8]. The use of plugins allows for a pay-as-you-go principle, where the computational complexity 
and other desirable theoretical properties depends on the choice of plugin. The computational complexity of progression 
over ProbSTL-formulas is the same as for STL when including the additional signal transformations which would be hidden 
in STL but are made explicit in ProbSTL.

5. Properties of ProbSTL for physical signals

Physics and computational hardware put limits on how fast the sampling in a sensor (the sample rate) can be performed. 
If the underlying continuous-time signal xc(t), which the sensor observes, varies faster than the sample rate then the pro-
duced discrete-time signal x(tn) will miss out on information present in the underlying signal. It is also common that a value 
change in xc(t) will show up at a later time-point in x(t), since the sampling is not being triggered by a value change in 
most sensor types. The produced signal will in both cases consequently not fully represent the underlying continuous-time 
signal. Both cases violate the finite variability assumption.

In [16] they use a simulator in which a discrete-time signal can be constructed and which by design represents every 
signal-value change produced by the simulator. This does ground the semantic validity in the simulator abstraction but 
not necessarily in the physical process which is simulated. Finite variability is a very strong and, in general, unrealistic 
assumption for many real physical signals. Further, a sampling procedure which captures every signal-value change, even of 
a signal with finite variability, is also in general unrealistic for most physical systems. A finite interval coverage I of xc(t) is 
for example typically neither known nor available for use by the sampling procedure. It is therefore necessary to consider 
realistic relaxations on the finite variability assumption and on the use of a finite interval coverage sampling process5 (FIC 
sample process for short). It is important to analyze how such relaxations affect the computational complexity, validity and 
latency of drawn conclusions in STL and ProbSTL.

Given continuous-time signal xc(t) and a FIC sampling process (which implies that xc(t) is of finite variability), it is the 
case that a formula φ which holds for the produced discrete-time signal x(tn) also holds for the continuous-time signal 
xc(t):

x |= φ =⇒ xc |= φ

However, under what circumstances is it the case given realistic relaxations to finite variability and to a FIC sampling 
process? The relaxations we consider here are

• The sample rate is bounded between a minimal and a maximal rate.
• The sample rate is independent of the value changes in the underlying signal.
• The continuous-time signal xc(t) does not have to be of (local) finite variability.

We focus on these three relaxations because they correspond to the most common realistic settings for cyber-physical sys-
tems in practice, such as in robotics or in the signal processing field. In signal theory this setting is for example accompanied 
with the common additional assumption that the (minimal) sample rate is at least twice the maximum frequency of the 
underlying noise-free continuous signal (Nyquist theorem [27]). This is among other things necessary in general in order to 
do a full reconstruction of the signal using the sampled signal.

To analyze the consequences of these relaxations we therefore introduce a time difference bound �limits = {�min, �max}
as a minimal and maximal time difference between consequent samples as a result of a sampling procedure. This directly 
corresponds to a maximum and minimum sample rate. To be precise, �limits puts constraints on the discrete-time signal 
x(tn) = xc(tn) as it is produced by a sampling procedure of the (noisy) continuous-time signal xc(t) describing observa-
tions of a physical state. The constraint is defined as ∀n (�min ≤ �n ≤ �max) where �n = tn+1 − tn with tn, tn+1 ∈ T and 
�min, �max ∈R≥0.

Firstly, we investigate how a FIC sampling process over a finite variability signal relates to the �limits bound. Since the 
discrete-time signal by definition of FIC sampling process with finite variability has to contain all signal value variations in 
the continuous-time signal it is the case that the bound cannot be tighter than the rate of change allowed. Finite variability 
puts constraints on the number of value changes, but not how fast they are allowed to change as long as consecutive 

5 A sampling procedure such that a discrete-time signal is produced, which fully captures the observed continuous-time signal with (local) finite vari-
ability, by sampling at every signal-value change.
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time points are distinguishable (i.e. not the same time-point). Nor is there a requirement that the signal has to change. 
In the general case of local finite variability the first value change could appear in the limit. Consequently, the bound 
is fully determined by the smallest and largest time-difference between value changes in the continuous-time signal. If 
these properties are not known (the common case) then the bounds exists in the limit (�min → 0 and �max → ∞) and 
0 < �n < ∞ is consequently all we can say. This is a direct consequence of the finite variability assumption and why it is a 
physically infeasible assumption. Theorem 4 summarizes these conclusions.

Theorem 4 (�limits for a FIC sampling process). The bounds �limits = {�min, �max} for a FIC sampling process exists in the limit

�min → 0 and �max → ∞

Proof. Let xc(t) be a continuous-time signal which fulfills the (local) finite variability assumption, and let x(tn) be a discrete-
time signal produced by a FIC sampling procedure from xc(t) which means that x(tn) fully represent xc(t). This assumes a 
sampling procedure in which a new sample x(tn) is produced for every time-point tn where xc(t) has changed to a new 
value. Consequently, �n can potentially be as short as the fastest value change, 0 < �n , and potentially as long as the entire 
signal, �n < ∞. Since �limits consequently is directly dependent on the characteristics of the continuous-time signal, and 
we cannot directly observe this signal, the general bounds exists in the limit �min → 0 and �max → ∞. �

A frequently used assumption in signal processing is that uniform sampling (fixed sample rate) is used as a sampling pro-
cedure. This can leverage techniques such as the Fast Fourier Transforms in order to significantly reduce the computational 
complexity of certain signal processing tasks. In the uniform sampling case �min = �max .

Proposition 1 (�limits for uniform sampling). For uniform sampling (fixed sample rate) it is the case that �min = �max.

The cases in Theorem 4 and Proposition 1 span a range of the bound �limits . From event rate based sampling (Theorem 4) 
to fixed rate sampling (Proposition 1). We will now investigate aspects of validity, latency and computational complexity 
within this span.

Since the discrete-time signal x(tn) produced from a sampling process is not guarantied to fully represent the continuous-
time signal xc(t) (as opposed to with FIC sampling) there is a possibility that signal value changes will be missed. The 
consequence is that the violation of a formula given xc(t) will not result in the violation of the formula given x(tn). Only 
signal value changes that happens slow enough will be reliably captured by x(tn) and consequently any conclusions drawn 
from such value-changes as well.

Theorem 5 (Reliable formula violation detection). Only formula violations due to a signal violating the formula for a time duration 
(violation interval) ≥ �max will be reliably detected in STL and ProbSTL for deterministic signals.

Proof. The time between consecutive stream states is at most �max from the definition of �limits . If the underlying signal 
values xc(t), for t ∈ [a b], falsifies a formula but the interval duration b − a is shorter than �max and the interval is between 
two sample time-points tn < a < b < tn+1, for tn, tn+1 ∈ Tx , then none of the underlying signal values within the interval 
will be present in the signal values of x(tn). If the underlying signal values do not falsify the formula immediately before a
and immediately after b then this violation interval will be missing from the sampled signal.

If a violation interval is longer than �max then at least one falsifying underlying signal value will be sampled and present 
in x(tn) and consequently provide a detectable violation. �
Example 1 (Reliable formula violation detection). Consider the illustrative example in Fig. 5. Let Taltitude = 〈t0 = 0, t1 = 1, t2 =
2, t3 = 3, t4 = 4〉, shown as the 5 black bars in Fig. 5, and φ := altitude0 > 3. The interpretation of φ at tn is �altitude0 >

3� = altitudetn > 3. For signal altitudec(t) it is the case that

altitudec(t) > 3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�, I1 := 0.0 ≤ t < 0.3

⊥, I2 := 0.3 ≤ t < 0.7

�, I3 := 0.7 ≤ t < 2.3

⊥, I4 := 2.3 ≤ t < 3.8

�, I5 := 3.8 ≤ t

.

The interpretation of φ is at n = 0, 1, 2, 3, 4

t0 : �altitude0 > 3� = altitudet0 > 3 = �,

t1 : �altitude0 > 3� = altitudet1 > 3 = �,
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Fig. 5. The ProbSTL formula altitude0 > 3 is monitored over signal altitude(tn) (black dots) which is a discretization of signal altitudec(t) (blue curve). Filled 
red area is a detected violation over altitudec(t) (altitude(tn) > 3 = ⊥ for some tn in the violation interval). Filled gray area is a violation over altitudec(t)
which is not detected (there is no tn in the violation interval such that altitude(tn) > 3 = ⊥). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

t2 : �altitude0 > 3� = altitudet2 > 3 = �,

t3 : �altitude0 > 3� = altitudet3 > 3 = ⊥,

t4 : �altitude0 > 3� = altitudet4 > 3 = �.

The violation of altitudec(t) > 3 at I2 has the length |I2| = 0.3999... < �max = 1. The formula violation at I2 is not detected. 
The violation of altitudec(t) > 3 at I4 however has the length |I4| = 1.4999... ≥ �max and results in a detected violation 
of φ. No matter how the sampling of altitudec(t) is shifted in time, there will always be a sample from within interval I4
present in altitude(tn) which consequently results in a detected violation of φ.

In robot safety it is important to react quickly. Detecting violations in a timely manner for which the robot should react 
to is consequently very important. The time difference bound �limits puts a bound on the detection delay of a formula 
violation. That is, how long it can take for a signal value change in xc(t) to take place before it is possible to conclude that 
a formula is false given the value-change in x(tn).

Theorem 6 (Formula violation detection delay). Let C be the computationally-induced time-delay in eval, Progression and other 
external code. Then for reliable formula violation detection (Theorem 5) the detection delay d will be bounded by

C < d ≤ �max + C

and with a FIC sampling process the formula violation delay is always

d = C .

Proof. For the case C < d: If a reliable formula violation interval starts immediate before time point tn ∈ Tx then the 
formula violation signal value will be present in the produced signal x(tn) at time-point tn . The delay is therefor strictly 
larger than C .

For the case d < �max + C : If a reliable formula violation interval starts immediate after time point tn ∈ Tx then the 
formula violating signal value will not be present in the produced signal x(tn) at time-point tn . The formula violation 
interval is by Theorem 5 long enough for the violating signal value to be present at the next time-point tn+1. By the 
definition of �limits the maximum difference between two time-points, tt+1 − tn of the produced signal x(tn) is �max . The 
delay will consequently be at most �max in addition to C .

Finally, with a FIC sampling process there is no delay due to �limits since (by Theorem 4) any changes in the continuous-
time signal at t = tn have an immediate corresponding state at tn in the discrete-time signal produced. The delay is 
consequently only due to C . �
Example 2 (Formula violation detection delay). Consider the illustrative example in Fig. 6 where the formula violation detection 
delay d is shown. The formula violation (filled red area) start at time-point t′ in the figure. We will now consider a few 
cases with t′ shifted in time (the formula violation will start at different time-points) and calculate what the delay d is in 
each case.

Let Taltitude = 〈t0 = 0, t1 = 1, t2 = 2〉 and φ := altitude0 > 3. For Taltitude it is the case that �max = 1. Let altitudec(t) be 
a signal for which

altitudec(t) > 3 =
{

�, 0.0 ≤ t < t′

⊥, t′ ≤ t < 1.1
.

For t′ ∈ {0.9, 1.0, 1.1} it is the case that
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Fig. 6. The ProbSTL formula altitude0 > 3 is monitored over signal altitude(tn) (black dots) which is a discretization of signal altitudec(t) (blue curve). Filled 
red area is a formula violation which is detected. The detection is d seconds after the start (t′) of the formula violation.

t′ = 0.9 : 〈�altitude0 > 3� at tn〉tn=t0,t1,t2 = 〈�,⊥,⊥〉,
d = t1 − t′ + C = 0.1 + C

t′ = 1.0 : 〈�altitude0 > 3� at tn〉tn=t0,t1,t2 = 〈�,�,⊥〉,
d = t2 − t′ + C = 1.0 + C

t′ = 1.1 : 〈�altitude0 > 3� at tn〉tn=t0,t1,t2 = 〈�,�,⊥〉,
d = t2 − t′ + C = 0.9 + C

In the first case (t′ = 0.9) the first violation of φ occur at t1 which is 0.1 seconds after the first violation of altitudec(t) > 3
at t′ . The violation detection occurs at t1 + C , which includes the time C of evaluating φ at time-point t1.

In the second case (t′ = 1.0) the first violation of altitudec(t) > 3 occur at time-point t′ which is strictly after t1. The 
first violation of φ is therefore not until t2, which is 1 second after t′ . This is the longest possible detection delay (1.0 + C ) 
and increasing t′ further (t1 < t′ ≤ t2) decreases the detection delay (the third case).

The bound C < d ≤ �max + C from Theorem 6 holds for all three cases.

The computational complexity of a progression iteration (one call to Progression) depends on the computational 
complexity of Eval which depends on the computational complexity of the inference algorithms in the Lprob-plugins used.

Theorem 7 (Computational complexity of single-step ProbSTL progression). The computational complexity of a progression iteration 
over a ProbSTL statement is

O
(
|φ| f (FR, FS,E)

)
where |φ| is the length of the ProbSTL formula and f (FR, FS, E) is a function describing the computational complexity of computing 
functions and probabilities of events in Eval given the sets of real-valued functions FR , stochastic-valued function FS and probability-
theoretic events E.

Proof. The length of the ProbSTL formula is the number of nodes in the full abstract syntax tree of φ which includes the sub 
trees of Lprob statements. Eval (Algorithm 2) visits each node in each Lprob abstract syntax sub tree once, and Progression 
(Algorithm 3) visits each non-Lprob node once. Together each node in the full abstract syntax tree is visited once.

Every visit to a node in Progression is a constant time operation except the nodes which are root nodes for Lprob sub 
trees (Line 15 in Algorithm 3). The complexity for evaluating a Lprob statement is a function of the real-valued functions 
FR , stochastic-valued function FS and probability-theoretic events E given by the chosen ProbSTL plugins. �

ProbSTL allows terms on the form xt and xt′ |t where t ∈R≤0. Specifying t = 0 refer to the current time-point tn ∈Tx of 
the stream. For other t , that is for t ∈ R<0, then t will refer to some tm ∈ Tx calculated using Equation (1). If tn + t /∈ Tx

then there will be a temporal precision error between the time-point specified by the term (t + tn) and the time-point of 
the interpretation of the term (tm).

The constraint tn + t ∈ Tx can be enforced when writing formulas if the time domain Tx of signal x(tn) is known. The 
time domain is however in general unknown when constraint formulas are written. A special case when Tx is in fact known 
is when uniform sampling (Proposition 1) is performed and �n is known.

For a FIC sampling process there is no problem with temporal precision since tn + t will fall into the suitable interval Im

corresponding to tm ∈Tx which exactly describes the signal values at time tn + t .
Without (local) finite variability, and especially with variable sample rates, it is important to take temporal preciseness 

into consideration when writing constraint formulas and designing safe systems. The temporal preciseness of tn + t in 
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Fig. 7. The ProbSTL formula altitudet > 3, where t is a non-positive real number, is monitored over signal altitude(tn) which is a discretization of signal 
altitudec(t). terr = tm − (tn + t).

relation to Tx determines the temporal resolution of the terms with the temporal precision error being bounded by �max
2

(Theorem 8).

Theorem 8 (Preciseness of time in terms). Let �max < ∞ be the maximal time difference between any two subsequent states xt j+1 , xt j

in signal x(tn): t j+1 − t j ≤ �max, ∀t j ∈T . The error between the specified stream time tn + t for a term of the form xt or xt′ |t and the 
actual time-point tm of a stream state which will represent this symbol is bounded by |tm − (tn + t)| ≤ �max

2 for t ≥ t0 .

Proof. Let S≤n be the current stream prefixes (signal prefixes). m = n − k as calculated by (1) is the discrete-time-point 
closest to t̃ := tn + t (if many, then it is the earliest) and is in the range 0 ≤ m ≤ n. The difference in time between t̃ and 
tm is |tm − t̃|. Since tm is the closest time-point to t̃ it is the case that |t̃ − tm−1| ≥ |tm − t̃| and |t̃ − tm+1| ≥ |tm − t̃|. Since 
|tm − tm−1| ≤ �max and |tm − tm+1| ≤ �max then |tm − t̃| = |tm − (tn + t)| ≤ �max

2 . �
Example 3 (Preciseness of time in terms). Consider the illustrative example in Fig. 7. We will consider a few possible values for 
t in the formula altitudet > 3 and calculate the temporal preciseness of respective case. We only consider three time-points 
in Taltitude for simplicity.

Let Taltitude = 〈t0 = 1, t1 = 2, t2 = 3〉 and �1 := altitude−0.4, �2 := altitude−0.5, �3 := altitude−0.9, �4 := altitude−1.2. For 
Taltitude it is the case that �max = 1. The interpretation of �i is at tn = t2 (using Equation (1))

��1 � = altitudet1
k

where t1
k = fT (2,−0.4) = t2,

��2 � = altitudet2
k

where t2
k = fT (2,−0.5) = t1,

��3 � = altitudet3
k

where t3
k = fT (2,−0.9) = t1,

��4 � = altitudet4
k

where t4
k = fT (2,−1.2) = t1.

From Theorem 8 it is the case that |tm − (tn + t)| ≤ �max/2. It holds for each �i :

�1 : |t2 − (3 − 0.4)| = 0.4 ≤ 0.5,

�2 : |t1 − (3 − 0.5)| = 0.5 ≤ 0.5,

�3 : |t1 − (3 − 0.9)| = 0.1 ≤ 0.5,

�4 : |t1 − (3 − 1.2)| = 0.2 ≤ 0.5.

Reliable formula violation detection (Theorem 9) is limited by the minimal sample rate (�max). Using a prediction stream 
(produced by a time series model) it is possible to up-sample the signal with predictions to achieve reliable formula viola-
tion detection at higher time-resolution than �max . The prediction stream represents the uncertainty of the signal value on 
the real-valued time-line (not just at the observations) and the formulas consequently have to be probability-constrained to 
deal with this uncertainty.

Theorem 9 (Improved reliability of formula violation detection by interpolation). Let � be a probability-constrained formula 
Pr(E(x0|0, . . . )) > probability. Let �n = tn − tn−1 . The violation-interval of reliable formula violation detection of probability-
constrained formulas can be reduced from that of Theorem 5 down to �n

K by using prediction terms to interpolate (up-sample) the 
stream,
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Fig. 8. The ProbSTL formula Pr(altitude0|0 > 3) > 0.95 is monitored over signal altitude(tn) which is a discretization of signal altitudec(t). The gray dots are 
predictions of altitude and the error-bars show the 90% probability interval of the prediction. The previously undetected violation (filled gray area) is now 
detected via the detectable uncertainty-constrained violation (filled red area).

K∧
k=1

Pr(E(x −(k−1)�n
K |0, . . . )) > probability,

if the probability density function over property x is conservative with respect to E.

Proof. The probability density function over property x is conservative with respect to E if the probability of E(x) is not 
overestimated. Following this it is the case that Pr(E(xc

t , . . . )) ≥ Pr(E(xt|t , . . . )) > c. Consequently, a violation will not be 
missed (but false violations w.r.t. xc(t) can occur). By definition �n ≤ �max which means that �n

K ≤ �max
K . �

Example 4 (Improved reliability of formula violation detection by interpolation). Consider the illustrative example in Fig. 8.
The formula � := Pr(altitude0|0 > 3) > 0.95 is replaced with

�′ :=
4∧

k=1

Pr(altitude− (k−1)�n
4 |0 > 3)) > 0.95

= Pr(altitude0|0 > 3)) > 0.95

∧ Pr(altitude− 1�n
4 |0 > 3)) > 0.95

∧ Pr(altitude− 2�n
4 |0 > 3)) > 0.95

∧ Pr(altitude− 3�n
4 |0 > 3)) > 0.95

in order to improve the reliability of formula violation detection. The temporal resolution is increased for formula violation 
detection, but with the draw-back that the predictions are more uncertain further away from the observed data points.

For simplicity a Kalman smoother with constant-position motion model is used in this example. The three predictions 
altitude− 1�n

4 |0, altitude− 2�n
4 |0 and altitude− 3�n

4 |0 are shown in Fig. 8 as gray dots with 90% probability intervals. There is 
consequently 5% probability density above and below the error-bar. The uncertainty is smaller closer to observations (tn and 
tn−1) and at its highest at the midpoint.

The filled red area in Fig. 8 shows the interval where ��′� = ⊥. That is, where at least 5% probability density is below 
the 3 meter threshold (the probability of the altitude being higher than 3 meters is 95% or lower). The filled red area is 
wider or equal to the filled gray area as long as the predictions are conservative with respect to the event >. That is, as 
long as the probability of the event is not overestimated.

The reliability is improved with �′ over � by a reduction in false positives (missed true formula violations). The reduction 
is payed for by an increase in false negatives, that is formula violations with respect to altitude(tn) which actually are not 
violations with respect to altitudec(t).

The prediction stream further allows formula violation detection over the predicted future. This is useful for detecting 
likely formula violations before they happen, which among other things circumvents the formula violation detection delay 
from Theorem 6. Similarly to Theorem 9 it is possible to perform reliable formula violation detection over the predicted 
future at a higher temporal resolution than the sampled signal (Theorem 10).

Theorem 10 (Improved reliability of formula violation detection by extrapolation). Let � be a probability-constrained formula 
Pr(E(x0|0, . . . )) > probability. The violation-interval of reliable formula violation detection of probability-constrained formulas can 
be reduced from that of Theorem 5 down to �max by using prediction terms,
K
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Fig. 9. The ProbSTL formula Pr(altitude0|0 > 3) > 0.95 is monitored over signal altitude(tn) which is a discretization of signal altitudec(t). The gray dots are 
predictions of altitude and the error-bars show the 90% probability interval of the prediction. The previously undetected violation (filled gray area) is now 
detected via the detectable uncertainty-constrained violation (filled red area).

K∧
k=1

Pr(E(x (k−1)�max
K |0, . . . )) > probability,

if the probability density function over property x is conservative with respect to E.

Proof. Identical to the Proof of Theorem 9 but where �n is substituted for �max ≥ tn+1 − tn . �
Example 5 (Improved reliability of formula violation detection by extrapolation). Consider the illustrative example in Fig. 9 which 
is similar to Example 4 but with predictions into the future (extrapolations) as opposed to predictions of intermediary signal 
values (interpolation).

The formula � := Pr(altitude0|0 > 3) > 0.95 is replaced with

�′ :=
4∧

k=1

Pr(altitude (k−1)�max
4 |0 > 3)) > 0.95

= Pr(altitude0|0 > 3)) > 0.95

∧ Pr(altitude 1�max
4 |0 > 3)) > 0.95

∧ Pr(altitude 2�max
4 |0 > 3)) > 0.95

∧ Pr(altitude 3�max
4 |0 > 3)) > 0.95

in order to improve the reliability of formula violation detection. The difference to Example 4 is that the uncertainty grows 
over time after tn (using the same Kalman smoother). The consequence of this is that the trade-off between false positives 
and false negatives becomes more severe, which is seen in Fig. 9 by the wider red area compared to Fig. 8

Corollary 1 (Increased complexity). The improved formula violation detection reliability in Theorem 9 and Theorem 10 increases the 
computational complexity by a factor K , respectively, on the computational complexity of Eval.

We have in this chapter considered several aspects which are of important if STL or ProbSTL is to be used for monitoring 
physical signals, for example in robot safety applications. These are important to keep in mind and highly relevant if working 
with cyber-physical systems or robots in practice.

6. Empirical evaluation

To provide more insights into the details of ProbSTL and its possible use we here consider two use-cases. Both use-cases 
consider constraints on spatio-temporal movement of a UAV. In the first use-case a simulated altitude signal is used and in 
the second use-case a high-fidelity simulator of the physical dynamics of a DJI M100 drone is used to generate realistic data 
for monitoring UAV behaviors.

6.1. UAV altitude constraint

Consider the setting in Fig. 4 where a UAV has to stay above a certain altitude for safety reasons. Assume that some UAV 
task requires the UAV to move up and down repeatedly. The reason for the motion could be to avoid obstacles that gets in 
the way of the UAV such as street lights, power-cables, buildings or other UAVs. Further assume that the uncertainty in the 
UAV altitude changes over time, for example due to GPS interference/shadowing or due to varying precision in the visual 
odometry. The altitude observations are generated from the noisy process with a 10 hz sample rate,
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xc
t = 0.5 sin(2π0.2t) + 3.2

ytn ∼ N (xc
tn

,σ 2
ε (tn))

where ytn are noisy observations of the altitude produced from sensor measurements as a stream over time points tn ∈
T . The uncertainty (variance) varies over time between σ 2

min = 0.012 and σ 2
max = 0.42 through σ 2

ε (t) = σ 2
min + (σ 2

max −
σ 2

min)(0.5 + 0.5 sin(2π f t)). The observation uncertainty σ 2
ε (tn) is assumed to be known, and it has the uncertainty varying 

frequency f = 1
3 hz.

The altitude xc
t and our uncertainty about it is represented as a gaussian distributed stochastic variable xt and estimated 

via Bayesian filtering using a Kalman filter with a constant-velocity motion model. The constant-velocity motion model is 
a crude approximation of the true dynamics, but it is compensated for by making sure that the uncertainty is conservative 
(the uncertainty is overestimated). The state zt consists of the stochastic altitude xt and its velocity vt . We represent our 
uncertainty of the state with a multivariate Gaussian distribution

zt ∼ N (μzt ,
zt ), μzt =
[
μxt

μvt

]
, 
zt =

[
σ 2

xt
σxt vt

σxt vt σ 2
vt

]

and the altitude when marginalizing out the velocity is

xt ∼ N (μxt ,σ
2
xt

).

The state space model of the Kalman filter is

zt+� = F�zt + w�, w� ∼ N (0, Q �), (2)

yt = H zt + εt, εt ∼ N (0, Rt),

where the matrices F� , Q � , H and Rt are defined as

F� =
[

1 �

0 1

]
,

Q � =
[

1.52 �2

2 0
0 1.52�

]
,

H = [1 0],
Rt = σ 2

ε (t),

and where � = t′ − t is the time difference between time point t′ and the current time point t , F� is the state transition 
matrix, Q � is the process noise covariance, H is the observation matrix, zt is the state vector at time t , yt is the observation 
vector at time t and Rt is the observation noise covariance at time t . We represent our uncertainty in the model with the 
process noise as 1.5 m standard deviations position-wise and 1.5 m/s velocity-wise.

The measurement update of the Kalman filter, incorporating a new observation ytn given a previous state for time-point 
tn−1, is given by

μztn |tn = μztn |tn-1
+ Ktn|tn-1

(
ytn − Hμztn |tn-1

)
, (3)


ztn |tn = (I − Ktn|tn-1 H)
ztn |tn-1
(4)

where the Kalman gain is Ktn |tn-1 = 
ztn |tn-1
H T

(
H
ztn |tn-1

H T + Rt
)−1

.
The Kalman filter prediction is given by

μzt′ |tn = Ft′-tnμztn |tn

zt′ |tn = Ft′-tn
ztn |tn F T

t′-tn
+ Q t′-tn

where t′ can be smaller or larger than tn depending on if the prediction is into the past or into the future. The prediction 
for t′ = tn+1 is used in (3) - (4).

The ProbSTL stream is defined as S = 〈altitude(tn), Altitude(tn)〉 where altitude(tn) is a deterministic discrete-time signal 
and Altitude(tn) is a prediction stream. The two signals are defined for ∀tn ∈T as

altitudetn ∈ altitude(tn)

altitudetn|tn ∈ Altitude(tn)
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Fig. 10. Illustration of the altitude experiment for the four constraint formulas A, B, C, D. The truth value of an evaluated formula is plotted with green 
dots whenever it has the same truth value (�, ⊥) as the ground truth (xc(t)) and as a red star when not. Incorrect ⊥ is a false alarm and incorrect � is a 
missed constraint violation. The 95% probability intervals (approximately two standard deviations) are shown with dashed lines.

where the stochastic variables are defined as altitudetn|tn ∼N (μxtn |tn , σ 2
xtn |tn ) from (3) - (4) and altitudetn = ytn . We consider 

the monitoring of four different constraints on the UAV altitude,

A : altitudetn > 3

B : mean(altitudetn|tn ) > 3

C : mean(altitudetn|tn ) > 3 + 0.7840

D : Pr(altitudetn|tn > 3) > 0.95

where the purpose is to detect violations to the constraint that the altitude must be larger than 3 at all times. Constraint C
contains a safety margin of 0.78403 meters. The safety margin is calculated such that it should hold with 0.95 probability 
given observations drawn from N (μxt|t , σ 2

max). The safety margin is calculated using the function Q,

Q(p,μ,σ ) = μ + σ �−1
( p + 1

2

)
= μ + σ

√
2 erf−1(p),

where p ∈ [0 1] is a probability and erf−1 is a standard function in most mathematical software libraries. The interpretation 
of Q is that if c = Q(p, μ, σ) then 

∫ c
−∞ N (x; μ, σ 2)dx = p. The safety margin is given by Q(0.95, 0, σmax) = 0.7840.

Fig. 10 shows the signals and the constraint satisfaction for 20 seconds. The full experiment lasts 300 seconds. The result 
of the experiment is summarized in Table 1.

Formula A is the base case where the raw and noisy sensor measurements are used directly. The true positive rate and 
true negative rate is about 0.926 and 0.683 respectively (Table 1). These rates are improved for Formula B by using the 
estimated mean altitude which suppresses much of the noise present in the sensor measurements.
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Table 1
Results of the altitude experiment. Constraint formulas are presented in the order A, B, C, D. Formula A and B both 
have a high False Negative rate which makes them unsuitable as safety constraints. Formula D is almost as safe as 
formula C (low False Negative rate) but has far fewer false alarms (False Positive rate).

Constraint formula True Positives False Positives True Negatives False Negatives

altitudetn > 3 0.92559 0.074409 0.68296 0.31704
mean(altitudetn |tn ) > 3 0.93505 0.064946 0.86667 0.13333
mean(altitudetn |tn ) > 3 + 0.7840 0.34409 0.65591 1.00000 0.00000
Pr(altitudetn |tn > 3) > 0.95 0.81333 0.18667 0.99852 0.00149

Fig. 11. UAV inside an allowed space specified as a rectangle. The restricted space is in red.

The true negative rate corresponds to the number of true constraint violations for which the monitoring of a formula 
also reported a violation. From a safety perspective it is important to never miss any true violations, or as few as possible 
given the inherent uncertainty in physical sensing. The true negative rate is increased substantially for Formula C by adding 
a static safety margin to Formula B. The cost of this safety margin is however that the true positive rate drops significantly 
(0.344). The false positive rate corresponds to the rate of false alarms in detecting constraint violations. A low false alarm 
rate (a high true positive rate) is crucial in order to keep a high task efficiency. Formula D improves the true positive 
rate drastically (0.813) while maintaining a high true negative rate. This is achieved by a dynamic safety margin implicitly 
coupled to the uncertainty in the altitude directly. If the uncertainty is large then the safety margin is as large as for C, but 
if it is small then the safety margin also becomes small and thus allows for higher task efficiency.

All four formulas can be expressed explicitly in ProbSTL, but only the first one (formula A) can be explicitly expressed 
in STL. Formula D is the best performing formula in this experiment and it is clearly specified in ProbSTL with a clear 
interpretation.

6.2. UAV 2D use-case

Assume that there is an area where a UAV is allowed to operate. Outside of it there might be (untrained) people or re-
duced support infrastructure for the UAV positioning. Sometimes the UAV might venture outside the area for short amounts 
of time. It might be on purpose, or accidentally due to for example strong wind pulling it away. Whenever the UAV ends up 
outside of the area it must get back inside right away.

The high-fidelity simulator used in this experiment operates in 3D space. The experiment is however conducted in a 
spatial 2D plane at a fixed altitude. This means that the trajectory followed by the MPC lies on this plane, while the simu-
lated UAV state will stay as close to this altitude as the controller can manage given the UAV dynamics. The experiment can 
trivially be extended to full 3D trajectories, but this would make the presentation unnecessary complicated (visualizations 
in 3D instead of 2D). The simplification of 2D instead of 3D does not affect the results nor the conclusions.

Let the allowed area to be defined by a rectangle (Fig. 11) where the rectangle is defined by a center rectc , a width 
rectw and height recth . Let rect = 〈

c, r̄
〉

where

c = rectc,

r̄ = [r1 r2]T ,

r1 = rectw

2
,

r2 = recth

2
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Fig. 12. Five example cases C1-C5 of UAV motions are illustrated together with if the formulas A-D hold (✓) or not (✗) for each case. Case C1: Motion 
to a point close to the restricted space. Case C2: High-speed motion to a point close to the restricted space. Case C3: Motion to a point far into the 
restricted space. Case C4: Motion into the restricted space with an immediate return to the allowed space. Case C5: Motion into the restricted space with 
a dragged-out U-turn and a sudden high-speed return to the allowed space. 
Dashed arrow indicates higher speeds.

We consider the monitoring of four different ProbSTL formulas A, B, C, D constraining the behavior of the UAV in relation 
to the rectangular area in different ways,

A : Pr(insideRectangle(Position0|0, rect)) > 0.95

B : Pr(insideRectangle(Position1|0, rect)) > 0.95

C : ¬(Pr(insideRectangle(Position0|0, rect)) > 0.95)

→ �[0 4](Pr(insideRectangle(Position0|0, rect)) > 0.95)

D : ¬(Pr(insideRectangle(Position0|0, rect)) > 0.95)

→ ( �[0 4](Pr(insideRectangle(Position0|0, rect)) > 0.95)

∧ �[2 4](Pr(insideRectangle(Position1|0, rect)) > 0.95))

Several interesting cases of UAV behavior are considered in Fig. 12, where it is also shown if the monitoring formulas will 
hold true or detect a violation for the different behavior cases.

Formula A is a reactive constraint, considering if the UAV is outside the area at the current time, as opposed to Formula
B which is predictive since it considers if the UAV is expected (predicted) to be outside of the area 1 second from now. A 
violation to Formula B gives the UAV a chance to make some action in order to do something about leaving the area. When 
Formula A is violated it is too late to do something about it. This gets even more important when considering collisions.

Formula C constrains the UAV to be back inside the area again within 5 seconds from when it left the area. Formula D
adds to Formula C that the UAV also have to be predicted to get inside the area in the near future when it has been outside 
the area for 2 seconds already.

In a multi-agent cooperative setting without perfect information it is important that the agents behave predictable as a 
way to show their intent. This is important both for task efficiency and for safety. Formula B can be seen as a constraint 
which assures that the behavior of the UAV does not reflect the intent to leave the area. Similarly, Formula D reflects the 
intent of entering the area again (case C4) as opposed to behaving less predictable (case C5).

For this experiment we consider the non-linear UAV dynamics described in [28] and use a high-fidelity simulator of 
the dynamics. The virtual UAV is controlled using a Model Predictive Controller (MPC) based on the work in [29]. A MPC 
solves an on-line optimization problem to find a discrete sequence of control signals which produce the optimal trajectory 
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Fig. 13. The UAV is slowing down at the end of case C2. The grid cells have 1 meter sides and the no-fly-zone begins 5 meters to the right (in the 
x-direction) of the starting location (gray sphere). The end location is at 3.5 meters to the right of the staring location.

according to some goal while adhering to specified constraints. Typical constraints are limitations in angle, thrust or velocity. 
The scenario with all five cases described in Fig. 12 are realized in ROS (Robot Operating System) using the dynamics 
simulator and MPC. A screen shot from Rviz when the UAV is running case C2 is shown in Figure Fig. 13. The controller and 
sampling is running at 50 hz.

We consider a Kalman filter with a 2D constant-velocity motion model as a simple and very approximate state estimation 
method. The Kalman filter has a state-space model (2), where the state consist of 2D position and 2D velocity, with the 
matrices F� , Q � , H and Rt defined as

F� =

⎡
⎢⎢⎣

1 0 � 0
0 1 0 �

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

Q � =

⎡
⎢⎢⎢⎣

1.52 �2

2 0 0 0

0 1.52 �2

2 0 0
0 0 1.52� 0
0 0 0 1.52�

⎤
⎥⎥⎥⎦ ,

H =
[

1 0 0 0
0 1 0 0

]
,

Rt = [0.00012 0.00012]T .

The Kalman filter is applied on the observed trajectory of 2D positions. The results are shown in Fig. 14. It can be seen 
that the predictions made for the high-speed situations in C2 are very wrong, causing formula B to fail, and that the actual 
future positions are far away from the 95% probability ellipse. The process noise of the Kalman filter has been tuned to be 
statistically conservative for lower velocities, but the predictions are not conservative given the higher velocities. The 95%
probability ellipse would have to be much larger for the predictions to be conservative.

The assumption that predictions are statistically conservative is important, because otherwise the prediction cannot be 
relied upon. This can happen if the state estimation is incorrectly implemented (e.g. wrongly tuned) or if the robot operates 
outside of assumed specifications (e.g. in a new situation). One possible statistically conservative prediction constraint is 
to require that 95% probability density of the current best estimate should be within the 95% probability interval of the 
prediction. This constraint to be monitored can be formulated as

E : Pr(insidePI(Position0|0,Position0|-1,0.95) ≥ 0.95

where, for x, y being N-dimensional multivariate isometric Gaussian distributions,

x ∼ N (μx,
x), μx =

⎡
⎢⎢⎢⎣

μx1

μx2
...

μxN

⎤
⎥⎥⎥⎦ , 
x =

⎡
⎢⎢⎢⎣

σ 2
x1

0 0

0
. . . 0

0 0 σ 2
xN

,

⎤
⎥⎥⎥⎦

Pr(insidePI(x, y, p)) is defined as

P [insidePI(x,y, p)] =
N∏

k=1

P [insidePI(xk,yk, p)]
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Fig. 14. Simulated UAV experiment. Offsets (black/red/green dashed lines) are used to separate overlapping points/lines/arrows for clarity. Predictions are 
shown with their mean (thick red/green dot) and 95% probability interval (ellipse), centered at the tip of an arrow. 
C4: The UAV moves back again without turning when it reaches 1 meter inside the no-fly-zone. The dashed gray line shows the actual y-positions with the 
trajectory to and from the no-fly-zone are shown above and below this line. C5: Both B and D stop being violated at the same time since the prediction 
(shown for only B here) has 95% probability density outside the no-fly-zone.

with

P [insidePI(xk,yk, p)]
= P [insideInterval(xk,μyk − Q(p,0,σyk ),μyk + Q(p,0,σyk ))]

Monitoring constraint formula E for case C1-C5 (Fig. 15) shows that the UAV actually violates this conservative-prediction 
constraint for C2 and C5. The violations occur due to faster velocity and acceleration than what we have modeled for in 
terms of process noise. The violations can mean three different things. (1) The Kalman filter is wrong and we need to 
increase the process noise to compensate for the allowed agility of the controller. This will however cause the uncertainty 
to increase which typically decreases task efficiency. (2) The controller is wrong and the constraints on velocity and accel-
eration must be adjusted to restrict the UAV motion. (3) Assumptions about the environment are incorrect and there are 
external forces (e.g. wind) which affect the UAV more than what the controller can compensate for.
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Fig. 15. Simulated UAV experiment. Estimated position and predicted position is shown as blue dots. The predictions have a 1 meter offset vertically to 
the estimated positions. Predictions are 1 second into the future and the estimated position at the time the predictions are about are shown with a black 
association line. The 95% probability interval (ellipse) is shown for the first prediction which causes a violation of formula E.

Robot safety is becoming increasingly important when robotic platforms are intended to operate close to humans in 
human-tailored environments. It is then crucial to monitor for perception/model errors (1), controller errors (2) and envi-
ronmental errors (3). It might be impossible to conclude which one of perception, control or environment that is the reason 
for a constraint violation. It is regardless possible to monitor the necessary condition on robot safety that they should all be 
consistent (no violation).

We have shown that it is possible to formulate and monitor relevant safety constraints using ProbSTL. It is important to 
know what a safety specification means, and to know that its monitoring is correct. ProbSTL provides a clearer and more 
expressive formalism than STL. Progression allows for timely incremental evaluation of formulas and we have proved its 
correctness for STL and ProbSTL. The plugin modularization further allows ProbSTL to be easily extended to suite specific 
needs and future state-of-the-art probabilistic inference techniques. The plugin separation makes it easier to prove correct-
ness and computational complexity for ProbSTL extended with specific plugins since it is made clear how correctness and 
complexity in the plugins affect the properties of ProbSTL. It is consequently easier to add plugins and derive theoretical 
guarantees of monitoring with available plugins than what is the typical case otherwise.
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7. Conclusions and future work

Robot safety can be strengthened by runtime verification via incremental evaluation of logically specified constraints on 
the environment, including the behavior of the own platform. We propose ProbSTL, a probabilistic extension to STL where 
the expressiveness is increased by adding new symbols that are well defined and useful for robot safety applications. This 
specialization with respect to STL allow for powerful constraints to be formulated and monitored, with symbols grounded 
in probability and estimation theory. ProbSTL is easily extendable and we provide an example spatial plugin. Properties of 
ProbSTL are analyzed given realistic assumptions on the underlying signals and we prove the correctness of the incremental 
reasoning technique progression over ProbSTL formulas. We demonstrate the usefulness and importance of ProbSTL for robot 
safety in two different UAV experiments.
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