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Abstract

TALplanner is a forward-chaining planner that relies on domain knowledge in the shape
of temporal logic formulas in order to prune irrelevant parts of the search space. TALplan-
ner recently participated in the third International Planning Competition, which had a
clear emphasis on increasing the complexity of the problem domains being used as bench-
mark tests and the expressivity required to represent these domains in a planning system.
Like many other planners, TALplanner had support for some but not all aspects of this in-
crease in expressivity, and a number of changes to the planner were required. After a short
introduction to TALplanner, this article describes some of the changes that were made
before and during the competition. We also describe the process of introducing suitable
domain knowledge for several of the competition domains.

1. Introduction

Like most planners, TALplanner (Kvarnström & Doherty, 2000; Doherty & Kvarnström,
1999; Kvarnström, Doherty, & Haslum, 2000; Doherty & Kvarnström, 2001; Kvarnström &
Doherty, 2003; Kvarnström, 2002) allows the user to specify a goal in the shape of a set of
atemporal logic formulas that must be satisfied in the final state that results from executing
a plan. Unlike most planners TALplanner also allows the specification of a set of temporal
logic formulas that must be satisfied by the entire state sequence generated by a plan.

Obviously, these formulas can be used to specify temporally extended goals, such as
safety and maintenance goals that must be upheld throughout the execution of a plan.
However, it is also possible to specify constraints related to traditional measures of plan
quality, such as constraints that forbid certain “stupid” actions from taking place, as in the
Blockhead blocks world planner by Kibler and Morris (1981) or TLplan by Bacchus and
Kabanza (2000), which initially inspired the development of TALplanner. For example, in
a logistics domain one may specify a temporally extended goal stating that once a package
is at its destination, it is never picked up again, and a goal stating that trucks driving
between two locations always use the shortest path. Such constraints can then be processed
by TALplanner in order to automatically extract control knowledge that can be used during
a forward-chaining search process, as opposed to being used as a filter after a candidate plan
has been generated. Given sufficiently strong constraints, the planner can efficiently prune
most of the search tree, making it easier to find a plan among the remaining nodes. Often
(as in this article) the search control aspect is in fact the primary reason for introducing a
temporally extended goal, in which case the goal is usually referred to as a control rule.
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Although forward-chaining planners may sometimes suffer from a lack of goal-directedness
when compared to other types of planners, the use of explicitly represented domain-dependent
knowledge is one way of compensating for this deficiency. More significantly, a forward
chaining planner always has a complete description of the past and current states, which
facilitates the use of complex operator types with complex preconditions and conditional
effects. This expressivity was useful when TALplanner participated in the third Interna-
tional Planning Competition (IPC-20021), which had a clear emphasis on increasing the
complexity of the problem domains used as benchmark tests and the expressivity required
to represent these domains in a planning system. In fact, TALplanner already had support
for several new features that had not been present in IPC-20002, such as the use of numeric
state variables and temporally extended actions with variable duration.

Nevertheless, several extensions and changes had to be implemented before and during
the competition in order to accommodate the semantics of PDDL2.1, the new version of
PDDL (Planning Domain Definition Language, Fox & Long, 2003) which was used to specify
problem domains and problem instances. These extensions and changes are the first topic
of this article, and after an introduction to TALplanner (Sections 2 and 3), the extensions
will be discussed in Section 4. The second topic is that of describing the domain-dependent
control rules that were used for the six benchmark problem domains in the hand-tailored
track of the competition, and more importantly, the process of generating those rules and
the reasoning behind them (Section 5). We will also describe some new changes that have
been made to TALplanner after the competition (Section 6). Finally, we will conclude
with a discussion of the positive and negative sides of using search control knowledge in
TALplanner together with some pointers towards possible future research topics.

Please see Long and Fox (2003) for further information about the basic setup of the
competition, detailed descriptions of the planning domains being used, and timing and plan
quality results.

2. Representation: Using TAL in TALplanner

The semantics of TALplanner is based on an extended version of TAL-C (Karlsson &
Gustafsson, 1999; Doherty, Gustafsson, Karlsson, & Kvarnström, 1998), a member of the
TAL (Temporal Action Logics) family of narrative-based non-monotonic linear discrete
metric time logics for reasoning about action and change. TAL-C has been developed for
modeling domains that may include the use of incomplete information, delayed effects of
actions, finite or infinite chains of indirect effects, interacting concurrent actions, and inde-
pendent processes not directly triggered by action invocations. Consequently, it was seen as
an ideal choice not only for the initial version of TALplanner but also for most extensions
that could conceivably be implemented in the foreseeable future.

A TAL narrative consists of a set of labeled statements in a high-level macro language
L(ND), where the basic language has a number of statement classes for observations of fluent
values (labeled obs), action descriptions (acs), action occurrences (occ), domain constraints
(dom), and dependency constraints modeling causal relations and indirect effects (dep).
The formal semantics of L(ND) is defined by a translation into an order-sorted first-order
base language L(FL) and by a circumscription policy providing a solution to the frame and
ramification problems (Doherty, 1994; Gustafsson & Doherty, 1996; Doherty et al., 1998).

1. http://www.dur.ac.uk/d.p.long/competition.html
2. http://www.cs.toronto.edu/aips2000/
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The L(ND) language is designed to be easily extended for different tasks, such as plan-
ning. An extension may take the shape of a new specialized macro or a new type of
statement. As illustrated in Figure 1, a TALplanner goal narrative uses a version of L(ND)
called L(ND)∗, which contains some of the standard classes of L(ND) statements together
with several new types of planning-related statements. These extensions are accompanied
by extensions to the translation function, so that the new variation of TAL can still share
the same base language L(FL).

However, TALplanner does not use
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Figure 1: TAL/TALplanner relation

this translation directly during the plan-
ning process. Instead, it makes direct use
of the higher level L(ND)∗ goal narrative
in a forward-chaining search process and
generates a plan narrative where a set of
timed action occurrences (corresponding
to a plan) has been added, and where the
goal is entailed in the final state.

In this section, we will attempt to
provide an intuitive understanding of TAL
and how it is used in domain specifica-
tions using concrete examples from the
standard logistics planning domain, where

a set of objects (packages) can be transported by truck between locations in the same city
and by airplane between airports in different cities. The next section contains further in-
formation about the search process and the use of control rules. See Doherty et al. (1998)
for a more detailed description of TAL, and see Kvarnström and Doherty (2000) for more
information about TALplanner.
Notation. All formulas and L(ND) statements below will be shown using the input syntax
for TALplanner, with the exception of some connectives and quantifiers that may be written
using the ordinary logical symbols for increased clarity. All free variables are implicitly
universally quantified.

2.1 Types, Objects and State Variables

Although some planners are restricted to declaring an unstructured set of objects and
representing types as unary predicates, TAL is order-sorted and allows the user to specify a
hierarchy of object types (sorts). The logistics domain can be modeled using the standard
sort boolean = {true, false} together with the seven user-specified types: loc (location) has
the subtypes airport and city, while thing has the subtypes obj and vehicle, the latter of
which has the subtypes truck and plane.

TALplanner also allows the use of numeric types. In order to keep the semantics of these
types clear, only integers and fixed point numbers (that is, numbers with a fixed number
of decimals) are allowed, and lower and upper bounds must be declared for each numeric
type. All of the standard arithmetic operators are available for the numeric types and are
given an interpretation through semantic attachment.

State variables are represented using TAL fluents, which are not restricted to being
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predicates but can take values from an arbitrary user-specified sort. For the logistics domain,
one could use two boolean fluents, at(thing, loc) and in(obj, vehicle), together with a city-
valued fluent city of(loc) denoting the city containing the location loc.

2.2 The Initial State

Given the fluents that were defined above, the initial state of a logistics problem instance
can be specified using L(ND) observation statements:

#obs [0] city of(pos1) =̂ city1 ∧ city of(pos2) =̂ city2 ∧ . . .
#obs [0] at(obj11, pos1) ∧ at(truck1, pos1) ∧ . . .

These observations consist of TAL-C fixed fluent formulas, formulas of the form [τ ] φ de-
noting the fact that the fluent formula φ holds at time τ . A fluent formula is a boolean
combination of elementary fluent formulas of the form f =̂ v (f==v in input notation),
denoting the fact that the fluent f takes on the value v. For boolean fluents, as in the
second observation, the shorthand notation f or ¬f (!f in input notation) is allowed. The
notation is also extended for open, closed, and semi-open temporal intervals. In addition
to these formulas, the function value(τ, f) denotes the value of f at time τ .

2.3 The Goal: Goal Statements and Goal Expressions

A statement class for goals (labeled goal) has been added to L(ND)∗. A goal statement
consists of a fluent formula that must hold in any goal state:

#goal at(obj11, airport1) ∧ at(obj23, pos1) ∧ . . .

The ability to test whether a formula is entailed by the (state-based) goal is very useful in
temporally extended goals and domain-dependent control rules. Therefore, a new macro is
added: The goal expression goal(φ) holds iff the goal of this problem instance (the conjunc-
tion of all goal statements) entails the fluent formula φ. Stated differently, goal(φ) is true
if φ must be true in every goal state. The translation into L(FL) is somewhat complex;
see Kvarnström and Doherty (2000) for further information.

Note that a valid plan must end in a goal state. It is not sufficient to visit a goal state
temporarily, which could be the case when an operator has effects at multiple timepoints
– first satisfying the goal and then destroying it – or when concurrent plans are being
created. (If such plans were desired for some reason, it would of course be easy to modify
the definition and the planner accordingly.)

2.4 Operator Definitions

Since TAL-C is a logic for reasoning about action and change, it has a notion of actions
that can be used for modeling planning operators. Although TALplanner does use the
same semantics, the extended planning language L(ND)∗ contains a new operator macro
providing a syntax which facilitates the use of resource constraints and other planning-
oriented concepts that are not present in standard TAL-C. This is in line with the standard
TAL practice of preserving the logical base language L(FL) and its semantics but providing
different variations of the high-level macro language L(ND) that are adapted to special
tasks.
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The examples below demonstrate the operator definition syntax using three of the six
logistics operators. Further examples will be shown when the IPC-2002 benchmark domains
are discussed.

#operator load-truck(obj , truck, loc) :at s
:precond [s] at(obj , loc) ∧ at(truck, loc)
:effects [s+1] at(obj , loc) := false, [s+1] in(obj , truck) := true

#operator unload-truck(obj , truck, loc) :at s
:precond [s] in(obj , truck) ∧ at(truck, loc)
:effects [s+1] in(obj , truck) := false, [s+1] at(obj , loc) := true

#operator drive(truck, loc1 , loc2) :at s
:precond [s] at(truck, loc1) ∧ city of(loc1) =̂ city of(loc2) ∧ loc1 6= loc2
:effects [s+1] at(truck, loc1) := false, [s+1] at(truck, loc2) := true

Although not used in the simple logistics operators above, TALplanner also allows the
use of context-dependent and quantified effects as well as prevail conditions. Unlike pure
preconditions, prevail conditions are not limited to the invocation state of an operator but
can refer to the entire interval during which the operator is executed. The interval at which
each prevail condition must hold is explicitly specified, which provides additional flexibility
compared to requiring that a precondition must always hold throughout the execution of
an action.

2.5 Resources

If TALplanner was limited to generating sequential plans, resource consumption and pro-
duction could be handled using plain operator effects. For example, if loading a truck
requires one unit of space, the amount of available space could be decreased as follows:

#operator load-truck(obj , truck, loc) :at s
:precond [s] at(obj , loc) ∧ at(truck, loc)
:effects [s+1] space(truck) := value(s, space(truck)) – 1, . . .

With concurrent planning, this is clearly not sufficient, since multiple parallel invocations
of load-truck would still only consume one unit of space. For this reason, TALplanner has
explicit support for resources (Kvarnström et al., 2000).

Resources can be declared in a manner similar to ordinary fluents: They can have
parameters and can take values in an arbitrary integer or fixed point domain. Unlike some
planners, TALplanner only provides one type of resource, but provides several types of
resource effects. Resources can be produced and consumed. They can also be borrowed
(and automatically returned), either exclusively, meaning that the borrower has exclusive
use of the resource during the specified interval, or non-exclusively, where multiple actions
can borrow the same units of a certain resource concurrently. The latter case may appear
strange, but can be useful when one wants to use a resource as a semaphore or mutex.
Finally, resources can be assigned a completely new value.
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In the following example, loading a truck always consumes one unit of space.

#operator load-truck(obj , truck, loc) :at s
:precond [s] at(obj , loc) ∧ at(truck, loc)
:effects [s+1] at(obj , loc) := false, [s+1] in(obj , truck) := true
:resources [s+1] :consume space(truck) :amount 1

Unlike ordinary fluents, a resource res has multiple aspects that can be queried and used in
formulas such as operator preconditions or control rules. At any timepoint, there is an ini-
tial amount available, $init(res). A certain amount may be consumed during this time
step ($consumed(res)), produced ($produced(res)), borrowed exclusively ($borrowed(res))
and borrowed non-exclusively ($borrowed-nonex(res)). This results in a remaining amount
available ($available(res)), which must be between the minimum ($minimum(res)) and the
maximum ($maximum(res)) allowed. The ability to refer to these aspects directly allows
the user to specify more complex resource constraints than a simple minimum or maxi-
mum value for a resource, such as a control rule defining a maximum amount that may be
consumed per time step.

This concludes the description of planning domain definitions in TAL. The following
sections will show the structure of TALplanner’s forward-chaining search tree and how the
search process is constrained using control rules.

3. Search and Control Rules

Like any forward-chaining planner, TALplanner searches for a plan in a tree where the root
corresponds to the initial state and where each outgoing edge corresponds to one of the
operators applicable in its source node. Two trivial examples are shown in Figure 2, where
the notation [s,t] A means that the action A is executed between time s and time t. For
sequential planning (Figure 2a), a new action is always added at the time step where the
previous action ended. For concurrent planning (Figure 2b), TALplanner still adds a single
action at a time to the plan, but the constraint on the time where the action is executed
is relaxed: The action must not start before the start of an existing action in the current
plan prefix or after the end of an existing action. When searching the tree, preference is
given to actions invoked at earlier timepoints. In other words, TALplanner tries to add
as many applicable actions as possible at the same timepoint before stepping to the next
timepoint, so in Figure 2b the subtree starting in [0,4] A3, executing the action A3 between
time 0 and time 4, would have been explored before backtracking to the subtree starting
with [2,5] A3, where A3 happens to take slightly less time to execute due to differences in
the state where the action is invoked. The search process ends as soon as the planner has
found a plan ending in a state satisfying the goal. The exact definition of the search tree
is available in Kvarnström and Doherty (2000) for sequential TALplanner and Kvarnström
et al. (2000) for concurrent TALplanner.

Although it is common to view each node in a search tree as consisting of a single state,
and an operator as a function from states to states, this is not sufficient for TALplanner,
for several reasons: A single operator may generate multiple new states, the evaluation of
a temporally extended goal or domain-dependent control rule may require access to the
entire state history beginning in the initial state, and during concurrent planning a future
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Figure 2: Forward-Chaining Search Space

state may be modified by several operators before it reaches its final configuration. For
these reasons, it is more convenient to view each node as consisting of a state sequence, or
(equivalently) a logical model, as indicated in the figure.

A simple forward-chaining planner can be implemented by searching this tree using a
standard search algorithm, such as iterative deepening or depth first search. But although
using a complete search algorithm is clearly enough to make the planner complete, it is
equally clear that a certain degree of goal-directedness is required to make the search process
efficient. This is achieved using domain-dependent control rules.

3.1 Using Domain-Dependent Control Rules

In fully automated planning, the planner is generally only supplied with an initial state, a
set of acceptable goal states (often specified using propositional or first-order formulas that
must hold in any goal state), and a set of operators to be used in the plan. It is up to
the planner to determine how to search for a plan efficiently, with the possible exception of
various command line options that can be fine-tuned by the user.

However, in some cases the user has additional information about a planning domain that
could be of use to the planner, and this information may be difficult to extract mechanically
from a simple domain specification. If this is the case, it would make sense to allow the user
to supply this information to the planner. Although it entails somewhat more work for the
user, it may also lead to finding plans more quickly or finding plans of higher quality.

There are of course many different kinds of additional information that could be given
to the planner. TALplanner (inspired by TLplan, Bacchus & Kabanza, 2000) allows the
user to specify a set of first-order TAL formulas that must be entailed by the final plan.
This serves two separate purposes. First, it allows the specification of complex temporally
extended goals such as safety conditions that must be upheld throughout the execution of
a plan, and second, the additional constraints on the final plan often allow the planner to
prune entire branches of the search tree, since it can be proven that any leaf on the branch
will violate at least one such goal. In many cases this pruning is the main reason for the
use of the formula, in which case it is often called a control rule. (Allowing the planner to
prune branches efficiently requires some additional analysis, as described in Kvarnström,
2002.)
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3.2 Control Rules for the Logistics Domain

The following are some of the control rules we use for the logistics domain. Further control
rule examples will be given when the IPC-2002 benchmark domains are discussed.

First, a package should only be loaded onto a plane if a plane is required to move it,
i.e., if the goal requires it to be at a location in another city. Second, if we have unloaded a
package from a plane, the package must have arrived in the correct city satisfying the goal.
Third, if a package is at its destination, it should not be moved.

#control :name ”only-load-when-necessary”
[t] ¬in(obj , plane) ∧ at(obj , loc) ∧
¬∃loc ’ [ goal (at(obj , loc ’)) ∧ [t] city of(loc) 6=̂ city of(loc ’) ] →
[t+1] ¬in(obj , plane)

#control :name ”only-unload-when-necessary”
[t] in(obj , plane) ∧ at(plane, loc) ∧
¬∃loc ’ [ goal (at(obj , loc ’)) ∧ [t] city of(loc) =̂ city of(loc ’) ] →
[t+1] in(obj , plane)

#control :name ”objects-remain-at-destinations”
[t] at(obj , loc) ∧ goal (at(obj , loc)) → [t+1] at(obj , loc)

Note that these rules could of course be expressed on various other logically equivalent
forms. Most such variations would have identical performance, since TALplanner internally
normalizes many aspects of control formulas during its domain analysis phase.

4. The Third International Planning Competition

In the second international planning competition (IPC-2000), the planning domains used
mainly STRIPS expressivity. Support for typed objects was not required, and for those
domains that could use ADL-style quantified and conditional effects, restricted STRIPS
versions were also provided.

Although we did expect some increase in expressivity in the third competition (IPC-
2002), we were quite surprised by the extent of the changes. Fortunately, TALplanner
already supported many of the new requirements, and some of the others were easily im-
plemented. Despite this we did make some rather significant changes in order to handle the
combination of all these extensions more efficiently. Below we will discuss how each of the
new requirements affected TALplanner together with a few other improvements that have
been prompted by the domains used in the competition.

4.1 ADL-style Operator Definitions

Though there were STRIPS versions of most planning domains in IPC-2002, the more
complex versions of the domains required the use of quantified conditional effects. Like
most other current planners, TALplanner is not limited to STRIPS expressivity and already
had support for this.
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4.2 Numeric Types and Arithmetic

All IPC-2000 domains that required numeric values emulated these values using ordinary
objects. In the Miconic-10 elevator domain, for example, floor numbers were emulated using
objects named f0, f1, and so on. The next floor was not calculated as f + 1 but by using
an explicitly defined predicate above(floor, floor).

The same approach was taken in the simplest versions of the IPC-2002 domains, but
there were also “Numeric” versions of these domains where numeric types were required
and where arithmetic operators were used. This was already supported by TALplanner,
but unfortunately there was not enough time to write control rules for these domains.

4.3 Concurrency

Despite the fact that some IPC-2000 domains provided the potential for using concurrent
actions, such as driving several trucks concurrently in the logistics domain, there was no
reward for exploiting this potential. Plan quality was measured in terms of the number
of operators in a plan, not in terms of the amount of time required to execute the plan.
Consequently, several planners (including TALplanner) only generated sequential plans,
even for highly concurrent domains.

In IPC-2002, plan quality was mainly measured in terms of the timepoint at which the
last operator finished executing (the “makespan” of the plan, in scheduling terms), and any
planner generating sequential plans would have been severely handicapped. Fortunately a
concurrent version of TALplanner had already been implemented, together with support
for resources (Kvarnström et al., 2000), and could be used in the competition.

Although concurrent TALplanner had already been applied to a number of domains,
the competition provided us with a more varied set of domains that sometimes exploited
concurrency in slightly different ways. This provided us with new ideas for improvements to
TALplanner, and several minor enhancements to TALplanner’s formula analysis algorithms
were implemented during the first phase of the competition, allowing it to handle certain
types of control formulas more efficiently when doing concurrent planning.

4.4 Operators with Non-Unit and Context-Dependent Duration

In IPC-2000, each plan operator used a single time step. In the SimpleTime and Timed
versions of the IPC-2002 planning domains, operators could have a non-unit duration, so
that (for example) walking requires more time than driving. This was already supported
by TALplanner, and no changes were required.

In the Timed versions of the IPC-2002 planning domains, the durations of some opera-
tors could also be context-dependent, and could be specified using arithmetic expressions,
requiring support for numeric types as already discussed above. For example, the time
required to drive a truck between two locations could be specified as the distance between
the locations divided by the speed of this particular truck. This was also already supported
by TALplanner.

TALplanner also permits effects to take place at multiple timepoints within the duration
of an action, although this was not used in the competition.
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4.5 Non-Integer Time

Some of the IPC-2002 contest domains required operator durations to be calculated with a
precision of at least three decimals, which posed a problem for us. The underlying TAL-C
logic is based on integer time, and therefore the same is true for TALplanner. Introducing
non-integer time properly would have required changes to the underlying TAL semantics,
which could not be done in the time that was available, and therefore we simply multiplied
durations by a thousand. When printing a plan, all time values were divided by a thousand.

4.6 Operators with Extended Duration

In the initial implementation of TALplanner (in 1998–1999), it was assumed that although
operators might have extended durations, something interesting would be happening at a
significant proportion of the discrete time steps within that duration. For example, an
operator invoked at t might have a duration of 5 time steps, where some effects take place
at time t + 1, some at time t + 4, and some at time t + 5. This assumption influenced some
of the algorithms and data structures in TALplanner, and appeared reasonable at the time,
since most planning domains in the literature only used single-step operators.

Nevertheless, it was always our intention to extend these algorithms and structures to
handling plans with sparse effects, where most discrete time steps contain no effects at all.
Doing this would not have been difficult, but partly for that very reason – there were more
interesting research issues to be tackled instead – it was continuously postponed.

IPC-2002 finally provided us with a compelling reason to change the data structures,
together with a number of example domains that could be used to test the changes. For
example, an operator in a timed domain from IPC-2002 might have a duration of (say)
89.237, requiring 89237 discrete time steps, where all effects take place at the beginning
or at the end of the action. This led us to implement a new sparse state structure and
change a few algorithms whose time complexity accidentally depended on the duration of
an operator rather than the number of time steps where something actually happened. The
current version of TALplanner allows both state structures to be used depending on the
characteristics of each planning domain.

4.7 The “No Moving Targets” Rule

As already mentioned, TALplanner’s semantics is based on the use of TAL, while the plan-
ning competition uses PDDL2.1. While the semantic differences between these two ap-
proaches are usually not a major problem, we did have some trouble with the way the
effects of durative actions are modeled in PDDL2.1. In essence, PDDL2.1 predicates or
numerical fluents that are affected by the effects of an action are considered to be “moving
targets”, and the preconditions of another action are not allowed to refer to them at the
same timepoint. Instead, a certain intermediate interval (arbitrarily chosen to be 0.001
units of time) is required between the assertion of a fact and the subsequent use of that
fact, even at the beginning of the plan where actions cannot begin exactly at time 0. In
TAL, effects taking place at time t are assumed to give fluents their new values exactly at
that timepoint, and those values can immediately be used. If there is some uncertainty in
the exact time when the effect takes place, one can for example explicitly state that the

352



TALplanner in IPC-2002: Extensions and Control Rules

value is unknown during the inner part of a certain interval but is known at the end of that
interval (though this is not yet implemented in TALplanner).

Changing TALplanner to use the exact PDDL2.1 semantics was out of the question,
since this would change some of the most fundamental assumptions in the planner. Instead
it was necessary to come up with a workaround that let us simulate this semantics. There
are several ways this could be done. One method would involve making minor changes to
the action definitions in order to assert the final effects of each action slightly later (0.001
units of time later, to be exact). During the competition we instead implemented a trivial
modification to the way a plan is printed: At any timepoint where something happens in the
plan (for example, where an operator is invoked), an additional delay of 0.001 is inserted.
This ensures that all plans are safe according to PDDL2.1 semantics but sometimes leads
to generating slightly worse plans than necessary.

4.8 Finding Shortest Paths

In the Rover and DriverLog domains, vehicles and/or people must travel along road net-
works, where different roads may have different costs (lengths) and where it is essential to
take the shortest path between any two points.

Although it is possible to define a shortest path algorithm using TALplanner’s input
language, the formulas become somewhat complicated. Finding the shortest path between
two locations in a weighted graph of places and roads seems to be useful in many domains,
and therefore such an algorithm was implemented directly in the planner.

In fact, two algorithms were implemented: One for finding the cost of the shortest
path between two given locations, and one for finding the distance to the closest location
satisfying a given formula (for example the closest location which is a reasonable destination
for a certain truck in the DriverLog domain). These functions can be called from control
rules in order to ensure that each step one takes leads to a location which is on some shortest
path to the current destination.

5. Modeling the Competition Domains

Of the eight planning domains in the third International Planning Competition, six were in-
tended for hand-tailored planners. Except for the final domain, UMTranslog-2, all domains
exist in at least four different variations: STRIPS, Numeric (where numeric quantities are
involved), SimpleTime (where operators take constant non-unit time), and Timed (where
operator durations may depend on the actual parameters in a specific operator invocation).
TALplanner participated in all six domains, but due to lack of time for creating control
rules, we limited our participation to the STRIPS, SimpleTime, and Timed versions of the
domains.

In this section we will describe how the domains were translated from PDDL2.1 to
TALplanner, and discuss some of the control rules that were created to handle the domains
more efficiently. The main focus will be on two domains: ZenoTravel and Satellite. For these
domains we will describe most of the control rules that were used in the competition as well
as the incremental process of creating the rules, omitting only a few technical details and a
couple of complex rules that turned out to have minimal impact on planner performance and
plan quality. For the remaining domains (Depots, DriverLog, Rovers, and UMTranslog-2)

353



Kvarnström & Magnusson

we will describe the general intuitions behind our control rules, omitting the actual formulas
due to space restrictions. First, though, we will begin with a few comments on the process
of formalizing planning domains.

5.1 Using Pre-defined PDDL Domains: Half the Work in Twice the Time?

In order to create a formal description of a real-world planning domain, it is of course always
necessary to have a thorough understanding both of the domain itself and of how plans for
the domain are eventually going to be used. There are several reasons why this is required,
and most of these reasons are equally valid regardless of whether the formalization will
eventually be used as the input to a fully automated planner or to a hand-tailored planner
like TALplanner.

First, understanding the domain is required in order to determine what aspects of the
domain truly need to be modeled (as types, predicates and functions) and what aspects
can be abstracted away. For example, the standard formalization of the logistics domain
does not model distances between locations, but allows trucks to move between any two
locations in one time step. This is sufficient for some purposes, but a plan that is optimal
given this abstraction may be extremely suboptimal if actually carried out by real trucks,
which usually lack teleportation abilities. Similarly, it does not model package sizes or
weights, or cargo capacities for trucks or airplanes. Neither does it model truck drivers,
acceptable working hours for drivers, the additional costs incurred by overtime pay, or time
required for maintenance activities such as changing to winter tires once a year. Which of
these aspects need to be modeled depends very much on the particular application one has
in mind.

Second, a detailed understanding of the domain is required in order to determine what
operators are available to the planner and exactly how their preconditions and effects should
be represented within the abstract logical model of the domain.

And finally, for hand-tailored planners, the domain must be understood in order to be
able to guide a search algorithm using domain-dependent heuristics or control rules.

Usually all of these aspects of a domain are modeled at the same time, and much of the
information and knowledge about the domain that was gathered in order to find a suitable
set of predicates and operators – which is needed even for a fully automated planner – can
be reused in the development of control rules or heuristics for a hand-tailored planner.

In the planning competition, however, the task is divided into two parts: The organizers
define a set of domains using PDDL2.1, and then it is up to the competitors in the hand-
tailored track to find suitable ways of guiding their planners. In one way, one could say
that the competitors only need to do half the work, since the formalization is already done
and only the task of finding control rules remains. Unfortunately it is still necessary to
understand the domain just as thoroughly in order to write control rules. For the more
complex domains, doing this half of the work in isolation might easily take twice the time,
since all the constraints involved in the domain have to be understood from a PDDL2.1
formalization rather than by talking to domain experts. This is especially true for the
complex UMTranslog-2 logistics domain, where a significant amount of time was spent
trying to determine exactly how packages were allowed to move and how they can be
loaded into and unloaded from various kinds of vehicle.
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Figure 3: A ZenoTravel problem instance (STRIPS problem 6)

Another problem caused by having to use a predefined formalization of a planning
domain is that the degree of detail used in the model is determined in advance. In the real
world there would more likely be a minimum level of detail required, and anything above
this level would be acceptable. It may not seem like this should be a problem – intuitively,
adding new details to a planning problem ought to make it harder, and so it would be best
to remain at the minimum level of detail. But this is not always true, especially not when
control rules are involved. This will be seen in the timed ZenoTravel domain, for example,
where some control rules would be both simpler and more effective if it was possible to refuel
to a specific level, just like in the real world, rather than just having a simple abstract refuel
operator that unconditionally fills the tank completely.

This should not be taken as a complaint against the organization of the competition
– allowing different planners to use different formalizations would of course be completely
infeasible. Nevertheless, it does present some additional problems that are not encountered
to the same degree in real-world domains and that deserve to be mentioned here.

5.2 The ZenoTravel Domain

In the ZenoTravel domain, there are a number of aircraft that can fly people between cities.
There are five actions available: Persons may board and debark aircraft, and aircraft may fly,
zoom (fly quickly, using more fuel), and refuel. There are no restrictions on how many people
an aircraft can carry. Flying and zooming are equivalent except that zooming is generally
faster and uses more fuel. Figure 3 shows an example problem, with arrows pointing out
goal locations.

5.2.1 ZenoTravel: STRIPS

Below we show the operator definitions for the STRIPS version of the ZenoTravel domain.
These operators have been more or less directly translated from the PDDL representation.
The main difference is that the PDDL representation uses PDDL2.1 level 1, with single-
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step actions, which has a stricter concept of mutual exclusion than TALplanner does and
automatically enforces certain invariants, such as the fact that an aircraft should not leave
if a person is boarding, because the location of the aircraft is modified by fly and used in
the precondition of board. The TAL-C semantics used by TALplanner is more similar to
PDDL2.1 level 3 (with durative actions), where such invariant conditions must be stated
explicitly. This is done using prevail conditions, which are considered to be separate from
true pre-conditions. Note that in the STRIPS formalization fly and zoom take the same
amount of time, since only single-step actions are possible.

#operator board(person, aircraft, city) :at t
:precond [t] at(person, city) ∧ at(aircraft, city)
:prevail [t+1] at(aircraft, city)
:effects [t+1] at(person, city) := false, [t+1] in(person, aircraft) := true

#operator debark(person, aircraft, city) :at t
:precond [t] in(person, aircraft) ∧ at(aircraft, city)
:prevail [t+1] at(aircraft, city)
:effects [t+1] in(person, aircraft) := false, [t+1] at(person, city) := true

#operator fly(aircraft, city1 , city2 , flevel1 , flevel2) :at t
:precond [t] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧ next(flevel2 , flevel1)
:effects [t+1] at(aircraft, city1) := false, [t+1] fuel-level(aircraft, flevel1) := false,

[t+1] at(aircraft, city2) := true, [t+1] fuel-level(aircraft, flevel2) := true

#operator zoom(aircraft, city1 , city2 , flevel1 , flevel2 , flevel3) :at t
:precond [t] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧

next(flevel2 , flevel1) ∧ next(flevel3 , flevel2)
:effects [t+1] at(aircraft, city1) := false, [t+1] fuel-level(aircraft, flevel1) := false,

[t+1] at(aircraft, city2) := true, [t+1] fuel-level(aircraft, flevel3) := true

#operator refuel(aircraft, city , flevel , flevel1) :at t
:precond [t] fuel-level(aircraft, flevel) ∧ next(flevel , flevel1) ∧ at(aircraft, city)
:prevail [t+1] at(aircraft, city)
:effects [t+1] fuel-level(aircraft, flevel) := false, [t+1] fuel-level(aircraft, flevel1) := true

After translating the operator definitions, it is time to create a set of control rules. There
are basically two ways of doing this: First, one can sit down and think about suitable
properties for a plan, and then write control rules that ensure that these properties will
hold. Second, one can instruct the planner to show each branch that is explored in the
search tree, and by observing the output one can identify “obviously stupid” choices made
by the planner, such as choosing an action instance that inevitably leads to backtracking
or performing actions that are useless given the goals. Control rules can then be written to
prevent these branches of the tree from being explored. Both of these approaches will be
covered here.

We begin with the first method, attempting to find a number of reasonable control rules
simply by thinking about the properties of the ZenoTravel domain. Given some experience
from other planning domains, this is in fact quite easy. For example, in many domains
there are certain goals such that once they are satisfied, one should never allow them to be

356



TALplanner in IPC-2002: Extensions and Control Rules

destroyed. In the ZenoTravel domain, people who are at their destinations never need to
board an aircraft, which gives rise to the following control rule:

#control :name ”only-board-when-necessary”
[t] ¬in(person, aircraft) ∧ [t+1] in(person, aircraft) →
∃city , city2 [ [t] at(person, city) ∧ goal(at(person, city2)) ∧ city 6= city2 ]

This TAL formula states that if we have a state transition from the person not being in the
aircraft at time t to the person being in the aircraft at time t+1, (that is, if the person just
boarded the aircraft), then there must be a reason why this is allowed: The person must
be in a certain city and there must be a goal that the person should be in another city.

As noted previously control formulas can usually be written in many different forms.
For example, it would have been equally valid to state that if a person is at a city (and
therefore not in an aircraft), and is not required to be somewhere else, then at the next
timepoint that person should still not be on board an aircraft:

#control :name ”only-board-when-necessary”
[t] at(person, city) ∧ ¬∃city2 [ goal(at(person, city2)) ∧ city 6= city2 ] →
[t+1] ¬in(person, aircraft)

Note that although it may at first glance appear that a planner would have to be extraor-
dinarily stupid to destroy goals that have already been satisfied, there are also many cases
where temporarily destroying a goal is necessary in order to satisfy other goals. For exam-
ple, if there is a goal that a certain aircraft should be at a certain location and it has already
reached that destination, it might still have to fly a number of people to their destinations
before it can return to its own destination.

Another natural idea (since aircraft do not follow predetermined routes in ZenoTravel,
as they usually do in real life) would be to say that people should only debark when they
have reached their final destination:

#control :name ”only-debark-when-in-goal-city”
[t] in(person, aircraft) ∧ [t+1] ¬in(person, aircraft) →
∃city [ [t] at(aircraft, city) ∧ goal(at(person, city)) ]

There is a potential problem with this rule: In some cases an optimal plan might require a
number of people to debark one plane and then board a number of other planes, which could
fly them to their destination concurrently, and this is strictly forbidden by only-debark-when-
in-goal-city. This is a common problem that occurs for many planning domains, and it is
up to the user to determine what to do depending on the requirements of the application
for which the planner is being used.

There are a number of possible choices: We could ignore this problem and accept sub-
optimal plans, skip the rule completely and let the planner search through a vastly greater
search space in order to find a plan which is guaranteed to be optimal, or as a compromise,
attempt to create a weaker rule that does cut down the search space to some degree but
gives optimal or closer-to-optimal plans. During the planning competition the conditions
were somewhat artificial and were not clearly stated – would it be beneficial for a planner
to spend ten times as much effort finding a plan if this plan was only five percent better, on
average? We guessed that this would not be the case, and consequently we chose to include
the control rule as stated above.
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In the future, a better solution would most likely be to prefer those plans where a person
does not debark before reaching his destination but still allow other plans. This alternative
will be discussed in more detail in the conclusions.

Given these two rules, we might now continue with the second approach to finding
control rules. We run TALplanner on a simple problem instance and consider the operator
sequences the planner examines during the depth-first search process. This is the beginning
of such a sequence for the problem instance in Figure 3. The complete plan generated by the
planner contains 123 operators and requires 60 time steps. It is shown here in the IPC-2002
STRIPS result format where the timepoint at which an action is invoked is followed by the
action instance.

0: (board person4 plane2 city1)
0: (board person5 plane1 city2)
1: (fly plane1 city2 city0 fl5 fl4)
1: (fly plane2 city1 city0 fl3 fl2)
2: (board person1 plane1 city0)
2: (board person2 plane2 city0)
3: (fly plane1 city0 city1 fl4 fl3)
3: (fly plane2 city0 city1 fl2 fl1)

4: (debark person2 plane2 city1)
4: (debark person5 plane1 city1)
5: (fly plane1 city1 city0 fl3 fl2)
5: (fly plane2 city1 city0 fl1 fl0)
6: (fly plane1 city0 city1 fl2 fl1)
6: (refuel plane2 city0 fl0 fl1)
7: (fly plane1 city1 city0 fl1 fl0)
7: (fly plane2 city0 city1 fl1 fl0)

8: (refuel plane1 city0 fl0 fl1)
8: (refuel plane2 city1 fl0 fl1)
9: (fly plane1 city0 city1 fl1 fl0)
9: (fly plane2 city1 city0 fl1 fl0)
10: (refuel plane1 city1 fl0 fl1)
11: (fly plane1 city1 city0 fl1 fl0)
11 : (refuel plane2 city0 fl0 fl1)
. . .

The beginning of the operator sequence appears to be reasonable, but after time 4, airplanes
seem to be flying around randomly. There are no control rules guiding them, so apparently
it was mainly luck that caused the planes to find reasonable cities to fly to at time 1 and 3.
To make airplanes more goal-directed, we identify three important reasons why an airplane
should move from city to city2: that the goal asserts that the aircraft must end up in city2
when the plan is complete, that one of its passengers wants to go to city2, or that there is a
person waiting to be picked up by an airplane in city2. The following rule formalizes these
three intuitions:

#control :name ”planes-always-fly-to-goal”
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city) →
∃city2 [ [t+1] at(aircraft, city2) ∧

(goal(at(aircraft, city2)) ∨
∃person [ [t] in(person, aircraft) ∧ goal(at(person, city2)) ] ∨
∃person [ [t] at(person, city2) ∧ goal(¬at(person, city2)) ]) ]

With these control rules, TALplanner can quickly produce a set of plans for the 20 “hand-
coded” problems from the IPC-2002 competition, and although the plans will not be opti-
mal, they will not be nearly as bad as the example given above. Together, the plans require
a total of 7164 operators and 618 time steps. The plan for the example in Figure 3 requires
20 operators and 7 time steps.

Nevertheless, there are still some improvements that can be made. The first criterion
is too admissible: It allows a plane to visit its destination even if it still needs to pick up
or drop off passengers. One way of preventing this would be to add the condition that all
passengers must have reached their destinations:

#define [t] all-persons-arrived:
∀person, city [ goal(at(person, city)) → [t] at(person, city) ]
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#control :name ”planes-always-fly-to-goal”
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city) →
∃city2 [ [t+1] at(aircraft, city2) ∧

([t] all-persons-arrived ∧ goal(at(aircraft, city2)) ∨
∃person [ [t] in(person, aircraft) ∧ goal(at(person, city2)) ] ∨
∃person [ [t] at(person, city2) ∧ goal(¬at(person, city2)) ]) ]

This improves plan quality slightly, and TALplanner now requires 7006 operators and 575
time steps. But the new control rule is in fact too strict, which can be seen in the following
plan tail for handcoded STRIPS problem number 3:

14: (fly plane2 city4 city7 fl2 fl1)
14: (fly plane4 city8 city9 fl3 fl2)
14: (refuel plane1 city6 fl2 fl3)
14: (refuel plane3 city9 fl4 fl5)
15: (debark person24 plane4 city9)
15: (debark person28 plane4 city9)
15: (debark person34 plane2 city7)

15: (refuel plane1 city6 fl3 fl4)
15: (refuel plane2 city7 fl1 fl2)
15: (refuel plane3 city9 fl5 fl6)
15: (refuel plane4 city9 fl2 fl3)
16: (fly plane1 city6 city8 fl4 fl3)
16: (fly plane3 city9 city4 fl6 fl5)

In this example, plane1 and plane3 had to wait until all passengers had debarked from
several other planes until they could go to their final destinations, even though we can
clearly see that there was no real reason for them to wait, because all potential passengers
had already been picked up and plane1 and plane3 already had enough fuel. We once again
alter the control rule according to this new insight: A plane can go to its final destination
if all passengers on board the plane are headed towards the same destination and there is
no person left to be picked up (that is, all persons have already arrived or are currently on
board planes).

#define [t] all-persons-arrived-or-in-planes:
∀person, city [ goal(at(person, city))→ [t] at(person, city) ∨ ∃aircraft [ in(person, aircraft) ] ]

#control :name ”planes-always-fly-to-goal”
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city) →

[t+1] at(aircraft, city2) ∧
((goal(at(aircraft, city2)) ∧ [t] all-persons-arrived-or-in-planes ∧
∀person [ [t] in(person, aircraft) → goal(at(person, city2)) ]) ∨
∃person [ [t] in(person, aircraft) ∧ goal(at(person, city2)) ] ∨
∃person [ [t] at(person, city2) ∧ goal(¬at(person, city2)) ])]

This yields another minor improvement, and TALplanner now requires 6918 operators and
564 time steps. For the example used above, the end of the plan now looks as follows:

14: (fly plane1 city6 city8 fl2 fl1)
14: (fly plane2 city4 city7 fl2 fl1)
14: (fly plane4 city8 city9 fl3 fl2)
14: (refuel plane3 city9 fl4 fl5)

15: (debark person24 plane4 city9)
15: (debark person28 plane4 city9)
15: (debark person34 plane2 city7)
15: (fly plane3 city9 city4 fl5 fl4)

We once more study the plans generated by the current set of rules and quickly identify
another obvious problem: Any number of airplanes may fly to the same location to pick up
the same person. Once again, it is necessary to find a reasonable balance between finding
optimal plans and finding plans quickly. In the contest, we attempted to find a high quality
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(but probably non-optimal) plan as quickly as possible. This was done by ensuring that no
more than one airplane may go to any given place at the same time, if the sole purpose for
going there is to pick up a person who is waiting:

#control :name ”planes-always-fly-to-goal”
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city) →
∃city2 [ [t+1] at(aircraft, city2) ∧

((goal(at(aircraft, city2)) ∧ [t] all-persons-arrived-or-in-planes ∧
∀person [ [t] in(person, aircraft) → goal(at(person, city2)) ]) ∨
∃person [ [t] in(person, aircraft) ∧ goal(at(person, city2)) ] ∨
∃person [ [t] at(person, city2) ∧ goal(¬at(person, city2)) ] ∧
¬∃aircraft2 [ [t+1] at(aircraft2, city2) ∧ aircraft2 6= aircraft ])]

This rule provides a major improvement, and the complete set of plans now requires 5075
operators and 434 time steps.

So far, we have controlled where airplanes fly, when people board an airplane, and when
they debark. There are no rules governing refueling, and a quick look at a plan for one of
the larger problem instances reveals that whenever an aircraft has nothing else to do, it will
refuel. This seems a little bit wasteful, but we are satisfied with adding a rule stating that
airplanes must only refuel when their tanks are empty. This rule is not perfect, since an
airplane may miss an opportunity to “pre-emptively” refuel and it can still refuel one fuel
level even if it is not going to fly, but it does provide a significant improvement, bringing
the number of operators down to 4234. The number of time steps is still 434.

A few minor adjustments were made to these rules before they were used in the com-
petition. These adjustments include a modification to only-board-when-necessary to ensure
that a person who must travel from city to city2 will choose a plane that already needs
to visit both city and city2 , if this is possible, since this is less likely to increase the total
number of flights.

One final change is prompted by the fact that the intended differences in timing between
fly and zoom cannot be modelled correctly in the STRIPS version of the domain. Since
all operators must take the same amount of time, the only difference between these two
operators is that zoom uses twice as much fuel. Although it would have been possible to
add a control rule ensuring that zoom was not used, it was easier to simply remove the
zoom operator from the domain definition.

5.2.2 ZenoTravel: SimpleTime

The SimpleTime version of ZenoTravel is quite similar to the STRIPS version, the only
difference being that actions may have non-unit duration and that certain preconditions
must hold throughout the execution of an action. The TALplanner operator definitions are
changed accordingly. For example, the board and fly operators can be changed as follows:

#operator board(person, aircraft, city) :at t
:precond [t] at(person, city) ∧ at(aircraft, city)
:prevail [t+1, t+20] at(aircraft, city)
:duration 20
:effects [t+1] at(person, city) := false, [t+20] in(person, aircraft) := true
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Figure 4: A ZenoTravel problem instance (SimpleTime problem 3)

#operator fly(aircraft, city1 , city2 , flevel1 , flevel2) :at t
:precond [t] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧ next(flevel2 , flevel1)
:duration 180
:effects [t+1] at(aircraft, city1) := false, [t+1] fuel-level(aircraft, flevel1) := false,

[t+180] at(aircraft, city2) := true, [t+180] fuel-level(aircraft, flevel2) := true

If we run the planner on a set of SimpleTime problem instances, we get almost immediate
results: The planner claims that there is no plan for any of the instances. The reason for
this is, of course, that the control rules must be satisfied in any valid plan, and those rules
were designed with the underlying assumption that actions had unit duration. For example,
consider planes-always-fly-to-goal, which states that if a plane leaves a city at time t, it should
be at a meaningful destination at t+1. When the fly action is invoked the plane must be
at some city city1 , but beginning at the next time step there will be an interval where the
aircraft is not present in any city at all, until it finally arrives in city2 180 time steps later.
In other words, planes-always-fly-to-goal now ensures that the fly operator cannot be used
at all, which is not quite what was originally intended.

One way of solving this problem would be to alter planes-always-fly-to-goal to say that if
a plane leaves a city at time t, it should be at a meaningful destination at t+180. Unfortu-
nately, the duration of the flight would then be encoded directly in the control rule instead
of only in the operator, and so it would not work in the Timed version, where operators
have variable durations – in fact, it would not even work in SimpleTime, because the zoom
operator must also be taken into account.

Instead, the domain model is augmented with a new fluent flying-to(aircraft, city) which
keeps track of whether a plane is flying, and if so, what its destination is. To ensure that this
fluent is kept up-to-date, the following is added to the effects of the fly and zoom operators:

[t+1] flying-to(aircraft, city2) := true, [t+180] flying-to(aircraft, city2) := false // for fly
[t+1] flying-to(aircraft, city2) := true, [t+100] flying-to(aircraft, city2) := false // for zoom

The planes-always-fly-to-goal rule above can now be changed as follows, stating that if an
aircraft ceases to be at city , then it must be flying to a reasonable destination:

#control :name ”planes-always-fly-to-goal”
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city) →
∃city2 [ [t+1] flying-to(aircraft, city2) ∧ . . . ]

The same problem arises for boarding, and a new fluent boarding(person, aircraft) is added
and used whenever necessary. Given these changes, the following are the first steps of the
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plan generated by TALplanner for the problem instance in Figure 4, shown in the IPC-2002
timed result format where the timepoint at which an action is invoked is followed by the
action instance and the duration of the action:

0: (board person1 plane1 city0) [20]
20: (fly plane1 city0 city1 fl4 fl3) [180]
20: (zoom plane1 city0 city1 fl4 fl3 fl2) [100]

Intuitively, flying and zooming plane1 at the same time should be impossible, but we have
forgotten to specify this to the planner. Both actions have their preconditions satisfied at
time 20, there are no prevail conditions, and the effects of the actions do not contradict
each other since they take place at different timepoints: fly ends at time 200, while zoom
ends at time 120.

There are several ways of specifying that fly and zoom are mutually exclusive. For
example, it would be possible to introduce an interval effect stating that flying-to(aircraft,
city2) must hold throughout the inner execution intervals of these actions, and become false
at the end of each action:

[t+1,t+179] flying-to(aircraft, city2) := true, [t+180] flying-to(aircraft, city2) := false // for fly
[t+1,t+ 99] flying-to(aircraft, city2) := true, [t+100] flying-to(aircraft, city2) := false // zoom

It would also be possible to use a semaphore resource: An aircraft-specific resource with an
initial value of 1, which can be borrowed exclusively by the fly and zoom actions. When
one of these solutions is used, TALplanner finally rewards us with a short and correct plan:

0: (board person1 plane1 city0) [20]
20: (fly plane1 city0 city1 fl4 fl3) [180]
200: (board person3 plane1 city1) [20]
200: (debark person1 plane1 city1) [30]
230: (fly plane1 city1 city0 fl3 fl2) [180]
410: (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 440

Can it be improved? Remember that the STRIPS version never made use of the zoom
operator. But in the SimpleTime version, flying takes 180 time steps and uses one unit
of fuel, zooming takes 100 time steps and uses two units of fuel, and refueling one unit
takes 73 time steps. 180 + 73 is more than 100 + 2 · 73 and therefore we have the opposite
situation: zoom is always better than fly. Commenting out the unwanted fly operator yields
the following plan:

0: (board person1 plane1 city0) [20]
20: (zoom plane1 city0 city1 fl4 fl3 fl2) [100]
120: (board person3 plane1 city1) [20]
120: (debark person1 plane1 city1) [30]
150: (zoom plane1 city1 city0 fl2 fl1 fl0) [100]
250: (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 280
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5.2.3 ZenoTravel: Timed

The Timed version further complicates the timing of the actions. Boarding and disem-
barking times are constant but problem-specific and are defined in the respective problem
definition as two new functions, boarding-time and debarking-time. Refueling always fills the
plane to its maximum capacity, but consumes time relative to the amount of fuel received
and the refuel-rate of the aircraft. Each aircraft also has a fast-speed and a slow-speed with
corresponding fast-burn and slow-burn fuel consumption. The distances between cities are
specified using the distance(city1, city2) function.

In the Timed version, operator durations have to be correctly calculated with a precision
of three decimals, prompting the TALplanner changes discussed in Sections 4.5 and 4.6.
Once these extensions to TALplanner had been implemented, few changes were needed to
transform the SimpleTime domain to the Timed version.

The most important difference was perhaps the fact that depending on the speed and fuel
consumption values defined in each problem and the situation where the operator is used, it
is sometimes better to use the fly operator and sometimes better to use the zoom operator,
unlike the STRIPS version where fly was always better and the SimpleTime domain where
zoom was always better.

So when is zooming better than flying? It may seem like it would be easy to answer
this question, given that we are only interested in minimizing time: Just check whether
refueling the aircraft sufficiently to be able to zoom, followed by zooming to the destination,
would be faster than only refueling enough to be able to fly and then flying more slowly to
the destination. This is handled by the first clause in use-fly-instead-of-zoom below. The
precondition of fly is then altered to require that use-fly-instead-of-zoom be true, and the
precondition of zoom requires that use-fly-instead-of-zoom be false. If we had been interested
in minimizing a combination of time and fuel usage, then this could also have been taken
into account.

This is not quite sufficient to handle all problems, though. An airplane has a maximum
fuel capacity, so if its destination is too distant, it may not be able to zoom. This is handled
by the second clause in use-fly-instead-of-zoom.

Yet another problem is that it is not possible to tie one refueling action to each flight,
as one would expect in the real world. There are two reasons for this problem.

First, airplanes may already have some fuel in the initial state, so in some situations a
plane might zoom to its destination without incurring any additional cost, again assuming
that the time required for executing the plan is the only metric being used – the plane
already had enough fuel anyway and never had to refuel.

Second, unlike the SimpleTime version, an airplane cannot refuel “just enough” – the
refuel operator always fills the tank completely. This change was most likely introduced in
order to make the planning task easier by reducing the number of possible actions to choose
from (for example, a planner that needs to create all ground instances of each operator
might have some trouble if the refuel operator would take the amount of fuel as a floating
point argument). But despite the probable intention behind this change, it introduces new
problems for our control formulas. If a plane’s tank is half full and this is enough fuel to
zoom from A to B, it might then have to fill the entire tank before continuing to C, while
if it used the fly operator, it might be able to continue to C without refueling at all. This
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means that one would have to take all possible future flights into account when determining
whether to fly or zoom. If the domain had been modeled in more detail, this problem would
not have existed.

Given these two complications, guaranteeing an optimal or near-optimal plan using a
control rule is not easy, which is indeed only to be expected. For the competition we decided
to be satisfied with a heuristic compromise, adding a third clause to use-fly-instead-of-zoom
ensuring that if zooming would require refueling immediately but flying would not, the fly
operator would be used.

// Fly is (probably) better than zoom if:
#define [t] use-fly-instead-of-zoom(aircraft, city1, city2):

// If fly is faster wrt speed and refueling.
([t] (10000 / slow-speed(aircraft) + 10000 * slow-burn(aircraft) / refuel-rate(aircraft)) <

(10000 / fast-speed(aircraft) +10000 * fast-burn(aircraft) / refuel-rate(aircraft))) ∨
// If zoom is impossible across the given distance.
([t] distance(city1 , city2) * fast-burn(aircraft) > capacity(aircraft)) ∨
// If zoom has to refuel immediately but fly does not.
([t] fuel(aircraft) >= distance(city1 , city2) * slow-burn(aircraft) ∧
fuel(aircraft) < distance(city1 , city2) * fast-burn(aircraft))

5.2.4 ZenoTravel: Discussion

Finding control rules that yield good (but usually suboptimal) plans is not too difficult in
the ZenoTravel domain. There are no risks involved in flying a plane to pick up passengers
since all the passengers will always fit in the plane and refueling is possible in any city. In
other words, it is not really possible to get stuck while looking for a solution. Also, since
the graph of cities is fully connected, no route planning is necessary.

A fourth version of ZenoTravel, called Numeric, was available in the contest but due to
lack of time we decided not to compete in this domain.

Among other things, the numeric version contains an additional constraint on the num-
ber of passengers that an aircraft can carry. At a first glance, this constraint may seem to
introduce new problems. However, it is only enforced in the zoom operator, and since the
numeric domain does not make use of durational operators, it suffers from the same problem
as the STRIPS domain: The zoom operator consumes more fuel and limits the number of
passengers, but does not deliver any advantages because it is no faster than flying.

The real difficulty in the Numeric version comes from the use of problem-specific metrics
that measure the quality of a solution. For example, for one problem the planner may be
required to minimize total-time + 3 * total-fuel-used, while for another problem it may be
required to minimize total-time only. Until now, we have usually been satisfied with finding
plans of good but not optimal quality, and this has been done by tuning control rules,
for example by introducing the use-fly-instead-of-zoom function to determine whether fly or
zoom should be used, as discussed above. This tuning is naturally done on the domain level
rather than the problem level. An optimizing version of TALplanner is under development.
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Figure 5: A Depots problem instance (STRIPS problem 7)

5.3 The Depots Domain

The Depots domain (illustrated in Figure 5) contains locations, trucks, hoists, movable
crates, and pallets whose locations are fixed. Trucks move crates between any two locations
and can carry any number of crates at the same time. Hoists are distributed among the
locations and load crates into trucks or stack crates on surfaces (pallets or other crates).
The goal is always to bring the crates into a certain configuration of stacks, where each
stack is placed on a specific pallet.

STRIPS. The Depots domain is a combination of two other well-known planning domains,
the logistics domain and the blocks world. Therefore it seems natural to start by taking a
look at existing control rules for those two domains, and to see whether those rules can be
combined easily or whether more complex rules are required due to interactions between
moving and stacking blocks.

We begin with the blocks world part of the problem. The unbounded blocks world was
used as a benchmark domain in IPC-2000, and there TALplanner used a modified version
of the rules in Bacchus and Kabanza (2000) which ensure that the planner only adds blocks
to “good towers”, stacks that are already in their final position and will not have to be
dismantled later in order to remove a block at a lower level. Can these rules be reused in
the Depots domain? One prerequisite is the availability of temporary storage for all crates,
since in the worst case every single stack of crates must be torn down completely before it
is possible to start stacking crates on top of each other. Fortunately, although there is only
a limited number of pallets, trucks can (somewhat counter-intuitively) contain any number
of crates, and the planner can use them as storage. Only minor changes were required in
order to handle the two separate types of surfaces: Pallets and crates.

Continuing with the logistics part, one simple rule can be reused from the standard
logistics domain: Only unload a crate at its goal location. Its dual rule, “only load a crate
if it needs to be moved”, is not required. The blocks world rules ensure that a hoist does
not lift a block unless it needs to be moved, and therefore it is already impossible to load
such blocks into a truck.

It remains to ensure that vehicles only drive to those locations where they can be of use.
In the standard logistics domain, a truck can drive to another location if there is a package
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Figure 6: A DriverLog problem instance (STRIPS problem 5)

that needs to be picked up or delivered there, but due to the use of stacks of crates in the
depots domain, the rule must be modified: A vehicle may drive to a location if (1) there is
a crate there that must be moved to another location, (2) there is a crate there that must
be stacked differently, or (3) there is a crate in the truck that needs to be at the location,
its destination is ready, and there is no other crate that should also be at the same location
that the truck has not yet picked up.

SimpleTime. In the SimpleTime version, lifting and dropping crates still takes one unit of
time, loading takes three units, unloading four, and driving ten. A few changes were made
to ensure mutual exclusion. For example, hoists can only lift one crate at a time. Also, a
driving-to fluent was introduced to keep track of where trucks are headed, similar to flying-to
in ZenoTravel.

Timed. In the Timed domain, the time required for loading and unloading a crate de-
pends on how powerful the hoist is and on the weight of the crate. The time required for
driving between two locations depends on the speed of the truck and the distance between
the locations. Again, only minor changes were required to handle the domains, although
higher quality plans could certainly have been produced by taking timing into account when
determining which hoists and trucks to use.

5.4 The DriverLog Domain

DriverLog (illustrated in Figure 6) is yet another logistics domain, this time introducing
the concept of truck drivers and road maps. A number of packages are transported between
locations by trucks. There are two sets of routes connecting the locations: Links, where
trucks travel, and paths, which drivers can walk along when not driving a truck. A truck
can only have one driver at a time but can load as many packages as is needed.

STRIPS. Several control rules used in previous logistics domains were useful for DriverLog
with minor modifications. For example, packages should only be loaded into trucks if they
need to be moved, and should not be unloaded until they have reached their final destination.

On the other hand, a number of changes were necessary due to the use of road maps.
Most importantly, vehicles were previously only allowed to drive to locations that were im-
mediately useful because there were packages to be picked up or delivered. In the DriverLog
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domain there may only be direct roads between some locations (specified by a predicate
link(from, to)), and a truck may have to move through several intermediate locations in
order to reach its destination. Consequently the control rules must be relaxed to allow
trucks to visit locations that are not useful in themselves. Nevertheless, some degree of
goal-directedness is still required. One possible method is to identify for each vehicle the
set of locations where the vehicle might be useful, and to require that it chooses one such
location and then takes the shortest path to its chosen destination. This method was used
in the competition with the help of the built-in shortest path algorithm discussed in Sec-
tion 4.8 and a control rule stating that each step (each invocation of drive or walk) must
decrease the distance to the current destination. The following definitions will be explained
below:

#define [t] reasonable-truck-location(truck, location):
// Omitted due to space constraints

#distfeature driving-distance-between(from, to) :domain integer :link link

#mindistfeature driving-distance-to-location-satisfying-formula
:distfeature driving-distance-between :domain integer

#define [t] driving-distance-to-reasonable-destination(truck, location):
driving-distance-to-location-satisfying-formula(location, to,

[t] reasonable-truck-location(truck, to))

A boolean fluent reasonable-truck-location(truck, loc) is defined in terms of a logic formula,
which specifies whether the given location is a reasonable destination for a given truck at the
timepoint when it is evaluated. The driving-distance-between function accesses the shortest
path algorithm to find the length of the shortest path between from and to, given that
the road links are specified by the link predicate. The driving-distance-to-location-satisfying-
formula function accesses another version of the shortest path algorithm and is used in
driving-distance-to-reasonable-destination in order to find the shortest distance from location
to any location to that satisfies reasonable-truck-location. Since all links have the same cost,
it is then sufficient to require that whenever a truck moves, its driving-distance-to-reasonable-
destination decreases.

Further changes were required due to the use of drivers. There may not be drivers for
all trucks, so packages should not be loaded into a truck until the planner knows the truck
will have a driver. Drivers should not disembark if there are still packages in the truck, or
if there is a goal that the truck must be somewhere else. Drivers may have to walk along
paths in order to reach a truck, so just like trucks, drivers must select one useful destination
and then take the shortest path to their chosen destinations.

Additional control rules ensure that multiple trucks do not choose the same destination
unnecessarily, and that multiple drivers do not choose to walk to the same location.

SimpleTime. In the SimpleTime version, loading and unloading objects takes two units
of time, driving takes ten units, and walking takes twenty units. The operators are changed
accordingly, and a going-to fluent is introduced to keep track of drivers and trucks that are
moving towards a new location but have not yet arrived. A few minor adjustments must
be made to the control rules.

Timed. In the Timed version, the time required to walk or drive between two locations is
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determined by a pair of functions specified in each problem instance. Since individual road
segments can have different lengths, the method we used to ensure drivers and trucks used
the shortest path to their current destination is no longer sufficient, and must be modified
slightly. Other than this, there are no major changes for the Timed version.

5.5 The Rovers Domain

The Rovers domain simulates a simplified planetary exploration expedition. A lander vessel
carries a number of rovers to the planet surface and provides a communication link back to
Earth. Each rover has a subset of the general capabilities, retrieving soil samples, retrieving
rock samples and capturing images using cameras that support different imaging modes.
The cameras are mounted on the rovers, as are storage compartments, one for each rover,
which can hold one soil sample or one rock sample. Data from a sample must be sent to
the lander by a communication link. All missions revolve around navigating waypoints on
the planets surface to collect samples and take images of specified objectives that are only
visible from certain waypoints. The terrain may prevent rovers from going directly between
two waypoints and different rovers handle different terrain so a list of routes each rover can
use is provided.

STRIPS. Following a control scheme similar to the one used in DriverLog, we limit the
movements of rovers to locations where they can perform some useful action like collecting
a rock sample or capturing an image. The problem of finding a path from one waypoint to
another is also solved in the same way as in DriverLog, except that each rover has its own
set of routes between waypoints.

SimpleTime. The changes in the SimpleTime version are trivial: Operator durations are
changed, a few mutual exclusion relations need to be enforced, and a new fluent calibrat-
ing(camera) keeps track of whether a certain camera is being calibrated.

Timed. The Timed version introduces the concept of energy, where each rover has a limited
amount of energy and each action it does consumes some of the energy. This is similar to the
use of fuel in the ZenoTravel domain, but there is also a major difference: The rovers have
been equipped with solar panels that recharge the rover, but only some of the waypoints
that a rover can go to are directly exposed to the sun, which is a requirement for the solar
panels to work. The airplanes in the ZenoTravel domain can refuel anywhere, and so fuel
usage is only relevant in terms of minimization of resource usage, whereas a rover that uses
its energy unwisely can get stuck in the shade, unable to do anything or go anywhere. To
prevent this we can either let the planner backtrack and search for a better plan, or we
can introduce stricter rules that keep energy levels in mind when deciding what a rover is
allowed to do. The latter approach is taken below.

The critical point is when a rover does not have enough energy to reach a waypoint in
the sun and recharge. Using the shortest path algorithm it is possible for a control rule to
determine the distance to the closest waypoint that is exposed to the sun. In addition to all
waypoints that were previously allowed, it is also reasonable for a rover to go to a waypoint
that is exposed to the sun if the rover does not have enough energy to perform an action
and then go recharge, or if there do not exist any other waypoints that are both affordable
and reasonable to visit.
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Figure 7: A Satellite problem instance (STRIPS problem 4)

5.6 The Satellite Domain

In the Satellite domain a number of satellites orbit the Earth, each equipped with a set of
scientific imaging instruments. The satellites turn in space, targeting stars, planets and in-
teresting phenomena to capture images of them using different instrument operation modes.
These modes can include regular or infrared imaging and spectrographic or thermographic
readings but are different for each problem. The planner’s task is to schedule a series of ob-
servations so that the satellites are used efficiently. Figure 7 shows a small example problem
instance, with arrows showing the directions in which the satellites are pointing.

Directions are not represented as explicit coordinates. Instead, satellites can turn to
a new direction by giving the turn to operator an argument specifying the star, planet or
phenomenon that the satellite should point to. Instruments first need to be activated using
switch on, then calibrated at a calibration target with the calibrate operator before they
can capture images using take image. Each satellite has only enough power to operate one
instrument at a time, so switching active instruments is always initiated by the switch off
operator to deactivate the first instrument.

5.6.1 Satellite: STRIPS

Since the task consists of collecting a number of images, we begin by restricting the use of
take image to images that are mentioned in the goal.

#control :name ”only-take-pictures-of-goals”
[t] ¬have image(direction, mode) ∧ [t+1] have image(direction, mode) →
goal(have image(direction, mode))

The next step is to restrict the directions in which satellites turn to those that may ac-
tually help in collecting the images. The task is split into a control rule, only-point-in-
goal-directions, and a definition of goal directions. A satellite is allowed to turn towards a
direction to take a picture, to calibrate an instrument or if a goal specifies that the satellite
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should point in the direction and there is no more work left to do.

#define [t] goal direction(satellite, direction):
[t] take image possible(satellite, direction) ∨
∃instrument [

[t] power on(instrument) ∧ ¬calibrated(instrument) ∧
[t] calibration target(instrument, direction) ∧ on board(instrument, satellite) ] ∨

goal(pointing(satellite, direction)) ∧ [t] all images collected

The take image possible function checks not only if an image is to be collected but also
that it has not already been taken and that the satellite has the necessary instrumentation
ready. If the active instrument is not calibrated, the satellite may first have to turn towards
another direction and calibrate it.

#define [t] take image possible(satellite, direction):
∃mode [ goal (have image(direction, mode)) ∧

[t] ¬have image(direction, mode) ∧
∃instrument [

[t] power on(instrument) ∧ calibrated(instrument) ∧
[t] on board(instrument, satellite) ∧ supports(instrument, mode) ]]

The switch on and switch off operators are still not regulated by control rules and the
planner quickly takes up the habit of repeatedly flipping the power to different instruments
on and off. Once an instrument has been powered on and calibrated, using it as much as
possible before switching to another instrument seems reasonable. A usefulness function,
putting a value on the usefulness of a particular instrument, helps decide which instrument
to power on first.

#define [t] usefulness(instrument):
value(t, $sum(<mode>, [t] supports(instrument, mode) ∧mode needed for goal(mode), 1))

#define [t] mode needed for goal(mode):
∃direction [ goal(have image(direction, mode)) ∧ [t] ¬have image(direction, mode) ]

Add one to the usefulness score of an instrument for each imaging mode that it supports
and that is needed in some goal. This score is then used in a control rule that chooses a
satellite’s most useful instrument, if it has any.

#control :name ”use-the-most-useful-instrument”
[t] ¬power on(instrument) ∧ [t+1] power on(instrument) →
[t] usefulness(instrument) > 0 ∧
¬∃satellite, instrument2 [

[t] usefulness(instrument2) > usefulness(instrument) ∧
[t] on board(instrument, satellite) ∧ on board(instrument2 , satellite) ]

Switching off an instrument is only allowed if the instrument is no longer required.

#control :name ”don’t-switch-instrument-off-if-you-don’t-have-to”
[t] power on(instrument) ∧ [t+1] ¬power on(instrument)) →
[t] ¬∃mode [ supports(instrument, mode) ∧ mode needed for goal(mode) ]
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We have run out of more or less obvious improvements, but analyzing the planner output
reveals one remaining inefficiency: The satellites often simultaneously decide to turn to the
same direction because a picture needs to be taken in that direction, despite the fact that
only one satellite needs to take the picture. This is similar to the situation in the ZenoTravel
domain where a number of aircraft may concurrently choose to pick up the same passenger,
but there are some differences due to the fact that the only reason for a satellite to point
in a certain direction is in order to calibrate itself or take an image, which makes the task
somewhat easier.

Therefore this problem can be solved in a different way, using a resource for mutual
exclusion. This resource, called point towards(direction) and having a capacity of 1, can be
borrowed temporarily by turn to for the duration of the turn. If one satellite turns towards a
specific direction d, no other satellite can turn towards d without causing a resource conflict.

This still leaves one problem: When the first satellite has finished turning, it no longer
owns the point towards(d) resource and therefore another satellite can immediately start
turning towards d. It is no longer possible for more than one satellite to turn towards the
same direction at once, but while the first satellite is taking pictures, other satellites can
turn to that direction one by one, until finally all the desired pictures have been taken
in that direction and goal direction sees that there is no longer any valid reason to point
towards d. This can be solved either by changing the definition of goal direction or by letting
take image borrow the same resource.

Clearly, this type of “swarming” problem occurs quite often in concurrent domains and
a more principled solution should be investigated in the future.

5.6.2 Satellite: SimpleTime

The SimpleTime version changes the duration of some operators. Turning takes five time
units, switching an instrument on takes two units, calibrating it takes five units and tak-
ing a picture takes seven units. A couple of helper fluents, turning towards, calibrating,
have image generalized (an image exists or is being taken) and power on generalized (power
is on or a switch on action is being executed) keep track of actions that have begun but not
completed. The affected control rules are updated accordingly.

5.6.3 Satellite: Timed

The Timed version of the Satellite domain includes two new functions. The calibration time
specifies the time required to calibrate, while the slew time function represents the time
required for a satellite to turn between two directions. Neither of these changes prompts
any significant changes to the SimpleTime control.

5.6.4 Satellite: Discussion

The Satellite domain does not provide a real challenge as long as the planner is only trying
to find a correct plan. Finding a short plan is harder, especially in the Timed version, and
would require additional analysis to determine in which order images should be collected
and which satellites should be used for each image. Doing this using control rules seemed
a bit like overkill, especially since we had not yet created control rules for the complex
UMTranslog-2 domain. For this reason, we decided to be satisfied with what we had done
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so far, and were surprised when the plans we generated turned out to be of considerably
lower quality than those produced by some other planners.

After the contest, we were informed of the reason, or at least the main reason: The
automatic problem generator that created the problem instances randomized the slew times
between every pair of directions and did not check for geometrical consistency that would be
present in a real world situation. We had subconsciously assumed that the problem instances
satisfied the triangle inequality, but this was not the case, and the other planning teams had
discovered this. For example, in handcoded problem 14, turning a satellite directly between
phenomenon86 and groundstation4 takes 82.860 units of time, while turning it through two
carefully selected intermediate directions requires 1.183 units of time.

Initial testing shows that taking this into consideration and once again using the built-in
shortest path algorithm yields significantly shorter plans when plan length is measured by
the time point at which the goals have been satisfied.

Another potential improvement would be to change the last clause in goal direction to
allow satellites to turn towards a direction specified in the goals as soon as one has started
taking the last picture, rather than waiting until one has finished taking the last picture.

5.7 The UMTranslog-2 Domain

The UMTranslog-2 domain is another logistics domain, but with 14 types, 38 predicates,
24 functions and 38 operators, its size and complexity is incomparable to the previously
encountered logistics domains in the contest.

Since the formal domain definition was the only information provided about the domain
and there was no high-level description, we had to work out all the information about
the domain from the PDDL definition. This was not a major problem for the previous
domains, since they were generally quite simple and easy to understand, but it did give
us some problems in UMTranslog-2. A significant amount of time was spent trying to
determine exactly how packages were allowed to move and how they can be loaded into and
unloaded from various kinds of vehicles. In retrospect, it would probably have been better
to do as some other teams did: Skip the UMTranslog-2 domain completely and spend that
time on the Numeric and Complex versions of the other domains.

The domain. Trucks, trains or aircraft transport packages between locations but they
must follow strict movement patterns. A few locations are transportation hubs, some are
transportation centers while the rest are ordinary locations. A package is only allowed to
move up and down through this hierarchy once and only move between two locations in the
same layer once. The longest possible route for a package is thus from an ordinary location
to a transportation center to a hub to another hub to a transportation center and finally to
another ordinary location.

The domain groups locations into cities, which are then grouped in regions. Trucks
travel between any two locations in the same city or by an existing road route between
two cities. Trains and planes always use predefined routes between transportation centers
and hubs. A great number of restrictions further complicate movements. Packages must be
compatible with the vehicle they are loaded into, the vehicle must have enough free space,
not be loaded too heavily and not be wider, longer or higher than the route and destination
location accepts. Finally, the locations, vehicles and routes must all be available for use.
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Control rules. As in previous domains, we specify what a reasonable location is and limit
vehicle movements to destinations that are reasonable. A truck might want to pick up
or deliver a package at the location or, if the truck cannot reach the goal location of the
package, unload the package at a transportation center to be picked up by another vehicle.
Our control rules do not allow trucks to pick up several packages. This makes finding
optimal solutions impossible in the general case but simplifies the search for acceptable
solutions a great deal. There is an imminent risk that any other packages the truck is
carrying will end up at the wrong location if it is allowed to travel about, picking up more
packages along the way. Since all packages must move according to the specified pattern of
transportation centers and hubs, moving a package that has once arrived at a location that
is not a transportation center is not allowed and the package will be stuck there. Restricting
trucks to picking up one package at a time avoids this problem.

There is also a large group of loading and unloading rules controlling, among other
things, the opening or closing of valves and doors and loading or unloading of packages.
Finally, packages are only loaded into vehicles that are actually able to take them to a useful
location.

Creating control rules and meeting the contest deadline left no time to get the domain
working with concurrent planning. Instead, we had to make do with sequential planning.

Given more time, the set of control rules could definitely be improved. If planning speed
is less of an issue, more search can be allowed and higher quality plans generated. More
and better problem instances would be needed as guidelines when developing better control
rules since the contest problems did not make full use of the intended transportation scheme
with transportation centers and hubs.

6. Improvements After the Competition

Though the planning competition ended during the AIPS-2002 conference in April, 2002,
our work on TALplanner naturally did not cease there. There are still many improvements
that can be made, and a couple of them that are related to the development of new domains
and control rules have been implemented during the summer of 2002.

6.1 Domain Visualization

As was discussed in the description of the ZenoTravel domain, the process of creating control
rules for a planning domain often involves incremental improvements. TALplanner is run on
a number of problem instances using one set of control rules, or possibly without any control
rules at all, and the beginning of the resulting search tree is analyzed in order to determine
where bad choices were made and how they can be avoided using new or improved control
rules. This is repeated until the planner consistently finds plans of good quality.

During this process, one must study not only the output of the planner but also the
structure of the particular problem instance being solved. For example, in a DriverLog
problem it may be necessary to draw the road network being used in each problem instance
using pen and paper, and then study the paths taken by trucks, people, and packages
through the road network, in order to discover whether improvements would be possible.
But often a particular inefficiency only appears in one or a few out of a large set of problem
instances, and tracing the execution of each plan by hand is obviously a tedious and time
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consuming task that ought to be automated as far as possible.
This led to the development of TPVis, a generic graphical visualization framework for

TALplanner. The TPVis framework was used to generate the domain images in this article,
and provides an animated display consisting of a set of nodes, where each node can be
a container or an atomic object. Containers may represent vehicles (which can contain
packages), locations (since there can be vehicles, packages or other objects at a location)
or other similar concepts, while atomic nodes may be used for packages, instruments on a
satellite, or any other type of object which should be displayed. Edges between nodes can
indicate any form of relationship between objects, the most obvious interpretation being that
two location nodes are connected by some transportation route. A built-in layout engine
can generate a layout automatically, or you can manually adjust the visual coordinates of
each node.

The visualization framework is then used by concrete plugins adapted to specific plan-
ning domains. The DriverLog plugin, for example, displays locations as container nodes,
linked by paths where drivers can walk and links where trucks can drive. Trucks are also
containers, contained within a specific location, as shown in Figure 6 on page 366.

As a plan is being generated, TPVis animates the actual movements of objects between
locations. This creates a better instinctive feel for the domain, and the two-dimensional
graph display gives an overview that is difficult to provide using only text output. In
addition to animating a graph, TPVis simultaneously lists the partial plan leading up to
the current state and the problem goals that the planner tries to satisfy. TPVis also provides
a limited form of interactive planning since it, at any point in the planning process, allows
the user to force the planner to backtrack and explore a different search branch.

The development of TPVis was not initiated until after the planning contest. If this
graphical visualization had been available during the work on the contest domains, it would
have saved a lot of time, and possibly a tree or two.

6.2 Automatic translation from PDDL to TALplanner

Although it was obvious that there should be an automatic translator from PDDL to TAL-
planner’s input format, there were always more urgent features to be implemented, and we
instead decided to translate the IPC-2002 domains by hand. In retrospect this was a mis-
take. The risk of making an error somewhere in the translation becomes imminent when
dealing with complex domains such as UMTranslog-2, with 38 operators, some of which
had highly complex preconditions. Also, translating long formulas by hand is quite time
consuming. A semi-automatic translator was therefore implemented to decrease the amount
of work involved in the translation process and reduce the risk of introducing errors in the
definition.

7. Discussion and Conclusions

The third International Planning Competition was a major step forward in terms of the
expressibility required to represent the benchmark domains, and it provided a number of
interesting challenges for any planner that wanted to participate in the competition. In this
article we have described how these challenges affected TALplanner and shown a number
of extensions that were made in order to meet the challenges. The article also includes a
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number of domain-dependent control rules for the competition domains, but rather than
presenting an exhaustive list of pre-packaged control rules, we have attempted to place more
emphasis on explaining the incremental analysis process that eventually leads to the final
formulas, going into particular detail for the ZenoTravel domain.

As could be seen in the examples shown in this paper, control rules are often simple,
natural common-sense rules, and not very difficult to generate given some basic knowl-
edge about the planning domain. Some rules are more complex, but still not difficult to
understand or verify once someone has spent the effort to generate them. And then, unfor-
tunately, there are a few rules that are quite unintuitive, rules that are too complex to be
easily understood, and rules that occasionally forbid optimal plans.

To some extent, such rules might be avoided by gaining more experience in good practices
for writing control rules, or by extending the expressivity of the language in which control
rules are written so that complex conditions can be expressed more succinctly or in a more
natural manner, or simply by spending a little bit more time on the control rules than
was available during the planning competition when much of our time was spent teaching
or working on the planner implementation. However, another important cause for the
complexity of certain rules is probably that we are attempting to express all search control
knowledge in the same way: As control rules that prune the search tree to such a great
extent that even a simple depth-first search algorithm is sufficient for efficiently finding good
plans in the remainder of the tree.

Not all search control knowledge can easily be expressed in this manner, but this cer-
tainly does not mean that control rules should be abandoned altogether. Instead, what we
learn from this experience is that control rules might not be the one and only multi-purpose
planning tool that will efficiently and easily solve all our planning problems. Instead, just
like one would expect, they are one very useful tool that deserves a place in our toolbox but
should be combined with other approaches to planning. Just to mention one rather obvious
example, it would be possible to devise a heuristic forward-chaining planner whose search
tree would be pre-pruned using control rule techniques from TALplanner. Control rules
could be written to exclude plans where the heuristic gives a suboptimal result, potentially
providing plans that are closer to optimal, and even for domains where the heuristic search
function provides good plans it may often be more efficient to state a number of constraints
as explicit control rules.

Such extensions to TALplanner have been considered at least since some time before
the second planning competition in 2000, and it has long been clear to us that this ap-
proach should eventually be examined and explored. Before we could start working on this,
though, the strengths and weaknesses of control rules had to be explored in more depth.
Up to now, our work has therefore focused mostly on investigating how far it is possible to
take TALplanner in its current shape, with explicit control rules being the only means for
controlling the search process. This work has proved rather fruitful in itself, and TALplan-
ner did well in IPC-2000 as well as in IPC-2002. The planner is now becoming reasonably
mature, and after a few more improvements have been made and the planner has been
released for general use, it might be time to take a step back and consider its relation to
other approaches in more depth than has been done previously in order to investigate the
possible advantages of hybrid approaches.

Of course, this does not mean that there is nothing more to be done within the “pure”
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TALplanner framework. On the contrary, there are many additional topics to be pursued,
including investigating the application of TALplanner to plan optimization problems (where
the very simplest approaches might involve applying standard optimal graph search algo-
rithms to the pruned search tree generated by TALplanner) and extending the planner to
handle incomplete knowledge and non-deterministic operators. Which of these many topics
will be the next focus of our research has not yet been determined.
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