
Autonomous Agents and Multi-Agent Systems (2020) 34:29
https://doi.org/10.1007/s10458-020-09450-1

An anytime algorithm for optimal simultaneous coalition
structure generation and assignment

Fredrik Präntare1 · Fredrik Heintz1

Published online: 3 March 2020
© The Author(s) 2020

Abstract
An important research problem in artificial intelligence is how to organize multiple agents,
and coordinate them, so that they can work together to solve problems. Coordinating agents
in a multi-agent system can significantly affect the system’s performance—the agents can, in
many instances, be organized so that they can solve tasks more efficiently, and consequently
benefit collectively and individually. Central to this endeavor is coalition formation—the pro-
cess by which heterogeneous agents organize and form disjoint groups (coalitions). Coalition
formation often involves finding a coalition structure (an exhaustive set of disjoint coalitions)
that maximizes the system’s potential performance (e.g., social welfare) through coalition
structure generation. However, coalition structure generation typically has no notion of goals.
In cooperative settings, where coordination of multiple coalitions is important, this may gen-
erate suboptimal teams for achieving and accomplishing the tasks and goals at hand. With
this in mind, we consider simultaneously generating coalitions of agents and assigning the
coalitions to independent alternatives (e.g., tasks/goals), and present an anytime algorithm
for the simultaneous coalition structure generation and assignment problem. This combinato-
rial optimization problem has many real-world applications, including forming goal-oriented
teams. To evaluate the presented algorithm’s performance, we present five methods for syn-
thetic problem set generation, and benchmark the algorithm against the industry-grade solver
CPLEXusing randomizeddata sets of varyingdistribution and complexity. To test its anytime-
performance, we compare the quality of its interim solutions against those generated by a
greedy algorithm and pure random search. Finally, we also apply the algorithm to solve the
problem of assigning agents to regions in a major commercial strategy game, and show that
it can be used in game-playing to coordinate smaller sets of agents in real-time.

Keywords Coalition structure generation · Assignment · Coordination ·
Coalition formation · Combinatorial optimization

B Fredrik Präntare
fredrik.prantare@liu.se

1 Linköping University, 581 83 Linköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09450-1&domain=pdf
http://orcid.org/0000-0002-0367-2430

29 Page 2 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

1 Introduction

A major research challenge in artificial intelligence is to solve the problem of how to orga-
nize and coordinate multiple artificial entities (e.g., agents) to improve their performance,
behaviour, and/or capabilities. In multi-agent systems, this problem has been thoroughly
studied, since the coordination of agents in a multi-agent system can significantly affect the
system’s performance—agents can, in many instances and settings, be organized so that they
can cooperate and work together to solve tasks more efficiently [19].

There are many approaches to this, including task allocation [15], assignment algorithms
[9,25,27,50], task specification trees [12,23], multi-agent reinforcement learning [38,42],
and coalition formation [21,37]. The latter is a paradigm for coordination that has received
extensive coverage in the literature over the past two decades [33,35], and typically involves
both forming coalitions (flat goal-oriented organizations of agents) and allocating tasks, with
potential applications in many disciplines, including economics [51], sensor fusion [10],
waste-water treatment systems [11], wireless networks [18], strategy games [28], and small
cell networks [54].

Deciding on which coalitions to form typically involves evaluating different coalition
structures (sets of disjoint and exhaustive coalitions) and solving a coalition structure gener-
ation (CSG) problem. Subsequently, coalition formation proceeds by forming the coalitions
in the (evaluated) coalition structure with the highest performance measure. The formed
coalitions may then be used to perform tasks, or execute plans, that require several artificial
entities to be accomplished efficiently.

From an algorithmic perspective, coalition structure generation and assignment are two
major coordinative processes that are generally treated as separate paradigms (including in
all previous examples). Even though coalitions are often described as goal-oriented organi-
zational structures, conventional CSG algorithms (e.g., for characteristic function games and
other similar games) have no explicit notion of goals. In instances for which coordination of
multiple coalitions is important, using such algorithms may generate suboptimal teams for
achieving and accomplishing the tasks and goals at hand. Also, if combined with a typical
task allocation or assignment algorithm (e.g., the Hungarian algorithm that was introduced
by Kuhn [22]), we would require two different functions for expressing a coalition’s value:
one for deciding on which coalitions to form, and one for assigning/allocating them to alter-
natives. This is potentially disadvantageous, since it is often complicated to create good
utility/value functions (or to generate realistic performance measures), and it is not necessar-
ily a simple task to predict how the two functions influence the quality of generated solutions.
Also, there are many settings and scenarios in which the utility of a team not only depends
on its members and the environment, but also on the task/goal it is assigned to. It would
therefore be beneficial if algorithms for coalition structure generation could take advantage
of goal-orientation.

In light of these observations, and to address the aforementioned issues, we introduce the
simultaneous coalition structure generation and assignment (SCSGA) problem, in which
goal-orientation is central to the generation of coalition structures. Furthermore, we present
three different algorithms to solve it:

– an optimal anytime branch-and-bound algorithm (this paper’s main contribution);
– a greedy non-optimal algorithm for benchmarking anytime solutions and generating

initial lower bounds for the quality of problems’ optimal solutions; and
– a pure random search algorithm to use as a baseline when benchmarking other anytime

algorithms.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 3 of 31 29

These algorithms integrate coalition-to-alternative assignment into the formation of coalitions
by generating ordered coalition structures, for which each possible enumeration of coalitions
correspond (bijectively) to a specific assignment of alternatives. Our algorithms can thus be
used to create structured collaboration through explicit goal-orientation, and they only require
one function (analogous to the characteristic function) for representing a coalition’s potential
performance/utility.

To evaluate our algorithms’ performance, we present five different methods for generating
synthetic problem sets (of which three are extended from previousmethods for benchmarking
CSG algorithms). We also benchmark our optimal anytime algorithm against CPLEX—a
commercial state-of-the-art optimization software developed by IBM—to deduce whether it
can handle difficult data sets with sufficient efficiency.Moreover, we also apply our algorithm
to solve the problem of simultaneously forming and assigning groups of armies to regions
in the commercial strategy game Europa Universalis 4, and empirically show that it can be
used to optimally solve a difficult game-playing problem in real-time. Note that this is, to
our knowledge, the first time an algorithm for coalition structure generation of this calibre
has been used in a real-world application (a complex multi-agent system) to considerably
improve autonomous agents’ computational efficiency and decision-making.

Finally, apart from being applied to strategy games, SCSGA algorithms can potentially
be used to solve many important real-world problems. They could, for example, be used
to form optimal cross-functional/multi-disciplinary teams aimed at solving a set of prob-
lems; to assist in the organization and coordination of subsystems in an artificial entity
(e.g., a robot); or to allocate tasks in multi-agent systems (e.g., multi-robot facilities). Since
our branch-and-bound algorithm is anytime (i.e., it can return a valid solution even if it is
interrupted prior to finishing a search), it can also be used in many real-world scenarios
with real-time constraints as well, such as in time-critical systems for managing tactical
decisions.

Note that this paper is a significantly extended and thoroughly revised version of two
previous papers [28,29]. More specifically, in this paper, we provide a more thorough review
of related algorithms and domains together with examples and descriptions of a few poten-
tial applications. Moreover, the presented algorithm, its presentation, and the benchmarks
herein, have all been significantly improved. Additionally, we provide two new algorithms
for SCSGA, and develop two new methods for generating synthetic problem sets that more
closely model certain real-world scenarios (which we also use to benchmark our algorithms).
Several additional theorems with proofs are also provided that strengthen the validity of our
claims.

The structure of this paper is organized as follows. We begin by discussing related work,
CSG algorithms and similar domains in Sect. 2. We then formalize the SCSGA problem in
Sect. 3. In Sects. 4 and 5, we describe our algorithms in detail. In Sect. 6, we present our
experiments. Finally, in Sect. 7, we conclude with a summary.

2 Related work andmotivation

The most commonly studied CSG problem is in the context of characteristic function games
(CFGs) [33], in which the value of a coalition only depends on its members. It is defined as
follows:

123

29 Page 4 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Input: A set of agents A = {a1, . . . , an}, and the function v(C) �→ R, known as the
characteristic function, that corresponds to the value (e.g., expected utility) of the coalition
C ⊆ A. v(∅) = 0 is assumed.

Output: A coalition structure CS over A (see Definition 1) that maximizes the sum of its
coalitions’ values

∑
C∈CS v(C).

Definition 1 Coalition structureA coalition structure CS = {C1, . . . ,C|CS|} over the agents
A is a set of coalitions with Ci ⊆ A\∅ for i = 1, . . . , |CS|, Ci ∩ C j = ∅ for all i �= j , and
⋃|CS|

i=1 Ci = A. For example, {{a1, a3}, {a2}} and {{a1}, {a2}, {a3}} are two different coalition
structures over A = {a1, a2, a3}.

This type of coalition structure generation problem has been thoroughly studied. It is
NP-complete [36], and a multitude of algorithms have been presented to solve it using
different approaches, such as dynamic programming [30,52], tree-search [34], and hybrid
techniques [32]. Variations on the CSG problem also exist, e.g., with overlapping coalitions,
where agents have limited resources that they can use to partake in multiple coalitions [8,17].
Also, even though it is typically computationally difficult to generate high-quality coalition
structures (since the search space grows in ω(nn/2) andO(nn) for n agents), there are certain
CSG problem instances that can be solved optimally in polynomial time, see e.g., [14]. There
are also concise representations of the characteristic function that can be used to reduce a
CSG problem’s computational complexity by sacrificing expressiveness [45,47].

Note that it is possible to define the characteristic function so that a coalition’s value cor-
responds to the value of an optimal solution to a distributed constraint optimization problem
among the coalition’s members [46]. This approach, albeit arguably more goal-oriented, still
lacks an explicit notion of coalitional goals, since coalitions’ purposes are not explicit during
their generation, and because coalitions have the same performance measure regardless of
their individual goals.

Furthermore, the CSG problem has been studied in the context of other games as well. For
example, in partition function games (PFGs) (initially proposed by Lucas and Thrall [44]),
a coalition’s value not only depends on its members, but also on the way all other agents
are partitioned. Hence, in PFGs, we are interested in embedded coalitions (Definition 2)—a
notion with which the CSG problem for PFGs is defined as follows:

Input: A set of agents A = {a1, . . . , an}, and the function w(C,CS) �→ R, known as the
partition function, that corresponds to the value (e.g., potential utility) of the embedded
coalition (C,CS) over A.

Output: A coalition structure CS over A that maximizes
∑

C∈CS w(C,CS).

Definition 2 Embedded coalitionAn embedded coalition over the agents A is a pair (C,CS),
where CS is a coalition structure over A, and C is a coalition with C ∈ CS.

Observe that CFGs are a special case of PFGs—in other words, CFGs form a proper
subclass of PFGs. Furthermore, CSG in this setting is highly computationally challenging
since the value of a coalition may depend on the partitioning of all other agents, thus taking
what is known as externalities (i.e., the coalitions’ exerted influence over each other) into
consideration. This has the consequence that each coalition C ⊆ A can have as many dif-
ferent values as there are ways to partition the remaining agents A\C . Also, in general, you

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 5 of 31 29

cannot optimally solve a CSG problem for PFGs without enumerating all possible coalition
structures. Clearly, this type of “brute-force” is not feasible for most reasonably realistic
problems, since the number of partitions of a set with n elements is equal to the nth Bell
number Bn , for which the following holds:

αnn/2 ≤ Bn ≤ nn

for some positive real number α (see [36] for proof)—with the consequence that explicitly
representing a partition function requires O(nn) real numbers [33].

Now, to address these aforementioned issues, researchers have studied and developed
algorithms for certain types of PFG representations and more limited classes of the partition
function. For example, Rahwan et al. [31] and Epstein et al. [13] developed algorithms
constrained to games with:

– negative externalities, in whichmerging any two coalitions is never beneficial to the other
coalitions; and

– positive externalities, where merging two coalitions is never detrimental to other existing
coalitions.

Furthermore, Skibski et al. [39] presented a graphical representation based on rooted directed
trees called partition decision trees, which Zha et al. [53] then used to solve the CSG prob-
lem using (1) a depth-first branch-and-bound algorithm, and (2) a maximum satisfiability
(MaxSAT) encoding together with an off-the-shelve solver.

However, there are many settings and scenarios in which the expected future utility of a
team not only depends on its members (as in CFGs), or the way all agents are partitioned (as
in PFGs), but also on the its collective goal (e.g., its purpose, or the task/job it is assigned
to). We illustrate one such scenario in Example 1.

Example 1 Suppose we aim to coordinate staff (agents) at a hospital by forming several
heterogeneous multi-disciplinary healthcare teams aimed at helping a number of patients
in the best possible way. Since doctors and nurses may have many different specializations
(e.g., radiology, neurosurgery, oncology), and patients typically have awide range of different
disorders and illnesses (e.g., cancer, infection, heart disease), the best teams typically depend
on the patients that need to be treated, and they may require the participation of several
specialist types. Thus, if we fail to take the patients into consideration, we may form teams
that are suboptimal (or arbitrarily bad). Ideally, we would instead like to pair each patient
with the group that maximizes the hospital’s aggregated global utility.

Arguably, conventional CSG algorithms fail to model this multi-faceted interplay between
teams (coalitions) and their goals/ambitions in a satisfying way. Although games with
alternatives (initially introduced by Bolger [4], and further developed and studied in
e.g., [1,2,5,6,26]) captures this interaction between coalitions and their goals, no CSG algo-
rithms have been developed for them, and mainly voting situations have been considered. In
this type of game, there is a set of players (agents) A = {a1, . . . , an}with a set of alternatives
T = {t1, . . . , tm}, and each player must choose exactly one alternative. Furthermore, Ci is
defined to be the set of players who choose alternative ti , and the vector 〈C1, . . . ,Cm〉 is
called an arrangement of the players A among the alternatives T . If S is such an arrangement,
then, if C ∈ S, the function w(C, S) �→ R corresponds to C’s worth, given that the other
players choose alternatives as specified by S. Thus, in this context, we are also interested
in embedded coalitions and externalities, since when valuing a coalition’s worth/utility, the
way that all other players choose alternatives is taken into consideration.

123

29 Page 6 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

A formalism related to games with alternatives was developed and analyzed by Grabisch
and Rusinowska [16]. In their work, they presented a multi-choice framework, in which each
agent has to choose an action under the influence of others. To the best of our knowledge,
algorithmically forming coalitions/teams using their framework has neither been studied nor
analyzed.

Moreover, in the context of both CFGs and PFGs, it is possible to design the value func-
tion (i.e., characteristic or partition function) so that algorithms for optimal CSG can be
used to generate certain types of goal-oriented coalition structures. This can be accom-
plished by first including additional entities (“special elements”) that each represent a specific
task/goal/alternative in the CSG input’s agent set, and then defining the value function in a
way so that unwanted coalitions never exist in optimal coalition structures. We exemplify
this approach in Example 2 with a real-world scenario and application.

Example 2 Suppose we have several students s1, . . . , sn enrolled at a university. These stu-
dents come from different curricula and backgrounds, and have a diverse set of distinct skills
and preferences. This semester, they are taking a course, in which each of them will be
assigned to one of a few different projects p1, . . . , pm . The students assigned to a project
have to work together to complete it. More to the point, the course’s teachers aim to assign the
students to the different projects, while still maximizing the students’ knowledge exchange
(by e.g., making sure that each group is diverse enough), and making sure that they are satis-
fied with the course (by e.g., making sure that the students are assigned to projects that they
find interesting and relevant). The problem of forming such project groups can be modelled
as a CSG problem in the CFG context. In more detail, let the CSG input’s agent set be:

A = {s1, . . . , sn} ∪ {p1, . . . , pm}
and define the characteristic function as follows:

v(C) =

⎧
⎪⎨

⎪⎩

0 if C = ∅
vC if |C ∩ {p1, . . . , pm}| = 1

−∞ otherwise

where C ⊆ A, and vC is a real number that represents the utility (e.g., suitability) of the
students in C ∩ {s1, . . . , sn} being assigned to the project p ∈ C ∩ {p1, . . . , pm}. Of course,
vC needs to be defined in a way so that the aforementioned intricacies and details are taken
into consideration.

In a general sense, albeit perhaps theoretically valid, this way of handling goal-orientation
is typically blunt and has many disadvantages. For example, in practice, it potentially leads
to much worse computational performance for CSG algorithms than necessary, and for CSG
in CFGs, it makes the search space grow in O((m + n)m+n) instead of O(nn). This is not
only costly, but also typically difficult to work with (in both practice and theory), and it is not
always clear how to include non-finite values for valid coalitions. Also, for non-optimal CSG
algorithms and algorithms with anytime characteristics, this approachmay generate coalition
structures that could arguably be regarded as infeasible due to containing coalitionswith value
−∞. Generally speaking (although special cases may exist), when modelling a problem this
way, we either have to accept the risk of generating suboptimal (or arbitrarily bad) coalition
structures for goal-oriented domains, and/or sacrifice computational performance and brevity.
In light of these observations, we now define the SCSGA problem—a type of CSG problem
with which we can avoid these drawbacks.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 7 of 31 29

3 Problem formalization

The simultaneous coalition structure generation and assignment problem is formalized as
follows:

Input: A set of agents A = {a1, . . . , an}, a list of alternatives T = 〈t1, . . . , tm 〉 (e.g.,
tasks/goals), and the value function v(C, t) �→ R, called the utility function, that represents
the potential value (e.g., performance measure) for assigning any coalition C ⊆ A to any
alternative t ∈ T .

Output: An ordered coalition structure (see Definition 3) 〈C1, . . . ,Cm 〉 over A that
maximizes the sum

∑m
i=1 v(Ci , ti).

Definition 3 Ordered coalition structure The list S = 〈C1, . . . ,C|S|〉 is an ordered coalition
structure over a set of agents A if Ci ⊆ A for i = 1, . . . , |S|, Ci ∩C j = ∅ for all i �= j , and
⋃|S|

i=1 Ci = A. For example, 〈{a1, a3},∅, {a2, a4}〉 is an ordered coalition structure over the
agents {a1, a2, a3, a4}.

A real-world situation that can bemodelled using this formalization is illustrated in Exam-
ple 3. Furthermore, note that both Examples 1 and 2 can be modelled as SCSGA problems
in a straightforward manner.

Example 3 The Médecins Sans Frontières (commonly known as Doctors Without Borders)
has over 40 000 field staff deployed in more than 70 countries [20]. Deciding on whom to
deploywhere is a difficult problem that can bemodelled as a SCSGAproblem. Inmore detail,
let the staff be the input’s agent set A; the deployment locations (e.g., countries) be the list of
different tasks T ; and the utility function v(C, t) yield a value that represents how beneficial it
is to deploy a certain teamC ⊆ A (a subset of the personnel) at a specific deployment location
t ∈ T . The output’s ordered coalition structure corresponds to an optimal deployment of the
staff.

Moreover, given the aforementioned input, we can also formalize the SCSGA problem
using a binary integer programming model:

maximize
2n−1∑

j=0

m∑

k=1

x jk · v(C j , tk)

subject to
2n−1∑

j=0

m∑

k=1

x jk · yi j = 1 i = 1, . . . , n

m∑

k=1

x jk ≤ 1 j = 1, . . . , 2n − 1

2n−1∑

j=0

x jk = 1 k = 1, . . . ,m

x jk ∈ {0, 1}
where yi j = 1 if agent ai ∈ C j , yi j = 0 if not, and C j is a coalition defined through its
binary coalition-encoding given by j over A (see Definition 4). Note that x jk = 1 if and

123

29 Page 8 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

only if coalition C j is to be assigned to task tk , and that C0 = ∅ is the only coalition that can
be assigned to multiple tasks. The first constraint ensures disjoint and exhaustive coalitions,
while the second and third constraints ensures coalition-to-task bijections.

Definition 4 Binary coalition-encodingGiven a set of agents A = {a1, . . . , an}, and the non-
negative integer j < 2n on binary form j = b120 + b221 + · · · + bn2(n−1) with bi ∈ {0, 1}
for all i ∈ N, we say that the coalition C j ⊆ A has a binary coalition-encoding given by j
over A if and only if bk = 1 ⇐⇒ ak ∈ C j for k = 1, . . . , n. For example, if the coalition
C j has a binary coalition-encoding given by j over {a1, . . . , an}, we have C0 = ∅ for j = 0,
C3 = {a1, a2} for j = 3 = 112, and C8 = {a4} for j = 8 = 10002.

Observe that the SCSGA problem corresponds to a CSG problem for games with alterna-
tives without externalities (i.e., coalitions’ values are not affected by the way non-members
are partitioned)—consequently, we are the first to develop and study the algorithmic process
of generating coalition structures for this constrained class of games with alternatives. Also,
note that we use the notion task to denote our analogy of an alternative throughout this paper,
and that we use the terms solution and ordered coalition structure interchangeably.Moreover,
the sum V (S) = ∑m

i=1 v(Ci , ti) is used to denote the value of a solution S = 〈C1, . . . ,Cm〉.
We also use the terms agent and task as abstractions (they can be substituted for any type of
entities, e.g., resources, regions, intentions, goals), and we use the conventions n = |A| and
m = |T | when it improves readability. Finally, there are mn possible solutions to a SCSGA
problem instance, since there are m possible tasks to assign each of the n agents to. Conse-
quently, albeit much improved over the aforementioned O((m + n)m+n), exhaustive search
at O(mn) is still costly and typically not feasible. Also, observe that there are no restrictions
on the integer m other than that it is positive—a SCSGA problem instance can thus have
more tasks than there are agents.

4 Optimal anytime branch-and-bound algorithm

To solve this optimization problem, we propose an anytime branch-and-bound algorithm in
conjunctionwith a search space representation based onmultiset permutations of size-m inte-
ger partitions. By using branch-and-bound, our algorithm always generates optimal solutions
when run to exhaustion, and solutions with worst-case guarantees when interrupted prior to
finishing a search. This algorithm, that we abbreviate MP (short for multiset permutation),
consists of the following major steps:

I. Partitioning of the search space.
II. Calculation of the bounds for subspaces.
III. Searching for solutions using branch-and-bound.

These steps are described in the next three subsections.

4.1 Partitioning the search space

To partition the search space, we use a search space representation that is based on multiset
permutations (ordered arrangements) of integer partitions (Definition 5). In this represen-
tation, a list of non-negative integers 〈p1, . . . , pm〉 represents all solutions 〈C1, . . . ,Cm〉
with |Ci | = pi for i = 1, . . . ,m (see Definition 6). Note that this is technically a refine-
ment of Rahwan, Ramchurn, Jennings and Giovannucci’s search space representation for
conventional coalition structure generation [34].

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 9 of 31 29

Definition 5 Integer partition An integer partition of y ∈ N is a multiset of positive integers
{x1, . . . , xk} such that:

k∑

i=1

xi = y.

For example, the multiset {1, 1, 2} is an integer partition of 4 since 1 + 1 + 2 = 4, and
{1, 2, 12, 15} is an integer partition of 30 since 1 + 2 + 12 + 15 = 30.

Definition 6 MP-representation A list of non-negative integers 〈p1, . . . , pm〉 represents the
ordered coalition structure 〈C1, . . . ,Cm〉 if pi = |Ci | for i = 1, . . . ,m.

In more detail, we generate all multiset permutations of m-sized non-negative integer
partitions of n. We use the following three steps to do so:

1. First, generate the set M1 of all integer partitions of n that has m or fewer elements
(addends). If n = 4 and m = 3, then M1 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}}. Algorithms
that can be used to generate these integer partitions already exist, e.g., [3,41]. In our case,
order is of no concern, and it is trivial to exclude integer partitions that have more than
m elements, so any algorithm can potentially be used.

2. Generate M2 by appending zeros to the integer partitions in M1 (that we generated
during step 1) until all of them have m elements. For example, if n = 4 and m = 3, then
M2 = {{4, 0, 0}, {3, 1, 0}, {2, 2, 0}, {2, 1, 1}}.

3. Now, let M3 be the set of all multiset permutations of the multisets in M2. For example,
if n = 4 and m = 3, then M3 =
{ 〈4, 0, 0〉, 〈0, 4, 0〉, 〈0, 0, 4〉, 〈0, 2, 2〉, 〈2, 0, 2〉, 〈2, 2, 0〉,

〈3, 1, 0〉, 〈3, 0, 1〉, 〈0, 3, 1〉, 〈1, 3, 0〉, 〈1, 0, 3〉, 〈0, 1, 3〉,
〈2, 1, 1〉, 〈1, 2, 1〉, 〈1, 1, 2〉 }.

Each multiset permutation 〈p1, . . . , pm〉 ∈ M3 represents the subspace that contains all
solutions 〈C1, . . . ,Cm〉with |Ci | = pi andCi ⊆ A for i = 1, . . . ,m. For instance, if n =
4 and m = 3, the multiset permutation 〈3, 1, 0〉 then represents 〈{a1, a2, a3}, {a4},∅〉,
〈{a1, a2, a4}, {a3},∅〉, 〈{a1, a3, a4}, {a2},∅〉, and 〈{a2, a3, a4}, {a1},∅〉. Note that there
exists several known algorithms that can generate these multiset permutations in O(1)
per new permutation, e.g., [43,49].

Note that every coalition structure that consists of k agents can bemapped to exactly one of the
integer partitions of k (see [34] for proof). For example, the coalition structure {{a1, a2}, {a3}}
can be mapped to {2, 1}, and {{a1, a2, a3}} to {3}. In step 1, we generate the partitions that
correspond to these mappings. We then remove unnecessary coalition structures in step 2, so
that we only look at coalition structures that can represent valid solutions (namely m-sized
coalition structures). Finally, in step 3, we refine the representation of the search space that
was generated in step 2, by taking advantage of the fact thatwe are only interested in coalition-
to-task bijections. Consequently, the solutions represented by the multiset permutations in
M3 cover the whole search space, as shown in Theorem 1. With this in mind, define:

– In to be set of all integer partitions of n;
– Zn to be the set of all zero-inclusive integer partitions (see Definition 7) of n;
– SJ to be the set of all multiset permutations of the multiset J .

123

29 Page 10 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

We can now, more clearly and compactly, define M1, M2 and M3 as follows:

– M1 := {J ∈ In : |J | ≤ m};
– M2 := {J ∈ Zn : |J | = m};
– M3 := ⋃

J∈M2
SJ .

Definition 7 Zero-inclusive integer partition A zero-inclusive integer partition of y ∈ N is a
multiset of non-negative integers {x1, . . . , xk} such that:

k∑

i=1

xi = y.

For example, the multiset {0, 0, 1, 3, 4, 10, 100} is a zero-inclusive integer partition of 118
since 0 + 0 + 1 + 3 + 4 + 10 + 100 = 118.

Theorem 1 The subspaces represented by the multiset permutations in M3 cover the whole
search space.

Proof By contradiction. Assume that a solution 〈C1, . . . ,Cm〉 is not represented by any ele-
ment inM3. Formally, this means that there is no list of non-negative integers 〈p1, . . . , pm〉 ∈
M3 with |Ci | = pi for i = 1, . . . ,m.

Now, let Q = 〈|C1|, . . . , |Cm |〉. Since Q /∈ M3 (by our assumption), and |Q| = m (by
definition), it must be the case that {|C1|, . . . , |Cm |} is not a zero-inclusive integer partition of
n (otherwise, we have that Q ∈ M3). In other words,

∑m
i=1 |Ci | �= n. This is a contradiction,

since
∑m

i=1 |Ci | = n follows directly from Definition 3. ��

Given any multiset permutation P = 〈p1, . . . , pm〉 ∈ M3 generated through the afore-
mentioned process, let SP denote the set of all solutions 〈C1, . . . ,Cm〉 with |Ci | = pi and
Ci ⊆ A for i = 1, . . . ,m. In other words, let SP be the subspace that contains all solutions
represented by the multiset permutation P ∈ M3.

4.2 Calculating the bounds for subspaces

To establish bounds for the subspaces in our search space representation, so the algorithm
can make more informed decisions during search, letCp := {X ⊆ A : |X | = p}, namely the
set of all p-sized coalitions, and define:

– Avg(p, t):= 1
|Cp |

∑ {v(C, t) : C ∈ Cp};
– M(p, t):= max {v(C, t) : C ∈ Cp}.

We can now establish a lower and an upper bound for the value of the best possible solu-
tion in SP as the sums lP := ∑m

i=1 Avg(pi , ti) and uP := ∑m
i=1 M(pi , ti), respectively.

For proofs, see Theorems 2 and 3. This lower bound, based on the average utility val-
ues of coalition-to-task assignments, is better than the more straightforward (and intuitive)∑m

i=1 min {v(C, ti) : C ∈ Cpi }. See Theorem 4 for proof.

Theorem 2 lP = ∑m
i=1 Avg(pi , ti) is a lower bound for the value of the best possible

solution in the subspace SP where P = 〈p1, . . . , pm〉. In other words:

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 11 of 31 29

lP ≤ max〈C1,...,Cm 〉∈SP

{ m∑

i=1

v(Ci , ti)

}

.

Proof Recall that, for the arithmetic mean y1, . . . , yk of a finite set {y1, . . . , yk} ⊂ R, the
following holds:

y1, . . . , yk ≤ max {y1, . . . , yk}. (1)

Now, since there are |Cp| coalitions of size p ∈ P , we have:

|SP | = xi · |Cpi | (2)

for some integer xi ∈ N for i = 1, . . . ,m. This is because there are |Cpi | differ-
ent coalitions that can be assigned to task ti , and for each coalition assigned to ti , we
have xi ways of assigning coalitions to the other tasks t1, . . . , ti−1, ti+1, . . . , tm . Follow-
ing this argument, there are exactly xi solutions in SP for which any coalition C with
|C | = pi is the i th coalition. Based on this and (3), we can calculate the arithmetic mean of
VP := {∑m

i=1 v(Ci , ti) : 〈C1, . . . ,Cm〉 ∈ SP }, namely the set of the values of the solutions
in SP , as follows:

VP = 1

|SP |
m∑

i=1

∑

C∈Cpi

{
xi · v(C, ti)

}

=
m∑

i=1

∑

C∈Cpi

{
xi

|SP | · v(C, ti)

}

=
m∑

i=1

∑

C∈Cpi

{
1

|Cpi |
· v(C, ti)

}

=
m∑

i=1

{
1

|Cpi |
∑

C∈Cpi

v(C, ti)

}

=
m∑

i=1

Avg(pi , ti).

From this and (2), we conclude:

m∑

i=1

Avg(pi , ti) ≤ max〈C1,...,Cm 〉∈SP

{ m∑

i=1

v(Ci , ti)

}

.

��

Theorem 3 uP = ∑m
i=1 M(pi , ti) is an upper bound for the value of the best possible

solution in the subspace SP where P = 〈p1, . . . , pm〉. In other words:

m∑

i=1

v(Ci , ti) ≤ uP

for all 〈C1, . . . ,Cm〉 ∈ SP .

123

29 Page 12 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Proof If 〈C1, . . . ,Cm〉 ∈ SP , then pi = |Ci | for i = 1, . . . ,m. From this, it follows that:

M(pi , ti) = M(|Ci |, ti). (3)

Since v(Ci , ti) ≤ M(|Ci |, ti) for i = 1, . . . ,m, we have:

m∑

i=1

v(Ci , ti) ≤
m∑

i=1

M(|Ci |, ti).

Based on this, and (1), we conclude that:

m∑

i=1

v(Ci , ti) ≤
m∑

i=1

M(pi , ti).

��
Theorem 4

∑m
i=1 min {v(C, ti) : C ∈ Cpi } is a lower bound for the value of the best possible

solution in the subspace SP where P = 〈p1, . . . , pm〉, and it is a worse lower bound than∑m
i=1 Avg(pi , ti). In other words:

m∑

i=1

min {v(C, ti) : C ∈ Cpi } ≤
m∑

i=1

Avg(pi , ti) ≤ max〈C1,...,Cm 〉∈SP

{ m∑

i=1

v(Ci , ti)

}

.

Proof Recall that, for the arithmetic mean y1, . . . , yk of a finite set {y1, . . . , yk} ⊂ R, the
following holds:

min {y1, . . . , yk} ≤ y1, . . . , yk .

Therefore, it follows that:

min {v(C, t) : C ∈ Cp} ≤ 1

|Cp|
∑

{v(C, t) : C ∈ Cp}.

From this, and since Avg(p, t) = 1
|Cp |

∑ {v(C, t) : C ∈ Cp} by definition, we have:

min {v(C, t) : C ∈ Cp} ≤ Avg(p, t).

Now, based on this, and Theorem 2, we conclude:

m∑

i=1

min {v(C, ti) : C ∈ Cpi } ≤
m∑

i=1

Avg(pi , ti) ≤ max〈C1,...,Cm 〉∈SP

{ m∑

i=1

v(Ci , ti)

}

.

��
Since the performance measure for each coalition-to-task assignment is assumed to be

known, these bounds can, in practice, be calculated without having to enumerate or gener-
ate any solutions. For instance, by enumerating all coalition-to-task values, of which there
exists a total number of m2n , the lower bounds can be calculated using a moving average.
Also, we can calculate an upper bound for the solutions represented by the multiset per-
mutations in the set M ⊆ M3 according to Theorem 5, and thus also calculate an upper
bound to the optimal solution for any SCSGA problem, as shown in Corollary 1, in the same
manner.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 13 of 31 29

Theorem 5 UM := maxP∈M uP is an upper bound for the optimal solution in the search
space represented by M ⊆ M3. In other words, if S is a solution represented by a multiset
permutation in M ⊆ M3, then V (S) ≤ UM.

Proof Let SM := ⋃
P∈M SP , namely all solutions that are represented by the multiset per-

mutations in M . We now want to prove that V (S) ≤ UM for all S ∈ SM . With this in mind,
note that the following holds:

max
S∈SM

V (S) = max
P∈M

{
max
S∈SP

V (S)
}
. (4)

According to Theorem 3, we have:

max
S∈SP

V (S) ≤ uP .

Consequently:

max
P∈M

{
max
S∈SP

V (S)
}

≤ max
P∈M uP .

From this, and (4), we conclude:

max
S∈SM

V (S) = max
P∈M

{
max
S∈SP

V (S)
}

≤ max
P∈M uP = UM .

In other words:

max
S∈SM

V (S) ≤ UM .

��

Corollary 1 UM3 := maxP∈M3 uP is an upper bound for the optimal solution. In other words,
if S∗ is an optimal solution, then V (S∗) ≤ UM3 .

Proof This follows directly from Theorem 5. ��

4.3 Searching for solutions using branch-and-bound

We search for solutions by searching one subspace at a time, and discard subspaces that only
contain suboptimal solutions when a subspace’s upper bound is lower than or equal to (1) the
value of the best solution evaluated so far, or (2) the largest lower bound of all remaining
subspaces. With this in mind, consider the following observation: Finding a better solution
than the best that we have found can potentially make it possible to discard (additional)
subspaces. Thus, if we find better solutions earlier, we can potentially reduce execution time
by decreasing the search space that we need to consider. To potentially take advantage of this
observation, we design a mechanism, based on defining a precedence order that dictates the
order for which we search subspaces, that ultimately makes it possible to find better solutions
more quickly by using heuristics to guide search. In more detail, we use a variation of best-
first branch-and-bound to search such promising subspaces first (and to discard subspaces
that cannot possibly contain an optimal solution).

Note that the efficiency induced by any search order depends on the problem that is being
solved. In our case, we assume that there exists no a priori knowledge in regards to the

123

29 Page 14 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

domain, except for the utility function, and we instead have to take advantage of information
that exists for all domains (e.g., subspaces and their bounds). It is possible to use potential
domain-specific information when it is available, which is likely a more efficient strategy for
solving many real-world problems. In any case, the domain-independent order of precedence
for searching subspaces that we use is defined as follows:

P1 ≺ P2 if uP1 + lP1 > uP2 + lP2

where P1 ≺ P2 denotes that the subspace represented by the multiset permutation P1 ∈ M3

is searched before the subspace represented by P2 ∈ M3. uP and lP are defined as in the
previous subsection.

With this in mind, we use Algorithm 1 to search a subspace SP (represented by the
multiset permutation P ∈ M3) for argmaxS∈SP

V (S) by running the search procedure
SearchSubspace(P , uP , 1, ∅|T |, 0.0, ∅|T |), where ∅|T | is a list of m = |T | empty coali-
tions, and uP is a upper bound for the subspace represented by P (defined in the previous
subsection). If interrupted before termination, this procedure returns the best feasible solution
found so far, denoted S′. Note that Algorithm 1 is a variation of depth-first branch-and-bound,
and that we use a notation based on brackets to indicate an element at a specific position of
a list or vector. For example, the notation S[j] corresponds to the coalition C j ∈ S, and the
notation A[i] corresponds to the agent ai ∈ A.

To address the high memory requirements for generating and storing many multiset per-
mutations (required for generating the precedence order), it is possible to generate and store
multiset permutations in memory-bounded blocks (distinct sets of multiset permutations).
These blocks can sequentially be generated and searched during partitioning. Themore blocks
we use, the less memory is required. In our case, we use each set Q ∈ M2 generated in step 2
during the partitioning phase (described in Sect. 4.1) to represent a block. In other words, each
disjoint group of distinct multiset permutations in which all multiset permutations have the
same members is searched in sequence according to some criterion. The particular criterion
that we use is defined as:

Q1 ≺ Q2 if wQ1 + fQ1 > wQ2 + fQ2

where Q1 ≺ Q2 denotes that the solutions represented by the group of multiset permutations
consisting of the members q1, . . . , qm is searched before the solutions represented by the
group ofmultiset permutations consisting of themembers p1, . . . , pm , where {q1, . . . , qm} =
Q1 and {p1, . . . , pm} = Q2, with Q1 ∈ M2 and Q2 ∈ M2.wQ and fQ are defined (similarly
to the subspace bounds), for all Q ∈ M2, as follows:

– wQ := ∑
q∈Q {maxi=1,...,m M(q, ti)};

– fQ := ∑
q∈Q { 1

m

∑
i=1,...,m Avg(q, ti)}.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 15 of 31 29

Algorithm 1 : SearchSubspace(P , −→u , −→v ,
−→
S , S′, i , A, T)

Recursively searches the subspaceSP represented by themultiset permutation P using depth-
first branch-and-bound. The input parameter −→u is an intermediary real-valued upper bound
that corresponds to how much the current tentative value −→v can increase at subsequent

recursion steps deeper in the recursion.
−→
S contains an intermediate partial solution, while S′

stores the best solution found so far. The non-negative integer i equals the algorithm’s current
recursion depth (or, from another perspective, the index of the agent that we are currently
assigning to a task). The set A contains the agents in the SCSGA problem being solved, and
T corresponds to the list of tasks that we are assigning the agents to.
Output: argmaxS∈SP

V (S).

1: if i > |A| then � All agents have been assigned to a coalition in
−→
S .

2: return
−→
S

3: end if
4: for j = 1, ..., |T | do
5: if |−→S [j]| �= P[j] then
6:

−→
S [j] ← −→

S [j] ∪ {A[i]} � Assign agent A[i] to the coalition −→
S [j].

7: if |−→S [j]| = P[j] then � Update the intermediary values.

8: −→v ← −→v + v(
−→
S [j], T [j])

9: −→u ← −→u − M(P[j], T [j])
10: end if
11: if S′ = ∅|T | or −→v + −→u > V (S′) then � Check if a better solution is possible.

12: S′′ ← SearchSubspace(P , −→u , −→v ,
−→
S , S′, i + 1, A, T)

13: if S′ = ∅|T | or V (S′′) > V (S′) then
14: S′ ← S′′ � Update the best solution found so far.
15: end if
16: end if
17: if interrupt has been requested then
18: return S′
19: end if
20: if |−→S [j]| = P[j] then � Reset the intermediary values.

21: −→v ← −→v − v(
−→
S [j], T [j])

22: −→u ← −→u + M(P[j], T [j])
23: end if
24:

−→
S [j] ← −→

S [j]\{A[i]} � Remove agent A[i] from the coalition
−→
S [j].

25: end if
26: end for
27: return S′

wQ and fQ can, similarly to subspace bounds, be computed without having to enumerate
or generate any solutions. Moreover, the algorithm can search these blocks in parallel using
separate processes. Also, these blocks can be partitioned into several smaller parts (e.g.,
sub-blocks) to further decrease memory usage.

Note that, even though this algorithm is anytime in the sense that it can return a solution at
any time during its search procedure, it still needs to generate a number of integer partitions
before its search procedure can begin. However, this number, known as the partition function
p(n), is relatively small—especially when compared to the number of possible solutionsmn .
For example, the values of p(n) for n = 1, . . . , 20 are (OEIS sequence A000041 [40]):

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627.

123

29 Page 16 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Finally, we now show how to calculate a worst-case guarantee on an anytime solution’s
quality. Let S′ be an anytime solution generated by our algorithm (i.e., the algorithm was
interrupted before its search procedurewas completed, and S′ is the best intermediary solution
that was found), and let R ⊆ M3 be the set of all multiset permutations that represent the
subspaces that remain to be searched. An upper bound for the optimal solution can now be
calculated as:

UR = max
{
V (S′), max

P∈R
uP

}
.

This follows directly from Theorem 5. Consequently, if S∗ is an optimal solution, the fol-
lowing holds:

V (S′) ≤ V (S∗) ≤ UR .

Now, let ρ = UR/V (S′). As a consequence, the value V (S′) of our anytime solution is at
worst-case a factor ρ worse than the value V (S∗) of an optimal solution—in other words
V (S∗) ≤ ρV (S′), since:

V (S∗) ≤ UR = V (S′) UR

V (S′)
= ρV (S′).

5 Simple non-optimal algorithms

Due to the computational complexity of the optimal SCSGA problem, we consider two non-
optimal algorithms that generate feasible solutions more efficiently: One algorithm that uses
a greedy strategy to make locally optimal choices when constructing a solution, and a second
anytime algorithm that continuously generates random solutions (and keeps track of the best)
until it is interrupted.

5.1 Agent-based greedy algorithm

Ourgreedy algorithm,Algorithm2, is abbreviatedAG for agent greedy. It efficiently generates
a solution by sequentially assigning agents to coalitions/tasks: First, it initializes a m-sized
ordered coalition structure that has no agents assigned to any of its coalitions. Then, it
sequentially assigns each agent to the coalition that would (locally) increase the value of the
solution the most (or decrease its value the least). Moreover, this algorithm has a worst-case
time-complexity ofO(|T ||A|), and it requiresO(|T | + |A|) memory for storing the solution
that it generates.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 17 of 31 29

Algorithm 2 : AgentBasedGreedyAlgorithm(A, T)
Greedily generates a solution by sequentially assigning agents to tasks. The set A contains
the agents in the SCSGA problem being solved, and T corresponds to the list of tasks that
we are assigning the agents to.
Output: A size-m ordered coalition structure over A.
1: S ← ∅|T | � S is initialized to a list of m = |T | empty coalitions.
2: for i = 1, ..., |A| do
3: k ← 0
4: u ← −∞
5: for j = 1, ..., |T | do
6: u′ ← v(S[j], T [j])
7: S[j] ← S[j] ∪ {A[i]} � Temporarily assign agent A[i] to the coalition S[j].
8: u′′ ← v(S[j], T [j])
9: if u′′ − u′ > u then
10: k ← j � Update the best candidate coalition to add agent A[i] to.
11: u ← u′′ − u′
12: end if
13: S[j] ← S[j]\{A[i]} � Remove agent A[i] from the coalition S[j].
14: end for
15: S[k] ← S[k] ∪ {A[i]} � Assign agent A[i] to the coalition S[k].
16: end for
17: return S

5.2 Pure random search algorithm

Our second non-optimal algorithm, Algorithm 3, is a pure random search algorithm abbre-
viated PRS. This algorithm continuously samples solutions from the entire SCSGA search
space by assigning each agent to a randomly (following the discrete uniform probability
distribution DU) selected coalition. This process is only halted once the algorithm is inter-
rupted, for example by an external event. It also keeps track of the best solution found
so far. Following this procedure, each possible solution is clearly equally likely to occur
(per sample), since each agent has an equal probability of being assigned to each task.
Moreover, each ordered coalition structure is generated in O(|A| + |T |) time, and for a
problem with k ∈ N optimal solutions, each sample has a probability of km−n for being
optimal.

123

29 Page 18 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Algorithm 3 : PureRandomSearchAlgorithm(A, T)
Continuously samples solutions from the entire search space, while keeping track of the
best solution it finds, which it returns once interrupted. The set A contains the agents in the
SCSGA problem being solved, and T corresponds to the list of tasks that we are assigning
the agents to.
Output: A size-|T | ordered coalition structure over A.
1: S′ ← ∅|T | � S′ is initialized to a list of m = |T | empty coalitions.
2: while interrupt has not been requested do
3: S ← ∅|T |
4: for i = 1, ..., |A| do
5: r ← DU(1, |T |) � Assign a random integer between 1 and |T | (both inclusive) to r .
6: S[r] ← S[r] ∪ A[i] � Assign agent A[i] to the coalition S[r].
7: end for
8: if S′ = ∅|T | or V (S) > V (S′) then
9: S′ ← S � Update the best solution found so far.
10: end if
11: end while
12: return S′

5.3 Feasible (suboptimal) solutions in conjunction with branch-and-bound

Apart from generating feasible solutions quickly, non-optimal algorithms (e.g., those
described in the previous subsections) can also be used to generate an initial solution for
branch-and-bound algorithms to reduce the initial lower bound for optimal solutions. For
example, for our anytime algorithm described in Sect. 3: If we generate a solution S′, then,
if V (S′) ≥ uP for any P ∈ M3, clearly all solutions in SP can be discarded.

Non-optimal algorithms can also be used to potentially improve the lower bound for
subspaces by generating an initial solution for each subspace. This initial solution can then be
used to prioritize subspace-selection during search—for example, as described in the previous
section, when using best-first branch-and-bound. By doing so, subspaces can potentially be
discarded earlier. This approach can thus potentially decrease the total execution time by
making it possible for an algorithm tomakemore informed decisions during search. However,
this is only practical if the non-optimal algorithm is sufficiently efficient.

With this in mind, and to make this possible, we now extend Algorithm 2 to only construct
solutions with fixed (predetermined) coalition-sizes, so that we can use it in conjunction with
the MP algorithm. In more detail, this extension, Algorithm 4, uses a list of non-negative
integers P = 〈p1, . . . , pm〉, where ∑m

i=1 pi = n, to only generate solutions 〈C1, . . . ,Cm〉
with |Ci | = pi for i = 1, . . . ,m.

This algorithm has the same worst-case characteristics as Algorithm 2. In other words, it
has a worst-case time-complexity of O(|T ||A|), and a worst-case memory consumption of
O(|T | + |A|).

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 19 of 31 29

Algorithm 4 : AgentBasedFCSGreedyAlgorithm(P , A, T)
Given that P = 〈p1, . . . , pm〉 represents the subspace SP �= ∅, this algorithm greedily
generates a solution S ∈ SP to a SCSGA problem instance by sequentially assigning agents
to tasks. The set A contains the agents in theSCSGAproblembeing solved, and T corresponds
to the list of tasks that we are assigning the agents to.
Output: An ordered coalition structure 〈C1, . . . ,Cm〉 over A with |Ci | = pi .
1: S ← ∅|T | � S is initialized to a list of m = |T | empty coalitions.
2: for i = 1, ..., |A| do
3: k ← 0
4: u ← −∞
5: for j = 1, ..., |T | do
6: if |S[j]| < P[j] then
7: u′ ← v(S[j], T [j])
8: S[j] ← S[j] ∪ {A[i]} � Temporarily assign agent A[i] to the coalition S[j].
9: u′′ ← v(S[j], T [j])
10: if u′′ − u′ > u then
11: k ← j � Update the best candidate coalition to add agent A[i] to.
12: u ← u′′ − u′
13: end if
14: S[j] ← S[j]\{A[i]} � Remove agent A[i] from the coalition S[j].
15: end if
16: end for
17: S[k] ← S[k] ∪ {A[i]} � Assign agent A[i] to the coalition S[k].
18: end for
19: return S

6 Evaluation and results

A common approach for evaluating optimization algorithms is to use standardized problem
instances for benchmarking. To our knowledge, no such instances exist for the SCSGA
problem.We therefore translate standardized problem instances from a similar domain.More
specifically, we extend established methods for synthetic problem set generation used for
benchmarking CSG algorithms. The extended methods are then used to generate difficult
problem sets of varying distribution and complexity that we use to benchmark our algorithms.

Larson and Sandholm [24] provided standardized synthetic problem instances for the
coalition structure generation problem by using normal and uniform probability distributions
to generate randomized values for coalitions. Following Rahwan et al. [34], we denote these
distributions NPD (normal probability distribution) and UPD (uniform probability distribu-
tion), respectively.

To benchmark our algorithm, we extend these distributions to our domain, so that we also
take tasks into consideration. In addition to NPD and UPD, we also extend and use NDCS
(normally distributed coalition structures)—a distribution that was proposed by Rahwan et
al. [34] for benchmarking coalition structure generation algorithms. Our extensions of these
probability distributions, to our task-dependent domain, are defined as follows:

– UPD: v(C, t) ∼ |C | · U(a, b), where a = 0 and b = 1;
– NPD: v(C, t) ∼ |C | · N (μ, σ 2), where μ = 1 and σ = 0.1;
– NDCS: v(C, t) ∼ N (μ, σ 2), where μ = |C | and σ = max (

√|C |, ε);
for all C ⊆ A and t ∈ T , whereN (μ, σ 2) and U(a, b) are the normal and uniform distribu-
tions, respectively, and 0 < ε � 1. For our experiments, we use ε = 10−9.

In addition to these extensions, we also define and use two additional distributions for
generating synthetic problem instances, with the purpose to more closely model certain

123

29 Page 20 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

types of simplified real-world task-dependent scenarios. We denote these NSD (normal skill-
based distribution) and NRD (normal relation-based distribution). NSD models that agents
may have different skills that alter their suitability for handling certain tasks, while NRD
provides a simplistic model for the phenomenon that an agent’s utility is potentially also
dependent on the other agents in the coalition/team as well (i.e., an agent’s contributions to
a coalition depends both on the coalition’s goal, and the agent’s relationship to others). With
this in mind, define:

– Skill-level: s(a, t) ∼ N (μ, σ 2) for all a ∈ A and t ∈ T ;
– Relational utility: r({a, b}, t) ∼ N (μ, σ 2), for all {a, b} ∈ (A

2

)
and t ∈ T ;

where μ = 1, σ = 0.1, and
(X
2

) = {{a, b} : a, b ∈ X , a �= b}, namely the set of all size-2
subsets of X . An interpretation of s(a, t) is that it represents agent a’s suitability (or skill-
level) for handling task t , while r({a, b}, t) represents agent a’s potential utility for working
together with agent b towards completing task t . We now define NSD and NRD as follows:

– NSD: v(C, t) := ∑
a∈C s(a, t);

– NRD: v(C, t) := ∑
{a,b}∈(C2) r({a, b}, t);

for all C ⊆ A and t ∈ T . Note that we expect AG (namely Algorithm 2, the agent-based
greedy algorithm) to always generate an optimal solution for problem sets generated with
NSD, since, for this distribution, an agent’s contribution to a coalition is not affected by the
coalition’s other members.

The results of our experiments that were based on these distributions, and from applying
the algorithm to a commercial strategy game, are presented in Sects. 6.2, and 6.3, respectively.

6.1 Implementation and hardware

Our algorithm was implemented in C++11, and all synthetic problem sets were generated
using the random number generators normal_distribution (for NPD, NSD, NRD
and NDCS) and uniform_real_distribution (for UPD) from the C++ Standard
Library. All tests were conducted using Windows 10 (x64), an Intel 7700K 4.2GHz CPU,
and 16GB of 3GHz DDR4 memory. We used version 12.5 and 12.8 of IBM ILOG CPLEX
Optimization Studio for our CPLEX benchmarks.

6.2 Results of the synthetic experiments

The result of each experiment was produced by calculating the average of the resulting
values (i.e., time measurements and numerical values of solution quality) from 50 generated
problem sets per probability distribution and experiment. Also, to compete on equal terms,
both CPLEX and our MP algorithm were only allowed to use a single CPU thread during all
tests (even though both approaches support parallel computing). Furthermore, the algorithms
did not have any a priori knowledge of the problems that they were given to solve, and
we use the abbreviation MP+AG to denote using MP in conjunction with AG’s extended
version (Algorithm 4) to generate initial solutions, and calculating (potentially) better lower
bounds for subspaces before searching them. Finally, following best practice, we plot the
95% confidence interval in all graphs. The statistical significance of the means’ differences
can thus be compared, since if two different series have non-overlapping confidence intervals,
it is equivalent to that the null hypothesis is rejected for a t-test with α = 0.05.

The execution time to find an optimal solution for 8 tasks is plotted using a logarithmic
scale in Fig. 1. The results in these graphs show that our algorithm (MP) is considerably

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 21 of 31 29

Fig. 1 Execution time for optimally solving synthetic problems with 8 tasks. The values for the coalition-to-
task assignments were generated using UPD (top), NPD (middle) and NDCS (bottom)

faster (often by many orders of magnitude) than CPLEX for all distributions and almost all
problem sets. For example, for 16 agents and UPD, our algorithm completes its search in
approximately 1% of the time that CPLEX needs.

For more than 18 agents, CPLEX’s search procedure always crashed due to running
out of memory. MP, however, managed to find optimal solutions for all problems within a
reasonable time frame. In these logarithmic graphs, MP and CPLEX 12.8 are clearly linear,
while CPLEX 12.5 is not. Furthermore, our benchmarks show that MP’s search efficiency is
sensitive to the distribution of utility values. This was expected, since MP is dependent on
its ability to discard subspaces, and this ability is affected by the distribution of utility values
in the problem being solved.

Using MP in conjunction with Algorithm 2 (the agent-based greedy algorithm) slightly
improved search times for most problem sets. However, comparing MP to MP+AG shows,
in general, a rather low difference in performance. This indicates that the lower bounds

123

29 Page 22 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Fig. 2 The execution time to optimally solve synthetic problems with 16 agents generated using UPD (top),
NPD (middle) and NDCS (bottom)

calculated according to Theorem 3 are sufficiently tight (high) compared to the lower bounds
generated by AG.

We plot the execution time to find an optimal solution for 16 agents in Fig. 2, and instead
look at how the number of tasks (2 to 12) affect MP’s performance. We used 16 agents in
these benchmarks, since for problems with more agents, CPLEX 12.5 did not manage to
find optimal solutions within a reasonable time frame, and CPLEX 12.8 often crashed due
to insufficient memory for |A| > 16 (and it always crashed for |A| > 18).

As can be seen in Fig. 2, our algorithm is considerably faster than CPLEX for these
problem sets as well (especially for problems with UPD-distributed utility values). Similarly
as in previous benchmarks, all algorithms performed worst when the problem sets were
generated with normal distributions.

For the benchmarks with few tasks (2 to 6), MP was extremely fast, and it did not need
to search many subspaces (or evaluate many solutions) before it could guarantee that it had
found an optimal ordered coalition structure.

In our next five benchmarks, we investigate the quality of the anytime solutions generated
byMP and PRS.We used 13 agents and 14 tasks for this purpose, resulting in a total number of

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 23 of 31 29

Fig. 3 The normalized ratio to optimal obtained by the different algorithms for problem sets generated using
UPD (top), NPD (middle) and NDCS (bottom) with 13 agents and 14 tasks

1413 ≈ 8 × 1014 possible solutions. Our results from these experiments are shown in Figs. 3,
4 and 5. In these graphs, the execution time is shown on the x-axis, and the normalized ratio
to optimal on the y-axis. This ratio, for a feasible solution S′, is defined as the following
value:

V (S′) − V (S∗)
V (S∗) − V (S∗)

where S∗ is an optimal solution, and S∗ is a lowest valued (i.e., worst) solution. We deem
that this ratio gives a better indication to a solution’s quality than using the seemingly more
problematical V (S′)/V (S∗) (which is e.g., arguably misleading if the value of a solution
is negative). Also, note that in these tests, PRS generated and evaluated approximately 4.4
million solutions per second, and for the execution time in these graphs, CPLEX failed to
find any feasible solution at all.

123

29 Page 24 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Fig. 4 The normalized quality ratio of solutions obtained by the different algorithms for problem sets based
on NRD with 13 agents and 14 tasks. Note that, for these problem sets, all algorithms, except PRS, always
generated optimal solutions instantly

As can be seen in Fig. 3, both MP and MP+AG generated 90%-efficient solutions after
roughly 50 ms for all three problem sets. Moreover, they performed similarly for the problem
sets generated with NPD and NDCS, while MP generated intermediary solutions of higher
quality in the top-most graph that represents the problems with UPD-distributed utility val-
ues. These results corroborates our earlier hypothesis that MP’s lower bounds for subspaces,
namely those that are based on Theorem 3, are sufficiently close (in value) to those generated
by AG.

Furthermore, it took roughly the same time for MP and MP+AG to find optimal solu-
tions in all benchmarks, and a better-than 99%-efficient solution is always found after 1 s
for UPD, roughly 2 s for NPD, and approximately 1.5 s for NDCS—in other words, both
MP and MP+AG found near-optimal solutions very rapidly for all distributions and bench-
marks. Finally, as expected, PRS generated the worst solutions for all problem sets and
execution times, except for when MP was interrupted before it had managed to generate any
intermediary solution at all. In such cases, MP degenerates to generate an almost arbitrarily
bad solution, while MP+AG returns an ordered coalition structure greedily constructed by
AG.

Our last two benchmarks, presented in Figs. 4 and 5, show the quality of the solutions
found by our algorithms for problems generated with NSD and NRD. As expected for NSD,
both AG and MP+AG generated an optimal solution instantly, while MP had to search much
longer (roughly 6 s on average) before it could guarantee that an optimal solution had been
found.

For NRD-distributed utility values, all algorithms, except PRS, always found optimal
solutions instantly. This could indicate that AG is optimal for this type of problem as well,
and that MP finds and searches the best subspace first with a very high probability when the
utility values are NRD-distributed. This may seem unlikely, and it is perhaps more likely
that most solutions, for this problem-type, are optimal. This is however not the case, since if
most solutions are optimal, PRS would have generated near-optimal solutions in our NRD-
benchmarks very rapidly, and our experimental data clearly shows the opposite to be true.
What we can say, however, is that for NRD, both MP, MP+AG and AG generate close-to-
optimal solutions very quickly with a seemingly high probability.

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 25 of 31 29

Fig. 5 The normalized quality ratio of solutions obtained by the different algorithms for problem sets based
on NSD with 13 agents and 14 tasks

6.3 Applying theMP algorithm to Europa Universalis 4

To empirically show that MP can be used to coordinate agents in a real-world scenario,
we applied it to improve the coordination skills of computer-based players in the strategy
game Europa Universalis 4 (EU4)—a very complex partially observable simultaneous move
game1 (with many stochastic elements), in which players are required to act and reason in
real-time.2 This game is very popular, withmore than onemillion copies soldworldwide [48],
and it hasmany thousands of active players.Moreover, it was developed by the Swedish game
development companyParadoxDevelopment Studio, and released commercially in late 2013.
A screenshot showing EU4, from the perspective of a player playing as Sweden, is shown in
Fig. 6.

In EU4, hundreds of simulated countries, both computer- and human-controlled alike,
face off against each other, and have to coordinate themselves to defeat their opponents—
they have to form alliances, administer their land, conduct trade, invest in new technologies,
steer armies, manage diplomacy, and wage war. To handle this multi-faceted complexity,
a computer-based player consists of several distinct computational subsystems, each hand-
crafted to manage an important aspect of the game.

In particular, and more importantly pertaining to our subject at hand, there is one such
subsystem that makes decisions in regards to which region of interest (a set of provinces that
the game-playing agent deems important) that each of its player’s different armies3 should be
deployed (assigned) to. This is typically a very difficult problem to solve—not only because
the armies are heterogeneous, but also since the regions are complicated spatial systems
themselves. Moreover, they affect each other, and are continuously transformed/altered as
a consequence of stochastic processes (e.g., random events, the environment, battles), and
player interactions (e.g., wars, edicts). See Fig. 7 for a map portraying the game’s different
regions and provinces. Note that, once an army has been deployed to a specific region, there’s

1 A simultaneous move game is a game in which players have to perform/choose actions without knowing
the actions that will be performed/chosen by the other players.
2 With real-time, we mean that the game continuously updates itself (and the game’s world state) at a high
rate, even when a player is not performing any actions. The game is thus not turn-based.
3 Simply put, an army in EU4 is a combative entity that consists of a set of regiments. A regiment is a number
of homogeneous soldiers that are either classed as infantry, cavalry or artillery. In addition, each army can be
commanded by a general. A general can improve the army’s skills, such as increasing its movement speed, or
upgrade its siege ability when it is trying to take control of a province.

123

29 Page 26 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

Fig. 6 A screenshot showing EU4’s user interface and a small portion of its world map (the game board). Note
that, in this image, each small shield (with an accompanying army size number) represents an army positioned
at a specific province—i.e., a small geographic area where armies can be stationed. A province also provides
effects (e.g., increased income) to the player who controls it

Fig. 7 A map of the game’s different regions and provinces. Each colour represents a specific region (which
consists of a unique set of provinces)

another specialized system that handles the army’s more direct low-level control, for example
by deciding on exactly where to position individual armies. Finally, note that adding an agent
to a coalition in EU4may decrease its value, since the regions’ have supply-based limitations
that can reduce larger coalitions’ values.

In light of these observations, to play this dynamic game successfully, computer-controlled
players continuously try to assign their armies to the game’s different regions. In more detail,
in EU4, this problem can be (and is) modelled as follows:

Input: A set of armies A = {a1, . . . , an}, a list of regions R = 〈r1, . . . , rm 〉, and the utility
function v(C, r) �→ R that represents the value for assigning C ⊆ A to r ∈ R.

Output: An ordered coalition structure 〈C1, . . . ,Cm 〉 that maximizes
∑m

i=1 v(Ci , ri).

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 27 of 31 29

Fig. 8 A visualization of the samples that were generated using EU4. A larger scatter mark indicates that there
were more problem sets for that given number of agents and tasks

The computer-based players in EU4 solve this SCSGA problem using an ad hoc random
search algorithm—a specialized non-optimal algorithm specifically designed for the context
of EU4 that is inherently based on expert knowledge and domain-dependent heuristics to
guide its search procedure.

In collaboration with the game’s developers, we benchmarkedMP against their algorithm.
To do so, we used the same problem sets (generated by the game) for both algorithms. The
utility function, which is defined by the developers, was given to us as a black-box function.
We ran both algorithmswhile the gamewas playing,measured the algorithms’ execution time,
and compared the values of the solutions that the two algorithms generated. The following
constraints held for all EU4 problem sets: n ∈ [1, 8] andm ∈ [1, 35]—and there were at most
308 ≈ 6.56 × 1011 solutions for the largest problem sets that were generated by the game
(namely problems with n = 8 armies and m = 30 regions). Note that all regions are never
part of any problem set’s input at the same time. This is because, typically, the game-playing
agent is only interested in a few of them at a time, thus making it possible to dramatically
decrease the problem’s complexity by preventing the algorithm to consider certain solutions.
A scatter plot of the different problems that were solved is shown in Fig. 8, as to give a hint
on the suitability of using MP to solve this problem.

The results from running our experiments show that applying the algorithm to EU4 was
a great success in terms of improving the computer-based players’ performance (an increase
of solution quality) and computational efficiency (reduction of execution time). In fact, our
algorithm managed to find an optimal solution for all problems in less time than a game’s
frame (approximately 1/20 ≈ 0.05 s); and compared to the developer’s algorithm, our
algorithm decreased the execution time to, on average, 0.24% of theirs. Our algorithm also
increased the numerical quality of solutions by, on average, 565% over theirs, and their
algorithm seldom managed to find an optimal solution. These are the results from solving,
in total, 13,922 problem sets that were generated while playing the game during 3 separate
simulated sessions. Note that these results are not only promising in terms of performance,
but also on the basis of generalization: If the utility/value functions that are used in EU4 were

123

29 Page 28 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

to change (for example due to environment alterations as a result of game updates), their ad
hoc algorithm might have to be altered. This is not the case for our algorithm, since it does
not make any assumptions on the coalitions’ utility functions or the game’s rules. Therefore,
our algorithm is potentially cheaper and easier to maintain. Also, there are many reasons to
why strategy games are ideal for empirically evaluating and testing AI algorithms, and other
authors have discussed these reasons extensively in earlier publications, see e.g., [7].

7 Conclusions

In this paper, we presented an anytime algorithm that solves the simultaneous coalition struc-
ture generation and assignment (abbreviated SCSGA) problemby integrating assignment into
the formation of coalitions. We are, to the best of our knowledge, the first to study and solve
this specific problem in a formal context.

Moreover, to benchmark the presented algorithm, we extended established methods for
benchmarking coalition structure generation algorithms to our domain, and then used syn-
thetic problem sets to empirically evaluate its performance. We benchmarked our algorithm
against CPLEX, due to the lack of specialized algorithms for the simultaneous coalition
structure generation and assignment problem.

Our results demonstrate that our algorithm is superior to CPLEX in solving synthetic
instances of the simultaneous coalition structure generation and assignment problem. For
example, when solving synthetic problem sets with 14 agents and 8 tasks, our algorithm finds
an optimal solution in, on average, 5% of the time that CPLEX needs. Also, our algorithm
does not have to search for very long before it can find high-quality solutions—even when
interrupted prior to finishing a complete search. For example, it took our branch-and-bound
algorithm less than 1 s to find an 95%-efficient solution in all of our benchmarks. This
is potentially beneficial in many real-time systems (e.g., real-world multi-agent systems),
in which feasible solutions must be available fast, but optimal coalition structures are not
necessarily required. Apart from these properties, our algorithm is able to give worst-case
guarantees on solutions. Moreover, our results indicate that SCSGA problems with utility
values distributed in certain ways can be solved efficiently in linear time. Finally, by using
our algorithm to improve the coordination of computer-based players in Europa Universalis
4, we demonstrated that it can be used to solve a real-world simultaneous coalition structure
generation and assignment problem more efficiently than a previous approach. For example,
our algorithm increased the numerical quality of solutions in this game by, on average, 565%,
while simultaneously decreasing the execution time required to search for solutions.

For futurework, itwould be interesting to investigate other approaches to solving this prob-
lem, including dynamic programming and approximation algorithms. Also, problems with
many agents are still computationally difficult to solve, and it would therefore be an impor-
tant (and interesting) endeavor to investigate if machine learning, metaheuristic algorithms
or Monte Carlo methods could be applied to solve difficult large-scale SCSGA problems.

Acknowledgements Open access funding provided by Linköping University. This work was partially sup-
ported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

123

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 29 of 31 29

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Albizuri, M. J., & Zarzuelo, J. M. (2000). Coalitional values for cooperative games with r alternatives.
Top, 8(1), 1–30.

2. Amer, R., Carreras, F., & Magaña, A. (1998). Extension of values to games with multiple alternatives.
Annals of Operations Research, 84, 63–78.

3. Andrews, G., & Eriksson, K. (2004). Integer partitions. Cambridge: Cambridge University Press.
4. Bolger, E. M. (1993). A value for games with n players and r alternatives. International Journal of Game

Theory, 22(4), 319–334.
5. Bolger, E. M. (2000). A consistent value for games with n players and r alternatives. International Journal

of Game Theory, 29(1), 93–99.
6. Bolger, E. M. (2002). Characterizations of two power indices for voting games with r alternatives. Social

Choice and Welfare, 19(4), 709–721.
7. Buro, M. (2003). Real-time strategy games: A new AI research challenge. In: International joint confer-

ence on artificial intelligence (pp. 1534–1535).
8. Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., & Jennings, N. R. (2010). Cooperative games

with overlapping coalitions. Journal of Artificial Intelligence Research, 39, 179–216.
9. Chu, P.C.,&Beasley, J. E. (1997).Agenetic algorithm for the generalised assignment problem.Computers

& Operations Research, 24(1), 17–23.
10. Dang, V. D., Dash, R. K., Rogers, A., & Jennings, N. R. (2006). Overlapping coalition formation for

efficient data fusion in multi-sensor networks. AAAI, 6, 635–640.
11. Dinar, A., Moretti, S., Patrone, F., & Zara, S. (2006). Application of stochastic cooperative games in water

resources. In R.-U. Goetz & D. Berga (Eds.), Frontiers in water resource economics (pp. 1–20). Berlin:
Springer.

12. Doherty, P., Heintz, F., & Landén, D. (2010). A distributed task specification language for mixed-initiative
delegation. In International conference on principles and practice of multi-agent systems (pp. 42–57).
Berlin: Springer.

13. Epstein, D., & Bazzan, A. L. (2013). Distributed coalition structure generation with positive and negative
externalities. In Portuguese conference on artificial intelligence (pp. 408–419). Berlin: Springer.

14. Fatima, S., & Wooldridge, M. (2018). Computing optimal coalition structures in polynomial time.
Autonomous Agents and Multi-Agent Systems, 33, 1–49.

15. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot
systems. The International Journal of Robotics Research, 23(9), 939–954.

16. Grabisch, M., & Rusinowska, A. (2010). A model of influence with an ordered set of possible actions.
Theory and Decision, 69(4), 635–656.

17. Habib, F. R., Polukarov, M., & Gerding, E. H. (2017). Optimising social welfare in multi-resource
threshold task games. In International conference on principles and practice of multi-agent systems
(pp. 110–126). Berlin: Springer.

18. Han, Z., & Poor, H. V. (2009). Coalition games with cooperative transmission: a cure for the curse of
boundary nodes in selfish packet-forwarding wireless networks. IEEE Transactions on Communications,
57(1), 203–213.

19. Horling, B., & Lesser, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review, 19(4), 281–316.

20. International, M. (2019). International activity report 2018. Retrieved February 25, 2020 from https://
www.msf.org/international-activity-report-2018/.

21. Kelso, A. S, Jr., & Crawford, V. P. (1982). Job matching, coalition formation, and gross substitutes.
Econometrica: Journal of the Econometric Society, 50, 1483–1504.

22. Kuhn, H.W. (1955). TheHungarianmethod for the assignment problem.Naval Research Logistics (NRL),
2(1–2), 83–97.

23. Landén, D., Heintz, F., & Doherty, P. (2010). Complex task allocation in mixed-initiative delegation:
A UAV case study. In International conference on principles and practice of multi-agent systems (pp.
288–303). Berlin: Springer.

123

http://creativecommons.org/licenses/by/4.0/
https://www.msf.org/international-activity-report-2018/
https://www.msf.org/international-activity-report-2018/

29 Page 30 of 31 Autonomous Agents and Multi-Agent Systems (2020) 34 :29

24. Larson, K. S., & Sandholm, T. W. (2000). Anytime coalition structure generation: An average case study.
Journal of Experimental & Theoretical Artificial Intelligence, 12(1), 23–42.

25. Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1), 32–38.

26. Ono, R. (2001). Values for multialternative games and multilinear extensions. In M. Holler & G. Owen
(Eds.), Power indices and coalition formation (pp. 63–86). Berlin: Springer.

27. Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Oper-
ational Research, 176(2), 774–793.

28. Präntare, F.,&Heintz, F. (2018).An anytime algorithm for simultaneous coalition structure generation and
assignment. In International conference on principles and practice of multi-agent systems (pp. 158–174).
Berlin: Springer.

29. Präntare, F., Ragnemalm, I., & Heintz, F. (2017). An algorithm for simultaneous coalition structure
generation and task assignment. In International conference on principles and practice of multi-agent
systems (pp. 514–522). Berlin: Springer.

30. Rahwan, T., & Jennings, N. R. (2008). An improved dynamic programming algorithm for coalition
structure generation. In Proceedings of the 7th international joint conference on autonomous agents
and multiagent systems (Vol. 3, pp. 1417–1420). International Foundation for Autonomous Agents and
Multiagent Systems.

31. Rahwan, T., Michalak, T., Wooldridge, M., & Jennings, N. R. (2012). Anytime coalition structure gener-
ation in multi-agent systems with positive or negative externalities. Artificial Intelligence, 186, 95–122.

32. Rahwan, T., Michalak, T. P., & Jennings, N. R. (2012). A hybrid algorithm for coalition structure gener-
ation. In AAAI (pp. 1443–1449).

33. Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure generation:
A survey. Artificial Intelligence, 229, 139–174.

34. Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime algorithm for
optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.

35. Ray, D., & Vohra, R. (2015). Coalition formation. In H. P. Young & S. Zamir (Eds.), Handbook of game
theory with economic applications (Vol. 4, pp. 239–326). Amsterdam: Elsevier.

36. Sandholm, T., Larson, K., Andersson,M., Shehory, O., &Tohmé, F. (1999). Coalition structure generation
with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.

37. Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial
Intelligence, 101(1–2), 165–200.

38. Shoham, Y., Powers, R., & Grenager, T. (2003). Multi-agent reinforcement learning: A critical survey.
Web Manuscript.

39. Skibski, O., Michalak, T. P., Sakurai, Y.,Wooldridge,M., &Yokoo,M. (2015). A graphical representation
for games in partition function form. In Twenty-ninth AAAI conference on artificial intelligence.

40. Sloane, N. J. A. (2019). The on-line encyclopedia of integer sequences, sequence a000041. Retrieved
February 25, 2020 from https://oeis.org/A000041.

41. Stojmenović, I., & Zoghbi, A. (1998). Fast algorithms for genegrating integer partitions. International
Journal of Computer Mathematics, 70(2), 319–332.

42. Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3), 345–383.

43. Takaoka, T. (1999). An O(1) time algorithm for generating multiset permutations. In International sym-
posium on algorithms and computation (pp. 237–246). Berlin: Springer.

44. Thrall, R.M., &Lucas,W. F. (1963). N-person games in partition function form.Naval Research Logistics
Quarterly, 10(1), 281–298.

45. Ueda, S., Iwasaki, A., Conitzer, V., Ohta, N., Sakurai, Y., & Yokoo, M. (2018). Coalition structure
generation in cooperative games with compact representations. Autonomous Agents and Multi-Agent
Systems, 32(4), 503–533.

46. Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M. C., Hirayama, K., & Matsui, T. (2010). Coalition structure
generation based on distributed constraint optimization. AAAI, 10, 197–203.

47. Ueda, S., Kitaki, M., Iwasaki, A., & Yokoo, M. (2011). Concise characteristic function representations
in coalitional games based on agent types. In Twenty-second international joint conference on artificial
intelligence.

48. Wester, F., & Vajlok, A. (2016). Paradox interactive announces grand successes for grand strategy titles.
Retrieved February 25, 2020 from https://paradoxinteractive.com/en/paradox-interactive-announces-
grand-successes-for-grand-strategy-titles/.

49. Williams, A. (2009). Loopless generation of multiset permutations using a constant number of variables
by prefix shifts. In Proceedings of the twentieth annual ACM-SIAM symposium on discrete algorithms
(pp. 987–996). Society for Industrial and Applied Mathematics.

123

https://oeis.org/A000041
https://paradoxinteractive.com/en/paradox-interactive-announces-grand-successes-for-grand-strategy-titles/
https://paradoxinteractive.com/en/paradox-interactive-announces-grand-successes-for-grand-strategy-titles/

Autonomous Agents and Multi-Agent Systems (2020) 34 :29 Page 31 of 31 29

50. Yamada, T., & Nasu, Y. (2000). Heuristic and exact algorithms for the simultaneous assignment problem.
European Journal of Operational Research, 123(3), 531–542.

51. Yamamoto, J., & Sycara, K. (2001). A stable and efficient buyer coalition formation scheme for e-
marketplaces. In Proceedings of the fifth international conference on autonomous agents (pp. 576–583).
ACM.

52. Yeh, D. Y. (1986). A dynamic programming approach to the complete set partitioning problem. BIT
Numerical Mathematics, 26(4), 467–474.

53. Zha, A., Nomoto, K., Ueda, S., Koshimura, M., Sakurai, Y., & Yokoo, M. (2017). Coalition structure
generation for partition function games utilizing a concise graphical representation. In International
conference on principles and practice of multi-agent systems (pp. 143–159). Berlin: Springer.

54. Zhang, Z., Song, L., Han, Z., & Saad, W. (2014). Coalitional games with overlapping coalitions for
interference management in small cell networks. IEEE Transactions on Wireless Communications, 13(5),
2659–2669.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	An anytime algorithm for optimal simultaneous coalition structure generation and assignment
	Abstract
	1 Introduction
	2 Related work and motivation
	3 Problem formalization
	4 Optimal anytime branch-and-bound algorithm
	4.1 Partitioning the search space
	4.2 Calculating the bounds for subspaces
	4.3 Searching for solutions using branch-and-bound

	5 Simple non-optimal algorithms
	5.1 Agent-based greedy algorithm
	5.2 Pure random search algorithm
	5.3 Feasible (suboptimal) solutions in conjunction with branch-and-bound

	6 Evaluation and results
	6.1 Implementation and hardware
	6.2 Results of the synthetic experiments
	6.3 Applying the MP algorithm to Europa Universalis 4

	7 Conclusions
	Acknowledgements
	References

