
Gaussian Process Based Motion Pattern Recognition
with Sequential Local Models

Mattias Tiger1 and Fredrik Heintz1

Abstract— Conventional trajectory-based vehicular traffic
analysis approaches work well in simple environments such as
a single crossing but they do not scale to more structurally
complex environments such as networks of interconnected
crossings (e.g. urban road networks). Local trajectory models
are necessary to cope with the multi-modality of such structures,
which in turn introduces new challenges. These larger and
more complex environments increase the occurrences of lack of
motion and self-overlaps in observed trajectories which impose
further challenges. In this paper we consider the problem of
motion pattern recognition in the setting of sequential local
motion pattern models. That is, classifying sub-trajectories
from observed trajectories in accordance with which motion
pattern that best explains it. We introduce a Gaussian process
(GP) based modeling approach which outperforms the state-
of-the-art GP based motion pattern approaches at this task.
We investigate the impact of varying local model overlap and
the length of the observed trajectory trace on the classification
quality. We further show that introducing a pre-processing step
filtering out stops from the training data significantly improves
the classification performance. The approach is evaluated using
real GPS position data from city buses driving in urban areas.

I. INTRODUCTION

Typical trajectory analysis consists of activity recognition
(classification), abnormality detection and prediction such as
in vehicular trajectory analysis [1], pedestrian prediction [2]
and maritime traffic classification [3]. Much of the focus
in trajectory analysis of vehicular traffic has been on single
intersections, using data acquired from stationary traffic mon-
itoring cameras. Today sensor-rich vehicles and unmanned
aerial vehicle surveillance produce longer trajectories.

GPs have been used extensively in computer vision and
robotics, and also for trajectory analysis. Good results have
been shown on recognition, prediction and abnormality de-
tection of vehicle [4][5], pedestrian [2] and marine vessel
[3] motion patterns. Several challenges arise from scaling
up trajectory analysis from single intersections to multiple
intersections and larger road networks, with relevance outside
of the vehicular traffic behavior analysis domain.

The state-of-the-art GP-based methods learn individual
motion patterns from each input lane to each output lane in
a crossing. However, the potential number of paths though
an urban road network grows rapidly with the size of
the road network, and the number of commonly occur-
ring motion patterns even more. There is also the problem
of self-overlapping trajectories which arise from multiple

1Mattias Tiger and Fredrik Heintz are with the Department of
Computer and Information Science, Linköping University, Sweden.
mattias.tiger@liu.se, fredrik.heintz@liu.se

Fig. 1
Example: A long trajectory through a complex road structure.
Problematic self-overlap is indicated in red. Self-overlap
between lanes can occur when precision is low (dashed red).

intersections, roundabouts and turning spaces. Both issues
necessitate the use of sequential local trajectory models. For
example to model individual crossings and connect them in
a serial way, or to make sure that the vector field of motion
velocity is not averaged erroneously due to self-overlap. Fig.
1 illustrates these issues where the red sub-trajectories cannot
belong to the same motion pattern (trajectory model).

In this paper we focus on the recognition (classification)
task were observations are given and are to be associated to
specific motion models (the classes). We introduce a novel
motion pattern model which extends and outperform the
state-of-the-art GP-based model for this task when using
sequential local motion models (one class per local model).
The data likelihood used for classification is commonly used
in a similar manner for abnormality detection, and the result
is therefore also related to the possibility of accurate ab-
normality detection. We further show that suppressing stops
in the training data significantly improves the classification
performance for both the conventional and proposed model.

Finally, the proposed model also allows us to explicitly
model the probabilistic spatial extents of the roads or paths.
Lane centerlines can be used for transferring motion pattern
models to other intersections by spatial normalization [5].

II. RELATED WORK

The two most common approaches to modeling trajecto-
ries for trajectory analysis are using Hidden Markov models
(HMM) with Gaussian Mixture Models (GMM) [1] and
Gaussian process (GP) [2][3][4][5][6]. In the HMM-GMM
approaches the HMM is used to model spatio-temporal

relations (the dynamics) and GMM is used for generalizing
the observed motion pattern in the state space. HMM-GMM
approaches are used for vehicular traffic based trajectory
analysis such as in [7][1] but they are less suitable for mod-
eling spatial extents (e.g. road or path) and they tend to have
complex structures with many hard to tune parameters. The
Gaussian process is a Bayesian non-parametric model which
is very suitable for modeling trajectories and trajectory-based
motion patterns. We focus on GPs since they provide a highly
flexible nonlinear model with only a few hyper-parameters.

A velocity field, or flow field, approach where GPs are used
to map directly from position to velocity ((px, py)→ vx, vy)
is a common GP based trajectory analysis modeling approach
and used in the work of [4][5][2][6]. In [4][5][2] they
learn a mixture of GPs (MoGP) where each GP represent
a motion pattern. Recognition is finding which GP that best
explains the observed data. Abnormalities are found by a
lack of significant data likelihood of the observations and
step-ahead predictions are made using for example a particle
filter with the velocity field as a state transition model
[5]. All these approaches have severe problems with self-
overlapping trajectories when learning. The overlapping area
and its neighborhood will have a vector field that is averaged
over the opposing directions resulting in nonsense. They do
however work well in confined regions without self-overlaps.

In [4] they additionally map from normalized time to time
velocity ((px, py, t) → vx, vy, vt) and can thereby handle
stops in the middle of their models, such as stopping at
a red light before continuing. The cost of time as explicit
input is however that they can only model trajectories from
entry to exit point with a single GP, making the approach
incompatible with sequential local trajectory models.

In [2] they use change point detection to do abnormality
detection in order to update their MoGP online with new
observed motion patterns. In this paper we focus on cases
where trajectories have to be segmented into local GP mod-
els, e.g. due to self-overlaps, since the models used would
break otherwise. Change point detection is one suitable way
to segment trajectories into sequential local GP models.

Many different kinds of predictions are in addition consid-
ered in motion pattern based trajectory analysis such as step-
ahead trajectory prediction, prediction of the class of motion
pattern given a non-complete trajectory [4] and prediction
of future sequences of motion patterns [8]. The scope of
this paper is limited to classification problem of an observed
trajectory in the context of sequential motion pattern models.

Past work on sequential local models have considered
some of the benefits in the vehicular traffic behavior [9] and
maritime [10] domains. They do however primarily focus on
the trajectory clustering problem and do not use GPs.

III. GAUSSIAN PROCESS MODELING

To model trajectories we consider the regression model

y = f(x) + ε, ε ∼ N (0, σ2
n) (1)

where y and x are vectors, ε is Normal distributed noise with
zero mean and variance σ2

n and f is a continuous function.

One usually seeks a good estimate of f in order to make
accurate predictions of the value y of the function for other
arguments x than those already observed. However, in this
work we want a distribution over functions representing the
possible trajectories belonging to a certain motion pattern. If
a velocity field is learned from many observed trajectories
we want to represent not just the average velocity at each
position but also the variance in velocity at each position.

The Gaussian process is a distribution over functions [11]
and is completely described by its mean function m(x) and
covariance function k(x1, x2) such that for a vector of inputs
x̄ the outputs ȳ of the function are jointly Normal distributed

ȳ = f(x̄) ∼ N (µ(x̄),Σ(x̄)) (2)

with E(f(x̄)) = µ(x̄), Cov(f(x̄)) = Σ(x̄) and

µ(x̄) = m(x̄) + K(x̄, x)V−1(y−m(x))T , (3)

Σ(x̄) = K(x̄, x̄) + σ2
nIx̄ −K(x̄, x)V−1K(x̄, x)T (4)

where K is the gram matrix with entries (K)ij = k(xi, xj),
V = [K(x, x) + σ2

nIx], and x,y are vectors of input and
output training data. Ix̄ and Ix are identity matrices of
appropriate size. We make the common assumption that each
output dimension is independent and we model each output
dimension as a separate function f : RD → R with a
Gaussian process model f ∼ GP(m(x), k(x1, x2)).

For our applications we consider the zero mean function
m(x) = 0 and the Squared Exponential covariance function

k(x1, x2) = σ2
fe

(− 1
2 (x1−x2)Λ(x1−x2)T), (5)

where Λ is a diagonal matrix with length scales for each
input dimension and σ2

f is the signal variance. Together
with the noise variance σ2

n these are the hyper parameters
θ = {σ2

n, σ
2
f , Λ}. We estimate the hyper-parameters from

the data by maximizing the marginal log likelihood,

log p(y|x, θ) = −1

2
yV−1yT − 1

2
log |V|+ C, (6)

using Conjugate Gradient, where C is a constant. The prob-
lem is non-convex and we consequently do random restarts.

Local Gaussian processes [12][13][14] are GPs that cover
different areas in the state space. Overlap at the borders
between local GPs is often important for the GPs to retain
the desired shape close to the border and it is achieved by
letting neighboring local GPs share data points. We use local
GPs in this work to model each sequential local trajectory
models.

IV. THE FLOW FIELD MOTION PATTERN MODEL

The flow field approach of [4][5][2] consists of a mapping
from 2D position to 2D velocity ((p∗x, p

∗
y) → vx, vy) where

vx and vy are assumed to be independent. The flow field
modelMA = 〈fvx , fvy 〉 consists of two GP function models[
vx vy

]
=
[
fvx(p∗x, p

∗
y) fvy (p∗x, p

∗
y)
]

= flow(p∗x, p
∗
y) (7)

where p∗x, p
∗
y ∈ R and from equation (3-4) we have

vx ∼ N
(
µvx([p∗x p∗y]), Σvx([p∗x p∗y])

)
, (8)

vy ∼ N
(
µvy ([p∗x p∗y]), Σvy ([p∗x p∗y])

)
. (9)

This approach to modeling motion patterns works well
in localized contexts such as an intersection [4][5][2]. The
motion patterns as a group have clear starts and stops, e.g.
where the camera view of the road (or lane) begins and ends.
The motion patterns are to a large extent overlapping and the
velocity component vary significantly between different mo-
tion patterns which is how they are efficiently discriminated.

V. THE PROPOSED MOTION PATTERN MODEL

A typical crossing can be represented by a directed acyclic
graph (DAG), where all edges are from a source node
to a sink node. The motion under this topology can be
represented by flow fields [4][5][2] or as a DAG of serially
connected motion models [9][10][8]. The latter is useful if a
segmentation of serially connected distinct motion patterns
is desired. We are interested in modeling more complex
traffic structures than individual crossings, in which serially
connected motion pattern models are required.

Urban roads may consist of a large number of connected
crossings and roundabouts, and cyclic directed graph topolo-
gies form a core part of our road networks. Vehicles may
drive in circles, perform U-turns on multi-lane roads with
too low position accuracy to tell different lanes apart (e.g.
due to radio shadow) or drive back on the same single lane
road. These cases cause trajectories to self-overlap.

Local serial models are necessary to capture all possible
paths because of the possibility to drive in circles. Local
serial models are also important for reducing the total number
of necessary motion pattern models, because the number of
paths between each road network start point (source) and
end point (sink) blows up quickly with additional crossings
and roundabouts. We seek a motion pattern model suitable
for serially connectivity and not just for parallel overlap.

Serially connected motion patterns require management
of where one model stops and another starts. The flow field
model has no clear start nor stop since it is a fully 2D vector
field. Its omni-directional influence away from the data points
interferes with adjacent serially connected motion patterns.

Our proposed approach is a mapping from 2D position
to 1D normalized temporal parametrization to 4D state
((p∗x, p

∗
y) → τ → px, py, vx, vy). The proposed model

enables us to do three critical things. Firstly it allows us
to describe the progression of the state (px, py, vx, vy) from
the beginning of the motion pattern (τ = 0.0) to the its end
(τ = 1.0) using the mapping τ → px, py, vx, vy . It represents
the spatial extent of the motion pattern, i.e. the road/path and
where we spatially expect new observations to be.

Secondly it allows us to retrieve the progression (τ) of
the motion pattern from a spatial position (p∗x, p

∗
y) using the

mapping (p∗x, p
∗
y)→ τ . It allows us to calculate the progress

of an object along the completion of a motion pattern and to
use (10-11) to get a prior on the future state of the object.

Thirdly it allows us to detect if an observation is within
the range of the motion pattern model (τ ∈ [0.0 1.0]), before
it (τ < 0.0) or after it (τ > 1.0). This enables us to modify
τ in a suitable manner when it falls outside of this range

We will refer to our approach as the inverse mapping
approach and its model MB = 〈fpx , fpy , fvx , fvy , fτ 〉.
consists of five GP function models[

px py
]

=
[
fpx(τ∗) fpy (τ∗)

]
, (10)[

vx vy
]

=
[
fvx(τ∗) fvy (τ∗)

]
, (11)

τ = fτ (p∗x, p
∗
y), (12)

where p∗x, p
∗
y ∈ R and from equation (3-4) we have

τ ∼ N
(
µτ ([p∗x p∗y]), Στ ([p∗x p∗y])

)
, (13)

px ∼ N
(
µpx(τ∗), Σpx(τ∗)

)
, (14)

py ∼ N
(
µpy (τ∗), Σpy (τ∗)

)
, (15)

vx ∼ N
(
µvx(τ∗), Σvx(τ∗)

)
, (16)

vy ∼ N
(
µvy (τ∗), Σvy (τ∗)

)
. (17)

In this work we make use of an approximation of the above
model where we use the maximum a posteriori (MAP) of
τ , τ∗ = µτ , discarding the covariance. A more accurate
approximation is possible [15] but we get a sufficiently good
estimation of τ from 2D positions close to the model.

The purpose of the inverse mapping (12) is to approximate
a projection from any 2D position in the world onto the
closest point on the mean function (3) of the trajectory model
in (10-11). This is done in time linear to the number of data
points of the model and estimates the non-linear projection.

The inverse mapping requires the trajectory to not be self-
overlapping (self-intersecting) which means that the mapping
(10) has to be bijective. We have used an inverse mapping in
previous preliminary work to classify tracked object’s motion
patterns as well as to compare the similarity and overlap
between different learned motion patterns [8].

The Gaussian process models are learned by finding the
hyper parameters θ which are the maximizers of the data
likelihood (18). The observations are 2D positions and 2D
velocities together with a time stamp. In this work we
estimate the velocities from position observations using a
time varying Kalman filter, since velocities are not directly
observed in the general case. The function models f� in
respectively MA and MB are optimized independently.

An example of a modeled motion pattern using artificial
data is shown in Fig. 2 with both the conventional approach,
MA, (top) and the proposed approach, MB , (bottom).

VI. CLASSIFICATION OF OBSERVED MOTION PATTERN

We assume that we have K motion pattern models,
{M1, . . . , MK}, of the same class and consisting of the
same number of data points. Given a matrix of observations,
z̄, (from a trajectory or sub-trajectory) where each row is the
observed state at that time point and each column is one state
dimension, z̄ = [p̄∗x p̄∗y v̄∗x v̄∗y], we want to classify z̄. The
classification of an observation or sequence of observations is
calculated by comparing the relative likelihood of each model
and selecting the model with the highest data likelihood as
the class c = arg max

k
P (z̄|Mk) of observation z̄. This is

the core of what is done in the related work [4][5][2].

Fig. 2
Velocity field for the Flow field approachMA (TOP) and for
the proposed Inverse mapping approach MB (BOTTOM).
Data points (position and velocity in 2D) as +, mean predic-
tive function (3) as a red line and 95% probability interval of
the mean predictive variance (4) as a red envelope. A contour
(yellow to blue) is also shown of the predictive variance.

The data log likelihood of a set of observed data points
x̄, ȳ given a GP model is

log p(ȳ|x̄, y, x, θ) =− 1

2

(
ȳ − µ(x̄)

)[
Σ(x̄)

]−1(
ȳ − µ(x̄)

)T
− 1

2
log |Σ(x̄)|+ C (18)

where µ(x̄) and Σ(x̄) are the predictive mean function (3)
and predictive covariance function (4) of the GP.

The Flow field data log likelihood for some observed data

point or sequence of observed data points z̄ is

PA(z̄|MA
k) = log p(v̄∗x|[p̄∗x, p̄∗y],MA

k)+

log p(v̄∗y |[p̄∗x, p̄∗y],MA
k) (19)

due to the independence assumption between fvx and fvy .
With the same available input we can derive three variations
of the data log likelihood for the inverse mapping approach.
For (p∗x, p

∗
y) → τ → vx, vy we have PBv , for

(p∗x, p
∗
y) → τ → px, py we have PBp

and the combination
of the two PB with (p∗x, p

∗
y) → τ → px, py, vx, vy , as

PBv
(z̄|MB

k) = log p(v̄∗x|g([p̄∗x p̄
∗
y]),MB

k)+

log p(v̄∗y |g([p̄∗x p̄
∗
y]),MB

k), (20)

PBp(z̄|MB
k) = log p(p̄∗x|g([p̄∗x p̄

∗
y]),MB

k)+

log p(p̄∗y|g([p̄∗x p̄
∗
y]),MB

k), (21)

PB(z̄|MB
k) =PBv

(z̄|MB
k) + PBp

(z̄|MB
k), (22)

where the function g is used to calculate the deterministic τ .
Three variations of g has been investigated and these are

g1([p̄∗x p̄
∗
y]) = µτ ([p̄∗x p̄

∗
y]) (23)

g2([p̄∗x p̄
∗
y]) = clamp(µτ ([p̄∗x p̄

∗
y]), 0.0, 1.0) (24)

g3([p̄∗x p̄
∗
y]) = mirror(µτ ([p̄∗x p̄

∗
y]), 0.0, 1.0) (25)

The second, g2, forces τ to be between [0.0 1.0] and thereby
keeping τ within the restricted range of the motion pattern
model. The third, g3, transforms τ whenever it is outside
of [0.0 1.0] by mirroring the value through the boundary
0.0 or 1.0 depending if τ is smaller or larger than 0.0
back towards the center 0.5. As a consequence, reducing
the border similarity further than g2 between motion pattern
models that are sequential neighbors. This approach works
best for the recognition task and is used in the experiments.

VII. HANDLING STOP BY STOP COMPRESSION

To detect stops we estimate the 2D velocity at each state
observation via Bayesian filtering. We do this by applying a
time-varying Kalman filter with a constant-velocity motion
model to the sequence of observations and their timestamps.
The filter needs to be time-varying to handle the variation in
duration between observed positions. The constant-velocity
motion model assumes that the observed positions are noisy
with normal-distributed noise. Data points corresponding
to stops are found by calculating if the 95% probability
density of the velocity in both x and y dimensions are si-
multaneously containing velocity zero. A compact sequence
of data points that are stops, yi:i+k, are summarized by
a single data point, yn, such that the full new sequence
y = [y1:i−1, yn, yi+k+1:...] with timestamps x are defined by

yn = average(yi:i+k), xn = xi, (26)
xi+k+1:... = xi+k+1:... − (xi+k − xi)

This is illustrated in Fig. 3. Reducing the stop data points
to a single data point removes the effects of noise the GP
has trouble suppressing. The reason for this is that the stop
data points are very much aligned in a straight line, while

surrounded by steep curvatures, which cause the SE kernel
(5) to produce ripple waves when trying to fit. It is to a
large extent reduced with the collapsing of adjacent stop data
points but still present. The distinct plateau with its long and
mostly flat shape surrounding the stop data point still allow
for a soft curve on either side of it (such as a sinusoidal in
the example case in Fig. 3). Ripple in form of such curves
is penalized by the data log likelihood (6) if the distance of
the stop data point to its adjacent data points is reduced.

Fig. 3
Example of stop compression. Top row: Learned GP of 2D-
position (10) over black data (+). Bottom row: x-position
over time. Red circles are stops. Left, middle and right col-
umn shows respectively no stop handling, stop removal but
no time adjustment and stop removal with time adjustment.

VIII. HANDLING SELF-OVERLAPS

Assume that we know the noise-free latent function f of
the long trajectory that we want to model. A self-overlap
occurs where f intersects or overlaps itself. If we have a
noise-free vector representing f with resolution θdistance
between subsequent positions on f , then it is possible to
find self-overlaps of f down to the resolution limit by
pairwise comparing the distance between vector elements.
All self-overlaps in f can be found if this limit is set
sufficiently low given the application. In terms of vehicular
traffic, the distance between lanes or between roads might
be sufficient depending on the accuracy of the positioning
of the vehicle. We do not know f but we can estimate a
smooth approximation fest and calculate a noise-free vector
approximating fest with resolution θdistance.
fest is estimated by the mean predictive function (3)

of a GP fitted on the entire long trajectory. The length
of fest is estimated by first evaluating (3) on a high res-
olution equidistant time point vector, with beginning and
ending inputs that correspond to the long trajectory. The
length is then sufficiently approximated by the Riemann
sum of the resulting high-resolution vector. The GP length
allow us to calculate the necessary number of evaluations,
M = GPlength/(0.5 × θdistance), of fest in order to get a
vector with resolution θdistance. The vector [p1, . . . , pM] is

Fig. 4
Example of detecting and handling self-overlap. The red and
green circles are the self-overlap points of the interpolated
trajectory (black dots). The red and green squares are the
closest points (in time) of self-overlap in the observed data
(blue +). The Magenta circle highlights the split-point. The
maximum overlap on either side of the split-point is 6 data
points. The right figure shows the learned GP of the first half
of the self-overlap region with blue pluses as own data points,
black pluses as local model overlaping with the next model
and red pluses as the self-overlap point and data points after
it. Without the overlap the GP would not capture the full
curve of the road. Middle: magnification of the left figure.

consequently calculated by (3) of the GP at M equidistant
time points and the vector allow us to calculate self-overlaps.

The purpose of detecting any self-overlaps is to make
sure that a model is not learned with the data of a sub-
trajectory with self-overlap. The average of an overlapping
velocity field is likely to be a very bad representation of the
motion pattern. Since this constraint concerns all the data
used to learn the model it also affects the overlap between the
subsequent models. However, if the number of overlapping
data points are too few there is a risk that the local models
will be incapable of capturing the shape (curvature) of the
trajectory near the borders. To minimize this problem we split
the trajectory into two local models in a way that maximize
the number of sharable data points. This is done by finding a
split-point in the middle (in terms of number of data points)
between the end and start of the self-overlap. See Fig. 4.

IX. RESULTS AND EVALUATION

We have evaluated the presented approach on a data set
with noisy GPS positions of city buses driving through urban
areas. The data has a variable rate of 2-4 hz with sporadic
gaps. The data is heavily anonymized to protect the drivers
so we have no road maps. The data set consists of 17124
data points (2D position and time) of active bus driving of
a total duration of 11.3 hours and a distance of 181 km.

The data is divided into 25 long trajectories, ranging
from 5 to 60 minutes and 2 to 18 km. Each trajectory is
pre-processed by a Kalman filter to estimate 2D velocities.
Each long trajectory is treated separately. First all stops are
suppressed (VII) with θdistance = 10m, then self-overlaps
are detected (VIII) and the first necessary split-points of the
long trajectory are found. A total of 204 stops and 14 self-
overlaps were found in among the long trajectories.

The trajectories are further segmented to divide the data
as equally as possible between local models. The data log

likelihood (18) penalizes a GP with fewer data points less
than with more. There are various ways to achieve this in
the conventional setup [2][4][5]. We also want to have many
local models in order to evaluate how well the two modeling
approaches work given a large number of sequential local
motion patterns. The data set is very sparse (long spatial
distances between samples) so we segment the remaining
sub-trajectories in a greedy way with about 19 data points
per local model (capturing 1-1.5 km per local model which
is quite far in an urban environment). We use a local model
overlap of 5, which we found by empirical experiments
described further down. The two modeling approaches (MA

and MB) are applied to the data of each sub-trajectory to
learn two different kinds of local models for comparison.

Since we do not do any clustering nor aggregation of
similar motion patterns in this paper, there is a large risk of
over-fitting the models as we only use a single observation (a
single trajectory) as training data per trajectory model. This
result in too low variance (4) of the model, making it very
unlikely for the model to best explain (among the available
models) a new observed trajectory that is close to the model
but not exactly overlapping and aligned. We therefore add
additional prior knowledge by modifying their covariance so
that all models have at least a minimum variance (σ2

n) of 22

meters (position mappings) and 22 km/h (velocity mappings).
We do not expect the GPS to be more accurate than so. If
the data uncertainty is larger we do not do any adjustments.

To evaluate the learned models we randomize new obser-
vations by first fitting a GP over the entire long trajectory. 5
trajectories are drawn from the GP and to each of these tra-
jectories we add iid Gaussian noise with standard deviation
2 meters for the x and y component for each data point. The
final evaluation score is averaged over the 5 draws.

Each long trajectory gives rise to a different number of
local models, since they have very different length. The
classification problem is that of a multi-class classifier, one
for each of the four compared approaches (PA, PBv

, PBp
,

PB) and with a different number of classes per evaluated
data set (i.e. per long trajectory). To be able to compare and
aggregate the accuracy of these it is necessary to adjust the
accuracy first in a manner that reduces the impact of the
different number of classes. One such statistic is Cohen’s
Kappa [16]. The Cohen’s Kappa statistic is defined as

Kappa =
Accuracy − E[Accuracy]

1− E[Accuracy]
, (27)

Accuracy =
1

M

M∑
m=1

TP(m), E[Accuracy] =

C∑
c=1

Mc

M

TPc
M

where M is the number of test data points and TP(m) = 1 if
the classification of test point m was correct and 0 otherwise.
TPc is the number of correct classifications of class c (true
positives). Mc is the frequency of class c in the test data set.

The test data is generated from the same data as the
learned models so we know which model should be respon-
sible for which part of the training data. To investigate the
effect of the local model overlap (adjacent local models share

Fig. 5
Evaluation of changing no. of data points in overlap and
changing sequence length used (z̄). Exact require correct
model, Overlap accept either of two overlapping models.
Using the first 9 of the 25 trajectories.

Fig. 6
(a,b) Without handling stops and self-overlaps. (b,d) Accept
either of 2 overlapping models as correct classification. (a,c)
Require correct model.

some data points) we also used a ground truth which allowed
two classes to be correct in the intervals of local model
overlap. The strict ground truth and the less strict ground
truth is called Exact and Overlap respectively in Fig. 5, and
shown as (b), (d) and (a), (c) respectively in Fig. 6.

We evaluated the difference in classification performance
when varying the length of observation sequences (seq.
length in Fig. 5) at a time, from one data point to a vector of
7 data points (z̄ in VI). We also varied the no. of data points
for local model overlap with each sequence length. All four
model types are practically invariant to the sequence length.
This is very different from the setting in [4][5][2] where
high classification accuracy usually requires a long trace.
Here the motion pattern models are not largely overlapping
(apart from at the edge of each model). Also, the use of
sequential local models makes a longer sequence more likely
to overlap two neighboring sequential local models. The
sequence length 1 is used in the larger experiment.

The overlap number do affect the the classification ac-
curacy significantly. Only the flow field (PA) have higher
accuracy with zero overlap, with a clear maximum together
with sequence length but all model variations have higher
accuracy for Overlap. The flow field variation (PA) and
the velocity based inverse mapping variation (PBv) increase
significantly in accuracy with an increase in local model
overlap. For the flow field variation there is a compromise

between having a high accuracy for Exact and for Overlap.
We selected local model overlap 5 for the larger experiment.

Using the full data set we evaluated the classification
performance of the flow field approach and the inverse
mapping approach, and its three variations. The results are
shown in Fig. 6. PB has the highest accuracy and improves
the accuracy over the baseline PA by ∼10% for Exact and
∼5% for Overlap when handling stops and self-overlaps.
Handling self-overlaps and suppressing stops in the training
data has a large impact on all four approaches, increasing
the accuracy by ∼5% for Exact and ∼3% for Overlap.

X. CONCLUSIONS

There exist many challenges for trajectory analysis on
larger road networks with complex structures. We have in
this paper considered some of these challenges and provided
partial solutions to the motion pattern recognition problem
for Gaussian process based sequential local models. We
have proposed a novel motion pattern model which goes
beyond the traditional flow field approach and incorporates
spatial locality together with the discriminatory power of
a velocity field. It is shown empirically to out-perform the
flow field approach in a setting of sequential local motion
pattern models. This is due to more discriminative power
and specifically higher accuracy close to the borders between
models. Varying the local model overlap significantly affects
the velocity field approaches but not so much those using
spatial locality. Handling self-overlaps and suppressing stops
significantly increases the accuracy.

REFERENCES

[1] B. T. Morris and M. M. Trivedi, “Understanding vehicular traffic
behavior from video: a survey of unsupervised approaches,” Journal
of Electronic Imaging, vol. 22, no. 4, pp. 041–113, 2013.

[2] S. Ferguson, B. Luders, R. C. Grande, and J. P. How, Algorithmic
Foundations of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations of Robotics.
Springer International Publishing, 2015, ch. Real-Time Predictive
Modeling and Robust Avoidance of Pedestrians with Uncertain,
Changing Intentions.

[3] M. Smith, S. Reece, I. Rezek, I. Psorakis, and S. Roberts, “Maritime
abnormality detection using gaussian processes,” Knowledge and In-
formation Systems, pp. 1–26, 2013.

[4] K. Kim, D. Lee, and I. Essa, “Gaussian process regression flow for
analysis of motion trajectories,” in Proc. ICCV, 2011.

[5] Q. Tran and J. Firl, “Online maneuver recognition and multimodal
trajectory prediction for intersection assistance using non-parametric
regression,” in IEEE Intelligent Vehicles Symposium, June 2014.

[6] S. T. O’Callaghan, S. P. N. Singh, A. Alempijevic, and F. T. Ramos,
“Learning navigational maps by observing human motion patterns,” in
2011 IEEE International Conference on Robotics and Automation.

[7] B. Morris and M. Trivedi, “Trajectory learning for activity understand-
ing: Unsupervised, multilevel, and long-term adaptive approach,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2011.

[8] M. Tiger and F. Heintz, “Towards unsupervised learning, classification
and prediction of activities in a stream-based framework,” in Proc.
Scandinavian Conference on Artificial Intelligence (SCAI), 2015.

[9] L. Snidaro, C. Piciarelli, and G. L. Foresti, “Fusion of trajectory
clusters for situation assessment,” in Proc. FUSION, July 2006.

[10] N. Guillarme and X. Lerouvreur, “Unsupervised extraction of knowl-
edge from S-AIS data for maritime situational awareness.” in Proc.
FUSION, 2013.

[11] C. E. Rasmussen, “Gaussian processes for machine learning.” MIT
Press, 2006.

[12] F. Meier, P. Hennig, and S. Schaal, “Incremental local gaussian
regression,” in Advances in Neural Information Processing Systems
27, 2014, pp. 972–980.

[13] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression
for real-time model-based robot control,” in Proc. IROS, 2008.

[14] M. Schneider and W. Ertel, “Robot learning by demonstration with
local gaussian process regression.” in Proc. IROS, 2010.

[15] A. Mchutchon and C. E. Rasmussen, “Gaussian process training with
input noise,” in Advances in Neural Information Processing Systems
24. Curran Associates, Inc., 2011, pp. 1341–1349.

[16] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educa-
tional and Psychological Measurement, vol. 20, no. 1, pp. 37–46.

ACKNOWLEDGMENT

This work is partially supported by grants from the
National Graduate School in Computer Science, Sweden
(CUGS), the Swedish Research Council (VR) Linnaeus
Center CADICS, ELLIIT Excellence Center at Linkping-
Lund for Information Technology, and partially supported by
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Founda-
tion. We would also like to thank Halmstad University for
providing the bus data set.

