
Strokes detection for skeletonisation of
characters shapes

Cyrille Berger

Linköping University
Department of Computer and Information Science

581 83 LINKÖPING, SWEDEN
cyrille.berger@liu.se

http://www.ida.liu.se/~cyrbe

Abstract. Skeletonisation is a key process in character recognition in
natural images. Under the assumption that a character is made of a
stroke of uniform colour, with small variation in thickness, the process
of recognising characters can be decomposed in the three steps. First
the image is segmented, then each segment is transformed into a set of
connected strokes (skeletonisation), which are then abstracted in a de-
scriptor that can be used to recognise the character. The main issue with
skeletonisation is the sensitivity with noise, and especially, the presence
of holes in the masks. In this article, a new method for the extraction
of strokes is presented, which address the problem of holes in the mask
and does not use any parameters.

1 Introduction

1.1 Detection and recognition of text in natural images

In natural images, texts can be located anywhere, in any orientation, with any
kind of distortion and any colours. In order for a computer to automatically read
text from natural images, two sets of algorithms are required: the first step is
to locate where in the images the text is located [1, 2], while the second step
is about recognising the characters. Our focus in this paper is on the second
aspect of the problem. The best approach in natural images would be to use a
skeleton-based character recognition algorithm [3], the main reason is that from
the skeleton of the character, it is possible to obtain a representation that is
invariant to rotation and distortion.

For recognising characters with a skeleton-based approach, the first step is
to segment the image (using for instance [2]), then each segment mask is trans-
formed into a skeleton [4] then this skeleton can be transformed into features
and then matched with existing knowledge [3] of how characters skeleton looks.

1.2 Skeleton

The classical approach for creating a skeleton of a mask is to use a thinning
algorithm [4]. A thinning algorithm works by removing border pixels from the

2 Cyrille Berger

(a) (b) (c) (d) (e) (f)

Fig. 1. This figure shows the different type of hole that can happen in a mask. Fig-
ure 1(a) shows the letter O, while 1(b) shows the same hole in the corner, making it
likely to be due to noise. Figure 1(c) is more tricky, since for some fonts the hole in O
maybe not centred, 1(d) shows a 8, 1(e) shows the same number of holes, but the one
in the corner is likely to be caused by noise, 1(f) is also tricky since it can either be a
8 or O

mask, until reaching a one-pixel thick set of lines. The most classical thinning
algorithm is called Zhang-Suen, the algorithm defines a set of rules which decide
whether a pixel should be removed and when no more pixels match the rule the
algorithm stop and the skeleton has been found.

But thinning algorithms suffer from several problems, such as generation
of spurious line segments or lack of accuracy around strokes crossing. In [5],
the masks is decomposed in several blocks and blocks are connected together
depending on whether they correspond to a crossing. The detection of where the
crossing happen allows for improvement in the resulting skeleton.

More recently, work has been done on algorithm that can create the skeleton
without the need for the segmentation. They work by iteratively aligning the
image gradient [6, 7]. But those algorithms are very unpractical to use, they
tend to be slow and require tuning of many parameters.

However, one of the main issue with skeletonisation algorithm is that they
are highly sensitive to noise and especially, one of the biggest problem occurs
when there are holes in the mask (see figure 1 for an explanation of the problem
and figure 9 for examples). To overcome that problem, it has been suggested in
[8] to use morphological operators, however those might not be enough if the
hole is to large, also not all holes are noise, many letters have a hole inside the
mask (for instance, the letter o). It is therefore required to be able to detect
whether a hole is noise or is part of the letter.

There is no universal definition of how a good skeleton of a shape should
look, since our goal is to use the algorithm for characters recognition, we will
qualify of ideal a skeleton which provide an outline of the character as it would
appear in a font or written by an human.

1.3 Parallel Contour matching for Strokes Detection

In this article, we present an algorithm that is capable of recovering a skeleton
that could be considered as ideal, even in the presence of noise. Also like in [5],
the resulting skeleton do not suffer from spurious line segments and it correctly

Lecture Notes in Computer Science 3

represent crossing. Lastly, our algorithm output more than just the skeleton,
since it also recover the thickness of the stroke in each point, this is why we will
refer to the skeleton detected by our algorithm as stroke.

Fig. 2. A stroke is made of two parallel
curves A and B, where the perpendic-
ular of the tangent in PA ∈ A is per-
pendicular to the tangent in PB ∈ B

Fig. 3. Contours (in red) are set on the
edges between pixels.

We follow the same assumption than in [1], that a stroke used to draw a
character has a relatively constant thickness, meaning that the two opposite
contours of a stroke are parallels and that the perpendicular of the tangent of
a point of one of the contour is also the perpendicular of the tangent on the
intersection point of the other contour. Obviously, this assumption is theoretical
and in practice the rule is relaxed. But this assumption is the driving force in
the design of our algorithm.

2 Strokes Detection

Contours are represented with a four-connected paths and instead of going
through the center of a pixel, contours are going through the corners of the
pixels of the mask, so that the contours follow the edges between two pixels (see
figure 3. This allows to support stroke paths with a thickness of one pixel. Then
the algorithm follow those steps:

1. Compute the normal direction, using the euclidean path [9].

2. Find matches between contour points.

3. Group matches into stroke hypothesis.

4. Use a strokes compatibility graph to find the most likely solution to the stroke
detection problem.

5. Connect strokes.

6. Filter to remove spurious lines.

2.1 Tangent

The normal direction is computed using discrete lines (see figure 4) on euclidean
path [9], they offer good accuracy and good performance. Discrete lines are a
set of points that satisfy the following inequalities:

4 Cyrille Berger

µ ≤ αx− βy < µ+ α+ β (1)

α, β amd µ are called the characteristics of the discrete line and are computed
incrementaly around each point. We will note dll(P) the length of the discrete
line for the point P , in other words, the distance between the two last points
around P , where the equation 1 still hold.

Fig. 4. Discrete line around PA, go-
ing from PB to PC (dll(PA) =
distance(PB , PC))

Fig. 5. The point PA will be matched
with PB and PC since their normal are
in the opposite direction, but PA is not
matched to PC . PB is only matched to
PA, PC to PD while PD is matched to
PC and PA.

2.2 Contour points matching

Once the tangent is computed for each point P , the normal n(P) on that point
can be easily deduced, the normal is oriented such as the vector director point
toward the interior of the mask.

For each point P of every contours, the ray r(P) starting in P and following
the normal n(P) is used to find matching point. A point P ′ is considered a match
of P , if the ray r(P) intersect a contour on the point P ′ and n(P).n(P′) < 0.

Figure 5 shows an example of this point matching process. This part of the
process is following the hypothesis we have defined in the introduction, that
a stroke is encompassed between two parallels curves. In an ideal situation,
n(P).n(P′) = −1 would be true, but that is rarely the case in reality, meaning
that if P ′ is a match of P , it does not necessary means that P is a match for P ′.

Later it will be useful to estimate the quality of the match and it seems
natural to use the inner product of the normal, since it would give the highest
score when the normal are parallels, hence when P is also a match for P ′:

smatch(P, P ′) = −n(P).n(P′) (2)

We will note M(P) the set of matches of the point P

Lecture Notes in Computer Science 5

2.3 Stroke hypothesis

In this step, the matches are used to create stroke hypothesis. Given two contours
C0 and C1, the idea is to simply group together matches that follow the rule: two
consecutive points PA ∈ C0 and PB ∈ C0 are part of the same stroke hypothesis
if ∃PC ∈ C1 ∩M(PA) and ∃PD ∈ C1 ∩M(PB) such as

distance(PC , PD) <
distance(PA, PC)

2
+ dll(PC) (3)

distance(PC , PD) <
distance(PB , PD)

2
+ dll(PD) (4)

Fig. 6. PA and PB are two consecutive points of a contour, PC is the match for PA,
while PD is the match for PB , PA and PB belongs to the same stroke hypothesis if PC

to be in the part of the curve covered by PD’s extended line

1. Select a point PA ∈ CA and a match PC ∈ M(PA), with PC a point of
contour CC

2. Check if there is a point PB ∈ CA and PD ∈ CC that respect the condition
defined in 4

3. Iteratively check if the neighbor points of PA and PC respect the condition
defined in 4

This process is applied for all contour points and all their matches to form
the full set of stroke hypothesises.

2.4 Compatibility graph

As explained in section 2.2, there can be several matches per contour point,
which means that a contour point can belong to several different stroke hypoth-
esis. In the final skeleton, a contour point can only be associated to one stroke.
Meaning that two stroke hypothesises that have a contour point in common are
not compatible, and only one of them can be selected for the final skeleton.

In the compatibility graph G, the nodes are a group of hypothesises, and nodes
that are compatibles are connected by an edge. Then the problem of finding the
groups of stroke hypothesis that are compatible with each other s reduced to

6 Cyrille Berger

finding the list of cliques1, to solve that problem we can use the Bron-Kerbosch
algorithm [10]. However that algorithm is rather expensive, since its execution
time is proportional to (3.14)n/3 (where n is the number of nodes in the graph).
The idea is to reduce the number of nodes, lets consider an interior contour, as
we mentioned previously, it is either the result of noise, and therefor the stroke
hypothesises connected to that contour should be discarded, or it is part of the
character (like in o) and then all of them should be considered as part of the
solution.

A first step is to generate group of stroke hypothesises. It is reasonable to
assume that compatible stroke hypothesises connected to an interior contour
can be merged in a single node, as either they are all part of the valid solution,
either the contour is noise and all hypothesises should be discarded. Since not
all stroke hypothesises on the inside contour are compatible with each other,
several groups will be created (see example on figure 7). This is also a clique
problem, but it is a smaller one. It helps reducing the number of vertices in the
compatibility graph, for instance, in figure 7, instead of having five nodes in the
compatibility graph, the number is reduced to two.

Fig. 7. This figure shows the two pos-
sible set of stroke hypothesis for the
left interior contour of a 8 shape. The
red continuous line shows the border
of the stroke hypothesis on the con-
tour, and the green line is the corre-
sponding skeleton.

Fig. 8. This figure shows how stroke hypoth-
esises are connected together. In red, it shows
the different stroke hypothesises and in blue
the connection between two hypothesises. The
left figure show the case with only one connec-
tion and the right one shows what happen at
a crossing.

The second step is to apply the Bron-Kerbosch algorithm [10] to the com-
patibility graph.

The last step is to select the best solution among the multiple solutions to
the clique problem. For each solution, the following score is computed:

S =
1

Nsh
(
∑
sh

∑
P∈sh smatch(P, P ′)

|sh|
· c(sh) · density(sh)) · N

NT
(5)

Where Nsh is the number of stroke hypothesises used in the solution. sh is a
stroke hypothesis that is part of the solution. |sh| is the number of contour points
in the stroke hypothesis. density(sh) is the density of the stroke hypothesis, in

1 The clique of an undirected graph G is a subgraph of G where all the vertices are
connected

Lecture Notes in Computer Science 7

other word, the ratio between the number of the strokes that belong to the mask
with the one that do not belong (in figure 7, on the right, the three small stroke
hypothesises have a density of 1, while the big stroke hypothesis has a density
of 0.66). N =

∑
sh |sh| is the number of contour points that are used by this

solution. NT is the to al number of contour points in the mask.
Finally c(sh) = 1 if a stroke hypothesis only belongs to the exterior contour,

otherwise:

c(sh) = 1− max thickness−min thickness
max thickness

(6)

Where min thickness and max thickness is the minimum and the maximum
of the average thickness among the stroke hypothesis that belongs to the same
indoor contour. For instance, in figure 7, for the left figure, c(sh) = 1 since all
stroke hypothesises have the same thickness, but c(sh) = 0.25 for the right one.
This is a measure of how likely the hole and a given set of stroke hypothesises
belonging to that hole are to not be noise.

2.5 Connect strokes

Once the best solution has been selected, the final step is to connect all stroke
hypothesises together.

Given a stroke hypothesis sh and two end points PA ∈ CA and PB ∈ CB on
the same side of the stroke hypothesis. Point PA is connected by the contour to
a stroke shA and the point PB to a stroke shB (see figure 8).

1. if shA = shB , the same stroke hypothesis is found on both contour, then
the stroke hypothesis are simply merged together (like on the left part of
figure 8)

2. if shA 6= shB , two different hypothesises are found, it means there is a
crossing and multiple stroke hypothesises will have to be connected together
(like on the right part of figure 8)

2.6 Filtering

To improve the results, a final step is applied, to filter out some of the remaining
strokes. We use two criteria for removing a stroke hypothesis:

1. if a stroke hypothesis is fully contained interior an other one, then it is
removed

2. if a stroke hypothesis sh1 is connected to an other one sh2 with a much
bigger thickness, then sh1 is removed, according to the following equations:

3 · thickness(sh1) < thickness(sh2) (7)

length(sh1) < thickness(sh2) (8)

8 Cyrille Berger

3 Results

The masks used in this section were created using the segmentation algorithm
presented in [2] applied on images taken from the ICDAR 2003 competition
data set [11]. It is worth to note that while about 80% of the masks produced
by the segmentation do not present any noise problem, we have only selected
noisy masks for this section, since noise free masks show similar results with our
algorithm as with the state of the art.

Figure 9 shows the algorithm on three similar masks for the number 2, as we
can see, when using our algorithm the resulting skeleton is similar, no matter
whether there is noise or not. While the Zhang-Suen algorithm produce a broken
skeleton for the noisy result. An other benefit of our approach is that it avoids
the problem of the small line that can appears in corners, like we can see on the
bottom right part of the Zhang-Suen skeleton for the left and right masks.

Figure 9 shows results for different characters on medium size masks. Once
again, it shows that our algorithm is capable of recovering a quiet good skeleton
despite the noise. The figure also show the effect of post processing the skeleton
to remove small masks. However, one can notice a smell artefact on the skeleton
for the S mask (centre figure of 9), on the top extremity of the letter, there is a
small segments that goes back up. This artefact is caused by the use of rather
simplistic rules for filtering and for finding incompatibilities, more complex rules
would be able to remove the artefact, but would require higher computational
power.

Figure 10 shows that the algorithm is not only capable of finding the skeleton
for large masks but that it still works for small ones.

The results of figure 9 and 10 shows that post filtering of strokes brings
significant improvements to the results of our algorithm. And it raises the ques-
tion of whether it would be possible to apply similar filtering techniques to the
Zhang-Suen algorithm, however, one of the reason that the filtering works nicely
with our algorithm is that even before the filtering process, the ideal skeleton is
still visible, while the output of Zhang-Suen shows that around the noisy part of
the mask, the ideal skeleton has been damaged, this is especially visible for the
right 2 mask of figure 9. An other aspect to take into consideration is that the
output of our algorithm is a skeleton with an associated thickness, which makes
it straight forward to define rules on whether part of the skeleton is likely to be
noise, while the output of Zhang-Suen is a one pixel thick skeleton.

Table 1 show the execution time for both algorithms, it appears that on
larger mask, the algorithm presented in this article is more than three times
faster, while on smaller mask Zhang-Suen is about two times faster. This can
be easily explain by the nature of the Zhang-Suen algorithm, it is a thinning
algorithm that works by iteratively removing pixels from the mask, until only
an one pixel line is left, a larger masks has two effects, the number of pixels to
process is larger, but also, the number of iterations increase. On the other hand,
our algorithm complexity is mostly dependent on the number of contour pixels,
which increase at a slower rate, on a noiseless mask. However, on noisy masks,
the noise has the effect of increasing the number of contour pixels, this can have

Lecture Notes in Computer Science 9

(a) Masks

(b) Zhang-Suen

(c) Our algorithm unfiltered

(d) Our algorithm

Fig. 9. This figure shows the result from Zhang-Suen and our algorithm on masks
representing the number 2, the two figures on the right are results from segmentation,
while the figure on the left was created by manually filling the holes in the mask from
the right mask (the size is approximately 400 pixels by 600 pixels). The green segment
represents the thickness as detected by our algorithm. On some of the masks, the red
squares indicates area that are zoomed in to show the problematic holes.

10 Cyrille Berger

(a) Masks (b) Zhang-Suen

(c) Our algorithm (unfiltered) (d) Our algorithm

Fig. 10. Small size masks (approximately 20 pixels by 20 pixels). The green segment
represents the thickness as detected by our algorithm.

2 (left) 2 (middle) 2 (right) O S

Zhang-Suen 109.4 (3.1) 117.7 (5.2) 106.4 (3.6) 32.0 (1.41) 27.9 (4.6)

Our algorithm 31.8 (3.8) 37.1 (5.0) 85.6 (3.4) 8.6 (0.78) 8.9 (0.38)

Size 387x630 380x643 387x630 211x219 186x223

P a c u y

Zhang-Suen 24.7 (3.6) 0.20 (0.04) 0.16 (0.05) 0.19 (0.05) 0.21 (0.03)

Our algorithm 4.4 (0.8) 0.49 (0.04) 0.29 (0.08) 0.27 (0.05) 0.31 (0.04)

Size 173x210 24x24 23x25 24x24 24x31
Table 1. Comparison of computational time between our algorithm and Zhang-Suen,
time is expressed in millisecond, it is averaged between several run and the number in
parenthesis is the standard deviation. The computer used for the experiment has an
Intel I7 3.4GHz CPU.

dramatic effects on performance, especially since the noise increase the number
of interior contours and therefor the complexity of the compatibility graph, and
the algorithm used to find the clique [10] computational time is proportional to
(3.14)n/3, where n is the number of nodes in the graph. This explain why the
right 2 mask from 9 requires twice as much time than the other two variants of
the mask.

4 Conclusion

We have presented a parameter-free algorithm that allow to extract strokes in-
formation from masks, and that is robust to noise while being reasonably fast
to compute. The main strength of our algorithms is to handle holes that can
appear as the result of a segmentation of a character in an image.

There are many possible improvements to the algorithms, which could hope-
fully improve both performance and quality. It is our belief that improvements
should be mainly aiming at reducing the work load of the Bron-Kerbosch algo-
rithm, one idea would be to pre-filter the interior contours, it seems likely that
holes that are not centred interior a mask are more likely to be caused by noise
than to be part of a letter, similarly a stroke with a very low density is unlikely
to be selected as part of the best solution and could be removed from the graph.

Lecture Notes in Computer Science 11

An other area that needs improvement is the contour matching and extension
process, it is extremely sensitive to noise, meaning that it tends to break, which
has the effect of not only increasing the workload of the Bron-Kerbosch algo-
rithm but also to lower the quality and to increase the chances that a noisy
solution would be selected at the expense of the ideal one.

Since the algorithm presented in this paper has many similarity with stroke-
width transform algorithm [1], it should also be possible to use this stroke detec-
tion algorithm to detect where the text is located in natural images. It would be
possible to segment the image, then to transform each resulting segment mask
into its stroke representation, filter out characters that have a too high variation
in thickness and try to recognise the remaining characters.

References

1. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke
width transform. In: Conference on Vision and Pattern Recognition. (2010) 2963–
2970

2. Karatzas, D., Antonacopoulos, A.: Colour text segmentation in web images based
on human perception. Image and Vision Computing 25 (2007) 564–577

3. Cheriet, M., Kharma, N., Liu, C.L., Suen, C.Y.: Character Recognition Systems.
Wiley Publishing Inc (2007)

4. Parker, J.: Algorithms for Image Processing and Computer Vision. Wiley Pub-
lishing Inc (2010)

5. Fan, K.C., Chen, D.F., Wen, M.G.: Skeletonization of binary images with nonuni-
form width via block decomposition and contour vector matching. Pattern Recog-
nition 31 (1998) 823–838

6. LeBourgeois, F., Emptoz, H.: Skeletonization by gradient regularization and dif-
fusion. International Conference on Document Analysis and Recognition 2 (2007)
1118–1122

7. Yu, Z., Bajaj, C.: A segmentation-free approach for skeletonization of gray-scale
images via anisotropic vector diffusion. In: Conference on Computer Vision and
Pattern Recognition (CVPR). Volume 1. (2004)

8. Ashok, M., SreeDevi, J., Bai, M.R.: An approach to noisy image skeletonization
using morphological methods. International Journal of Scientific and Engineering
Research 3 (2012)

9. Braquelaire, J.P., Vialard, A.: Euclidean paths: A new representation of boundary
of discrete regions. Graphical Models and Image Processing 61 (1999) 16–43

10. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16 (1973) 575–577

11. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: Icdar 2003
robust reading competitions. In: Proceedings of the Seventh International Confer-
ence on Document Analysis and Recognition - Volume 2. ICDAR ’03, Washington,
DC, USA, IEEE Computer Society (2003) 682–

Acknowledgments This work is partially supported by the Swedish Research
Council (VR) Linnaeus Center CADICS, the ELLIIT network organization for
Information and Com- munication Technology, and the Swedish Foundation for
Strategic Research (CUAS Project).

