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émanant des établissements d’enseignement et de
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Abstract— his paper addresses the cooperative localiza-
tion and visual mapping problem for multiple aerial and
ground robots. We propose the use of heterogeneous visual
landmarks, points and line segments. A large-scale SLAM
algorithm is generalized to manage multiple robots, in which
a global graph maintains the topological relationships between
a series of local sub-maps built by the different robots. Only
single camera setups are considered: in order to achieve un-
delayed initialization, we present a novel parametrization for
lines based on anchored Plücker coordinates, to which we add
extensible endpoints to enhance their representativeness. The
built maps combine such lines with 3D points parametrized
in inverse-depth. The overall approach is evaluated with
real-data taken with a helicopter and a ground rover in
an abandoned village.his paper addresses the cooperative
localization and visual mapping problem for multiple aerial
and ground robots. We propose the use of heterogeneous
visual landmarks, points and line segments. A large-scale
SLAM algorithm is generalized to manage multiple robots,
in which a global graph maintains the topological rela-
tionships between a series of local sub-maps built by the
different robots. Only single camera setups are considered:
in order to achieve undelayed initialization, we present a
novel parametrization for lines based on anchored Plücker
coordinates, to which we add extensible endpoints to enhance
their representativeness. The built maps combine such lines
with 3D points parametrized in inverse-depth. The overall
approach is evaluated with real-data taken with a helicopter
and a ground rover in an abandoned village.T

I. I NTRODUCTION

In a aerial / ground multi-robot context, as in any multi-
robot context, the ability to build and share environment
models among the robots is an essential pre-requisite to the
development of cooperation schemes. Be it for exploration,
surveillance or intervention missions, environment models
are indeed necessary to plan and coordinate paths, but also
to determine the utility of vantage points, to assess whether
robots will be able to communicate or not, and to localize
the robots in a common frame. In particular, 3D information
on the environment is required: not only the robots evolve
in the three dimensions, but the determination of vantage
points calls for visibility computations in the 3D space.
Also, vision is here the primary environment sensor to build
environment representations: besides the fact that images
carry a lot of information on the environment, vision is
passive, it has the main advantage to perceive features that
are arbitrarily far away, and it is the only sensor that can
be exploited on-board micro-drones – that have undoubtedly
a promising future.

Approach. Our aerial / ground context requires the res-
olution of the two following issues: on the one hand the
mapping approach must be distributed so as to cope with the
communications constraints, and on the other hand the map
structure must allow data association and fusion, coping with
the fact that the sensors or viewpoints can be very different
among the different robots. The contribution of this paper is
therefore twofold.

We first propose a distributed mapping approach in which
robots build series of sub-maps using a classical EKF-based
SLAM paradigm. The overall spatial consistency of the maps

among the robots is ensured by an optimization process,
that takes into account various inter-robot and absolute
localization estimates. This work stems from the work on
hierarchical SLAM proposed by Estrada et al in [1], which
relies on a hierarchical representation of the map: the global
level is an adjacency graph, where nodes are local maps (or
“sub-maps”), and edges are relative locations between local
maps. In a multi-robot context, various events can trigger loop
closures and later map merging, namely rendezvous between
robots, landmark correspondences (“map matching”) and
absolute localizations provided by GPS fixes or by matches
with an a priori existing map. These events exhibit a cycle
on the graph of the map poses, and thus define constraints
that allows the system to refine the estimates of the sub-maps
origins.

Among the three possibilities to close loops in the overall
graph of maps, map matching is the most difficult to achieve
when maps have been built by heterogeneous robots,i.e. with
different kinds of sensors or vantage points. To be able to
match maps, we need to represent in maps characteristics
of the environment that are invariant with respect to large
viewpoint changes. For this purpose, we exploit line segments
detected in the images in order to build 3D wireframe maps
that can be matched among the robots. This calls for a
dedicated implementation of the EKF-based SLAM approach,
which relies on the undelayed initialization of anchored
Plücker 3D lines.

Outline. Sections II and III present the localization and
mapping approach to deal with multiple robots. The approach
is based on the scalable SLAM approaches, known as hybrid
or hierarchical, that consider sub-maps and graph levels.
Section IV is devoted to the building of a 3D wireframe model
on the basis of line segments detected in monocular imagery.
It introduces the anchored Plücker line parametrization touse
segments as landmarks in a monocular EKF SLAM approach.
Finally, Section V present results obtained with data gathered
by a helicopter and a ground rover.

II. H IERARCHICAL SLAM

The multiple robot localization and mapping problem is
formulated using sub-maps in a similar manner to hierar-
chical SLAM in [1] or hybrid metric-topological SLAM in
[2], where there are two levels: metric (local sub-maps), and
topological (global graph).

The topological (global) level represents the relationships
s

j
i between local mapsi and j. The metric level contains the

local maps, composed of the set of landmarksmi and the
current robot pose xi. Each local map stores information in
its own lrf . At a certain point a new local map is generated
with the robot pose acting as the new local reference frame
(lrf ). Thus the robot posexi truly represents the relation
between the previous map and the new one, and one can
set si+1

i = xi. Other non-correlative relations s
j
i may be

established between maps as we will see. Based on simple
frame compositions, information in the world reference
frame (wrf) is also available for the originsSi of each map,
and for the map itself Mi if it is required.

Metric Level. The local or metric level contains the feature-
based locally referred stochastic maps, built with the standard



EKF-SLAM. The i-th local map is defined by
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where xi is the current pose of the robot, and mi =
[li1 . . . l̂im]⊤ is the set of m mapped landmarks, both with
respect to thei-th lrf . EKF-SLAM keeps a Gaussian estimate
xi

m
∼ N{x̂i

m
,Pi

m
} of this map, namely

x̂
i
m

=

»

x̂i

m̂i

–

, P
i
m

=

»

Pxixi
Pximi

(Pximi
)⊤ Pmimi

–

. (2)

The maps are built sequentially as mentioned above. Once
a threshold is passed, either in number of landmarks or in
robot’s uncertainty, a new map is created. Let us consider for
now that no information is shared between these sub-maps,
thus the new map starts in alrf with robot’s pose and error
covariance equal to zero.

Topological Level. The global or topological level is repre-
sented as an adjacency graph in which origins of local maps
Si in wrf are nodes, and the links between them are the
relative transformations si+1

i . Let us define the global level as
the Gaussian states ∼ N{ŝ;Ps} of relative transformations
between local maps, namely:
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The global origins of the maps in thewrf are computed
as the compounding of the previous global origin with the
relative transformation between sub-maps,Si+1 = Si ⊕ si+1

i .
The current position of the robot in wrf is computed asXi =
Si ⊕ xi. Also, the global map can be obtained through,

Mi = Si ⊕ mi . (4)

Mean and covariances of the Gaussian estimates are obtained
by regular linear-Gaussian propagation using the Jacobians
of ⊕ and ⊖.

Considering the relative transformations between local
maps as past robot poses, we note that the global level can
be viewed as a sparse delayed-state pose-SLAM [3], where
local maps are like landmarks hanging from robot poses in
wrf. The main difference is associated to the fact that the
state-space in our case contains relative posesxi, instead of
absolute posesSi.

Loop Closure. At the global level, a loop closure corre-
sponds to a cycle in the graph, that appears for instance when
a relative position estimate between non-consecutive sub-maps
is established by a map matching process. Such a cycle defines
a constraint between a series of relative transformations:

h(s) = s
1
0 ⊕ s

2
1 · · · ⊕ s

0
i = 0 (5)

= Si ⊕ s
0
i = 0 . (6)

Given that h(s) is not linear due to the angular terms,
the enforcement of this constraint can be formulated as
a nonlinear constrained optimization problem. A solution
for instance could be based on the Iterative EKF [1]: the
part of the state involved in the loop closure at global level
then becomes correlated, resulting in a non-sparse covariance
matrix Ps.

Note that for a single robot, local maps are obtained
sequentially, hence the relative transformation between the
local maps is given by the last robot pose in the currentlrf ,
si+1

i = xi.

III. M ULTIPLE ROBOTS

A hierarchical/hybrid SLAM approach in the multi-robot
case seems a priori straightforward: each robot manages a set
of sub-maps and a global graph of poses. But the interests of
multi-robot mapping arise of course when the robots exchange
mapping or position information, which allows to enhance the
spatial consistency and to build up amulti-robot global graph
of map poses (origins of local sub-maps).

In general when multiple robots are exploring the same
area, they meet sooner or later or their maps partially over-
lap: these events will allow the system to establish connections
between robot locations [4]. The events we have identified are:
(i) robots rendezvous (Figure 1(a)),(ii) common information
match within sub-maps (Figure 1(b)), and (iii) receiving
external information that provide absolute localizations (e.g.
a GPS fix (Figure 1(c)), or feature matches with an existing
environment model. The latter is not exactly a multi-robot
loop closure, it provides a link between alrf and a global
geo-referenced frame: this yields the possibility to establish
a link with another robot that has already been absolutely
localized once.

All these events create a link between the robots’ global
levels. Whereas in a single robot case a loop closure only
occurs when the robot revisits a previously mapped place, in
a multi-robot case these events trigger loop closures: any cycle
that appears in the overall graph defined by the concatenation
of each robot graph (themulti-robot graph) is a loop closure.
The compounding of all relative transformations that definea
cycle is equal to zero as in Eq. 5, and a batch optimization over
the transformations can be performed. Note that to obtain a
cycle in the graph defined by the concatenation of two robots
global levels, at least two events between these robots are
required.

The main advantage to exploit a hierarchical map
structure in multi-robot mapping is the low communication
bandwidth required among the robots: only the individual
graphs need to be exchanged to update the multi-robot
graph. We will however see that in themap-matchingcase,
the sub-maps that match must also be communicated: but
they have naturally already been exchanged to establish the
matches. Most importantly is that in the general case, only
marginal distributions of each node has to be communicated,
as opposed to the full joint distributions of the graph. As
we will see later, each robot performs its own optimization
based on the minimal cycle.

Robot Rendezvous. The event occurs when a robot observes
another robot (partial rendezvous) or when both robots
observe each other (full rendezvous). We will focus on the
case when the relative transformation between two robots it
is fully recovered, from the information obtained through a
partial or full rendezvous.

New local maps are created in the instant of the
rendezvous, then the current robot poses are promoted to
the global level. In this way, the observed transformationz
naturally produces a link between the maps’ originsSi and
Sj on the global level, thusz = si

j .

Matching common information. There exist at least two
different ways to match common information. For example,
using information completely independent to the SLAM,e.g.
image’s descriptors matching (SIFT, SURF), image indexing
techniques or scan matching (ICP). A common way to produce
a map of poses [3] is to find the rotation and translation
between two robot poses using one of these techniques, as
opposed to tracking features. A second way to match common
information is using the available information of the maps
(position and uncertainty in global level). This is usuallydone
using the current position of the robot or robots in the wrf.

• The “image to image” association produces a link
directly between images, that are associated to certain
posesSi and Sj . Note, the robot poses have to be part
of the global graph when this event occurs.



(a) Rendezvous event (b) Common landmark event (c) GPS fix

Fig. 1. Loop-closing events for multiple robots.

This is a simple, but effective manner to obtain the
relationship between two robots, or even to close a
loop with a single robot. Note that the observations are
independent from the previous mapped information. As
in the rendezvous case, this event produces the missing
link z = si

j . In practical terms, image to image matching
is equivalently to rendezvous.

• The “map to map” kind of data association requires
both local maps to be transformed to a common frame,
e.g. promoted to the global level asMi and Mj using
Eq. 4. In other words, the matching process happens in
a common frame, being thewrf or one of the lrf . The
disadvantage of this method is that in the worst case the
absolute position of the two maps must be computed.
Moreover, once the maps are matched, they have to
be fused into a single one, otherwise it could lead into
inconsistencies when merging all the maps.

Absolute Localization. In an aerial/ground context, it
is reasonable to assume that both kind of robots receive
GPS fixes from time to time. The relative transformation
provided by a GPS fix for vehicle i is simply sGi , where
G is the geo-referenced frame. Such information provides
a link between a lrf and a global geo-referenced frame,
and generates a loop at the graph level for an individual robot.

Impact on the sub-maps. From the point of view of a
hierarchical SLAM formulation, the hierarchical nature of
this model manifests itself in the ability to apply a loop-
consistency constraint to a subset of local transformations (e.g.
a single loop) without taking into account the local sub-maps.
Particularly, when no information is shared between sub-
maps, which is the case between sub-maps built by different
robots, but an approximation for the sub-maps that are built
by the same robot, the origin of the local sub-map is the
only state that changes after the constraint is applied. It
can be easily shown thatmi−1 ⊥ mi | xi−1, i.e., given the
relative transformations, the consecutive local sub-mapsare
independent. Notice that the global posesS are d-separated
of all possible paths between any pair of sub-mapsm or
evenM. Note that the approximation can be palliated using
conditionally independent local maps as proposed in [5].

Also, in the multi-robot case it can happen that two
different events create a link on the same node,i.e. if a
map-matchingis established after a rendezvous. To avoid this
problem, new sub-maps are startedafter an event occurs.
In the case of receiving GPS fixes once in a while, the fact
of starting a new local map at the time t when the fix is
received, removes the dynamics aspects of the internal local
maps setting a fix pose at global level.

Similarly, to avoid counting information twice if one
eventually wants to merge all the sub-maps, after a map-
matching event both sub-maps should be fused into a single
sub map. This has the disadvantage that the sub-maps must
be shared among the two robots, but on the one hand this is
a pre-requisite for at least one robot to establish the matches,

d =

‖n‖

‖v‖

π

n

v

L

O

Q
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P1

Fig. 2. Geometrical representation of the Plücker coordinates and sub-
vectorsn andv. The lineL and the originO define the support planeπ.
The line’s sub-vectorn ∈ R

3 is orthogonal toπ. The sub-vectorv ∈ R
3

is a director vector of the line, and lies onπ. This impliesn ⊥ v. The
closest point toO is Q = (v × n : v⊤v) ∈ P

3. The distance fromL
to O is d = ‖n‖/‖v‖, showing thatv acts as the homogeneous part of
L, thus exhibiting inverse-depth properties.

and on the other hand such events will occur when the robots
are within communication range.

IV. L INE SEGMENTS FOR MONOCULAREKF-SLAM
We explore the possibility of using linear landmarks or

line segments, which provide an improved semantic over
points: lines inherently contain the notions of connectivity
and boundary, which open the door to potential automatic
interpretations of the environment, both at the metrical and
topological levels. A 3D model based on lines, akin to a
wireframe model, can further allow the possibility to build
higher level entities (planes, closed regions, objects).

Plucker lines (PL). Plücker lines have been used in major
vision works with straight 3D lines [6], [7]. These works,
and other ones referenced therein, are based on Structure
From Motion approaches. We showed in [8], drawing on
previous work in [9], the way to employ Plücker lines to
achieve undelayed initialization of lines in monocular SLAM.

The Plücker coordinates for a line consist of a homogeneous
6-vector in projective space,L ∈ P

5. In this vector, one can
identify two sub-vectors1, L = (n :v), with {n, v} ∈ R

3, with
which an intuitive geometrical interpretation of the line in 3D
Euclidean space is possible (Fig. 2):

• The sub-vector n is a vector normal to the plane π
supporting the line L and the origin O.

• The sub-vectorv is a director vector of the line.
• The distance from the line to the origin is given by

d = ‖n‖/‖v‖.
The two most remarkable properties of the Plücker line

are its linear transformation and projection equations and
the inverse-depth behavior of the sub-vectorv, something
that will allow us to design appropriate initialization methods

1We use a colon (:) to separate the non-homogeneous and homogeneous
parts in projective space.
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Fig. 3. The anchored Plücker line.

for EKF. For details on the use of Plücker lines in monocular
EKF-SLAM see [8].

Anchored Plücker lines (APL). Now, we add an anchor
to the parametrization to improve linearity, as it is done for
points in the inverse-depth parametrization [10]. Anchoring
the Plücker line means referring it to a point p0 in 3D space
different from the origin (Fig. 3). The anchor point p0 is
chosen to be the optical center at initialization time. The effect
of such anchoring is that, on subsequent EKF updates, only
the accumulated errors from the anchor p0 to the current
camera position T are considered, in contrast with regular
Plücker lines where the error accounts for the absolute motion
of the sensor from the origin of coordinates.

The anchored Plücker line(APL, Fig. 3) is then the 9-vector:

Λ =

"

p0

n
v

#

∈ R
9 (7)

Transformation and projection expressions are as follows:
Frame transformation: Given a (camera) reference frame

C specified by a rotationR and a translation T, an anchored
Plücker line Λ in global frame is obtained from a line ΛC in
frame C with the affine transformation

Λ =

"

R 0 0
0 R 0
0 0 R

#

·ΛC +

"

T

0
0

#

. (8)

The inverse transformation is performed with

ΛC =

"

R 0 0
0 R 0
0 0 R

#⊤

·
“

Λ −

"

T

0
0

#

”

. (9)

Un-anchoring: given an anchored Plücker lineΛ = (p0,n :
v), its corresponding (un-anchored) Plücker lineL is com-
puted with

L =

»

n + p0 × v
v

–

(10)

Pin-hole projection: Projection is better expressed for
regular Plücker lines. Given a perspective camera defined by
the intrinsic parameters k = (u0, v0, αu, αv), a Plücker line
LC = (nC :vC), expressed in the camera’s coordinate system,
projects into a homogeneous linel ∈ P

2 in the image plane
with the linear expression [6], [11]

l = K·n
C ,

[

αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]

·n
C

∈ P
2
. (11)

where K is called thePlücker intrinsic matrix.
Transformation and projection: Transformation and pro-

jection are accomplished with a transformation to the camera
frame (9), un-anchoring (10), and projection (11). This can
be composed in one single expression with:

l = K·R⊤ ·(n − (T − p0) × v) ∈ P
2, (12)

in which we will notice:
• The linear behavior with respect to n.
• For accurate estimates of the camera motion(T − p0),

which is true for observations shortly after initializatio n,
the linear behavior with respect tov, which additionally
exhibits inverse-depth behavior.

Expression (12) gives us the means to analyze line
observability as a function of the camera motion (Fig. 3(b)).
Let (T − p0) be the camera motion since initialization time.
Because the projected linel is expressed in projective space,
any vector l′ = αl, with α ∈ R, represents the same line
and the line sub-vector v is only observable if the vector
(T − p0) × v is not proportional to n. If we remind the
Plücker constraint stating that v ⊥ n, this resumes to a
motion (T− p0) that does not belong to the planeπ. As the
anchor p0 belongs to this plane, we conclude that the new
camera positionT must escape the planeπ in order to fully
observe the line.

Segment endpoints. The line’s endpoints in 3D space are
maintained out of the filter via two abscissas defined in the
local 1D reference frame of the line, whose origin is at the
point q = p0 + v×n

v
⊤

v

, the closest point to the anchor (see
Fig. 3(a)). Given the lineΛ = (p0, n :v) and abscissas{t1, t2},
the 3D Euclidean endpoints are obtained with

pi = q + ti ·
v

‖v‖
∈ E

3 , i ∈ {1, 2}. (13)

Back-projection of an APL. APL back-projection consists
in defining a Plücker line L from a segment observationl,
and anchoring it at the camera positionT to obtain an APL
Λ. These operations are detailed below.

Back-projection of a Plücker line: In the camera frame,
the Plücker sub-vectornC resulting from the observation l is
simply

n
C = K−1

l. (14)

The sub-vectorvC is not measured and must be obtained
by injecting prior information. We give here the formulatio n
and refer the reader to [8] where full explanations and
justifications are provided. The sub-vectorvC is obtained with

v
C = Eβ, (15)

where E ∈ R
3×2 is a matrix transforming vectors β ∈ R

2

in the Cartesian plane into the plane in R
3 supporting the

line, defined by the optical center andnC. It is constructed
as a base spanning the plane orthogonal tonC , i.e., the two
non-measured DOFs,

E = [e1 e2] , n
C ⊥ e1 ⊥ e2 ⊥ n

C, (16)

the base vectorsei being chosen so thate1 is parallel to the
image plane,

e1 =

ˆ

nC
2 −nC

1 0
˜⊤

p

(nC
1 )2 + (nC

2 )2
and e2 =

nC

‖nC‖
×e1. (17)

The vector β = (β1, β2) must be provided as prior. To
help selecting an appropriate one, we give here some intuitive
notions about β:

• A vector β = (1, 0) is a line parallel to the image plane
at a distanced = ‖nC‖ from the optical center.

• A vector β = (0, 1) is a line perpendicular to the detected
segmentl in the image.

• The distance from the optical center to the line is given
by d = ‖nC‖/‖β‖.



Fig. 4. Aerial view of the experiment area (obtained on
www.geoportail.fr). The robot Dala evolves in the north-west group of
buildings, while the helicopter Ressac is flying along a swathing pattern
oriented diagonally between the north-west and south-eastgroups of
buildings, at an elevation of about 40m. The red rectangle approximately
represents the field of view of the image acquired by Ressac shown on
top-right of the figure. On this latter image, the red angularsector shows
approximately the field of view of Dala when taking the bottom-right
image.

(a) Dala (b) Ressac

Fig. 5. Ground and aerial robots used for the experimental validation.

Anchoring: This step is trivial as we have interest in making
the anchor p0 coincide with the current camera position,
which is the origin when we are in camera frame,

ΛC =

2

4

0

nC

vC

3

5 . (18)

Back-projection and transformation: The operations above
plus the transformation to the global frame (8) can be
composed and written as a single-step function ofR, T, l
and β,

Λ =

"

p0

n
v

#

=

2

4

T

RK−1l
REβ

3

5 . (19)

ALP initialization and update in EKF-SLAM. We now
have expressed all the basic relations to deal with APL, that
are useful to exploit them in an EKF framework. The line
initialization and update equations are not depicted here,
details can be found in [8].

V. EXPERIMENTAL RESULTS

The environment is “semi-structured”, in the sense that it
does not contain as many buildings as an urban area – and
the building themselves do not contain many straight lines or
perfect planar areas, see Figures 4.

The ground robot Dala is an iRobot’s ATRV platform,
equipped with a calibrated stereo-vision bench made of two
1024× 768 cameras with a baseline of0.35m. The helicopter
Ressac is controlled by algorithms developed at Onera [12],
and is also equipped with a calibrated stereo vision bench
made of two 1024 × 768 cameras, with a 0.9m baseline
(Figure 5).

Involved processes. Unfortunately, because of engineering
issues encountered during the data collection, no inertialor

odometric motion estimates are available2. As a consequence,
we use a visual odometry approach based on stereo vision for
the motion prediction steps of the EKF SLAM algorithms – all
the results presented hereafter have therefore been obtained
using exclusivelyvisual data.

The SLAM algorithms integrate two types of observations
from only one camera; image points ( parametrized as inverse-
depth points) and image line segments (parametrized as
anchored Plücker line segments). At each image acquisition,
point observations are firstly processed: the resulting updated
motion estimate is exploited by the line segment tracker, and
line landmarks observations are then processed. A heuristic
is used to select the points that will be used as landmarks:
the image is regularly partitioned in 3 × 3 regions, in which
one ensures that at least2 landmarks are being tracked. As
for the lines, all the ones whose length is grater than60 pixels
are retained as landmarks.

Point landmarks are Harris interest points, that are
matched from one view to the other with the group based
matching procedure described in [13]. We use different ini-
tialization parameters for inverse depth point parametrization
with Dala and Ressac. Dala’s parameters areρinit = 0.1
m−1 and σρ = 0.2 m−1, while Ressac’s parameters are
ρinit = 0.025 m−1 and σρ = 0.0125 m−1 (the points are
initialized at 40m, which is its the helicopter average elevation
over the terrain.

We use the algorithms presented in [14] to detect and track
segments. For the estimation part, the a priori parameters
used in the experiment for the APL areβ = (0.025, 0), σβ1

=
0.025 and σβ2

= 0.0375 for both robots. The prediction of the
line segment position in the image, required for the segment
tracker, is done using the projection of the 3D line segment
into the image frame.

New local maps are created when 100 landmarks
(combining points and line segments) are in the map.
Immediately after, the current robot’s pose is the new
relative transformation in the global graph.

Enforcing loop closures. In the experiments, we have two
types of events: rendezvous and image to image matching.

• The rendezvous is emulated using matches of interest
points perceived by the two robots using their current
image frames. The 3D coordinates of the points in each
robot frame are obtained by stereo vision: as a result,
the point matches yields an estimate of the relative robot
position.

• The image matching event recovers the relative transfor-
mation between the current robot’s pose and a past pose
from a different robot (origin of a local sub-map), using
also matches of interest points between their respective
frames.

Figure 7 shows results obtained by the integration of events
between Dala and Ressac. Dala starts at the entry of the north-
west group of buildings, with no uncertainty in its local map,
but also in the wrf : the first Dala sub-map is the origin of the
world. Ressac starts above Dala, and heads towards south-
east. A first rendezvous event occurs immediately after start,
and Ressac is localized in Dala’s reference frame.

A second event occurs after Ressac comes back from the
south-east village, passing above a place previously visited
by Dala. The effects of the image to image matching event
are shown in Figure 6. The figure also shows the image
frames that were evaluated for the matching: new local maps
are initiated afterward for both robots. Note that Ressac’s
uncertainty in height is pretty large, especially before the
second event: the visual motion estimates are indeed not very
precise in the vertical direction, because Ressac stereo baseline
is small with respect to the depth of the perceived points –
and the integration of points and lines in the sub-maps does
not reduces much the elevation estimates. However, after the
image to image matching event, the elevation of Ressac and
the origins of all the built maps are strongly corrected.

2GPS ground truth could neither be recorded.



(a) Image frame for Dala (b) Image frame for Ressac

(c) Before an event (d) After an event

Fig. 6. Top: Image frames from both robots before the event. Green
squares represent interest point currently considered as landmarks, yellow
squares represent interest points just initialized as landmarks. The line
segments are in blue, with endpoints in red. Yellow ellipsesare the
uncertainty in the image view. Bottom: Event effect in the global map,
the sub maps origins expressed in thewrf are the large ellipsoids – only
3D line segments landmarks are shown here.
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Fig. 7. Comparative trajectory plots: visual odometry in dash-dot line,
open loop run in dashed line and cooperative run for Dala (left) and
Ressac (right).

VI. CONCLUSION

We have explored the use of a multiple local maps technique
for multi-robots according to a hierarchical SLAM approach ,
in which loop closures are integrated through an optimization
process (an Iterative EKF). Loop closures are triggered using
multi- or single-robot events such as finding information
correspondences between unconnected local maps, rendezvous
between two robots or GPS fixes. Therefore, the mapping
problem is relegated within the local sub-maps, and is
decorrelated from the global localization problem, making
our approach akin to a cooperative localization approach.
The approach is distributed, and the graph level is the sole
information that must be exchanged between the robots. It is
well suited to a multi-robot context, and it can in particular
handle all the possible localization means, from odometry to
absolute localization with respect to an initial model.

In order to build more meaningful landmark maps and to
be able to match data acquired from very different vantage
points (or even different sensors), we have proposed to use line
segments to build a wireframe model. An important contribu-
tion of this paper is the new line segment parametrization for
undelayed initialization. We add an anchor to our previously
proposed parametrization [8] to improve the linearity, exactly

as it is done with inverse-depth points. Thanks to the cross-
correlations stored in the EKF, the anchor allows the filter
to account for accumulated errors only from the anchor
to the current position, not from the origin of coordinates.
Ongoing work is a more detailed analysis of different line
parametrization in view of their linearity behavior.

Heterogeneous visual landmarks are proposed to map
semi-structured environments. We combine inverse-depth
points and anchored Plücker line segments. Our experiments
show that inverse-depth points, that are numerous in the
scene but not very robust to large viewpoint variations,
play a crucial role for robot localization, while Plücker li ne
segments, that are seldom in semi-structured environments
but allow detection and matching from disparate viewpoints,
are well suited to build a 3D model that exhibit some of the
environment structure.
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