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1 ABSTRACT

This article presents an approach to the terrain-aided navigation
problem suitable for unmanned aerial vehicles flying at low alti-
tude. The problem of estimating the state parameters of a flying
vehicle is addressed in the particular situation where the GPS in-
formation is unavailable or unreliable due to jamming situations
for instance. The proposed state estimation approach fuses in-
formation from inertial and image sensors. Absolute localization
is obtained through image-to-map registration. For this purpose,
2D satellite images are used. The algorithms presented are imple-
mented and tested on-board an industrial unmanned helicopter.
Flight-test results will be presented.

2 INTRODUCTION

Operating Unmanned Aerial Systems (UAS) in non-segregated or
civil airspace represents a technical challenge. Several problems
have to be solved in order to safely operate such systems in popu-
lated areas. As an example, an important problem is represented
by the capability of an UAS to autonomously perceive and avoid
obstacles. Such characteristic is often addressed in the literature
as the ”See and Avoid” capability. A general robust solution to
this problem is non trivial.

Another important problem, which is the focus of this article, is
related to GPS vulnerability. Modern GPS receivers are capa-
ble of providing global position and velocity information with
high accuracy. Such information is of vital importance for au-
tonomous navigation for two reasons: it gives an absolute local-
ization means and it can be used to estimate and compensate for
the inertial sensors errors. Normally, a UAS navigation system
relies on inertial sensors and GPS for estimating the platform
states. The main states of a UAS are the position, velocity, ac-
celeration, attitude angles and attitude rates. A precise estimation
of the states is essential for accurate autonomous control of the
platform. When the GPS is unreliable or unavailable the estima-
tion of the states becomes inaccurate and the UAS autonomous
capabilities are not fulfilled.

The inertial sensors, or inertial navigation system (INS), are com-
posed of 3 gyroscopes which measure the 3D angular rates, and 3
accelerometers which measure the 3D acceleration. Time integra-
tion of the inertial sensors provides platform state information at
high rate. The drawback is that, during the integration, the inac-
curacies of the inertial sensors cause a drift of the computed states
from the real platform states. The drift problem can be solved
with an appropriate sensor fusion algorithm combining the INS
solution with an external position information. The Kalman filter
represents the standard fusing algorithm which optimally solves
this kind of state estimation problems.

The major concern when using a GPS system is its vulnerabil-
ity to jamming (Volpe, 2001). The availability of GPS jamming

Figure 1: The Yamaha Rmax UAV helicopter.

technology on the market makes a UAS unsafe because suscep-
tible to jamming actions. The scope of this article is to propose
a solution to the state estimation problem in situations of GPS
unavailability. To achieve this goal, the proposed solution em-
ploys an image sensor (monocular video camera) to supply for
the missing GPS information. It is evident that it is very difficult,
for any alternative system, to compute position and velocity in-
formation with accuracy comparable to the one provided by state
of the art GPS receivers. The solution proposed provides a grace-
ful degradation of the state estimation preserving the autonomous
flight capabilities of the platform.

The vision system is composed by an image sensor and an image
processing software. The main components of the image pro-
cessing software are the visual odometry and geo-referenced
image registration. Visual odometry and geo-referenced im-
agery provide a complementary source of information. Visual
odometry provides information on the UAS displacement (rel-
ative position) while geo-referenced imagery provides absolute
position information. Both information are required in order to
obtain a robust solution. The growing availability of high reso-
lution satellite images (for example provided by Google Earth)
makes this topic quite attractive. Approaches which use terrain
information for navigation are also referred to as terrain-aided
navigation (TAN).

TAN problems are usually non-linear and have a multi-modal
probability distribution. For such problems Kalman filter tech-
niques cannot be applied. One possible approach is to decom-
pose the state estimation problem in two parts. One part is related
with the position estimation, which is usually the non-linear and
multi-modal part, while the other part addresses the velocity and
attitude estimation where Kalman filter applies. This approach is
followed in the work presented in this article and extended details
can be found in (Conte, 2009).

TAN approaches can be divided in two categories, approaches



which require an a priori terrain map and approaches which tries
to build the map of the environment on-line.

Approaches which tries to build a map on-line are better known
under the acronym SLAM (Simultaneous Localization and Map-
ping. The goal of SLAM is to localize a robot in the environ-
ment while mapping it at the same time. Prior knowledge of the
environment is not required. In SLAM approaches, an internal
representation of the world is built on-line in the form of a land-
marks database. Such a representation is then used for localiza-
tion purposes. For indoor robotic applications SLAM is already
a standard localization technique. More challenging is the use of
such technique in large outdoor environments. Some examples of
SLAM applied to aerial vehicles can be found in (Karlsson et al.,
2008, Kim and Sukkarieh, 2007).

Terrain databases used for TAN can be of divers nature. Some ap-
proaches make use of terrain elevation database (Bergman, 1999).
A direct measurement of the flight altitude relative to the ground
is required. Matching the ground elevation profile, measured with
a radar altimeter for instance, to an elevation database allows
for aircraft localization. A commercial navigation system called
TERNAV (TERrain NAVigation) is based on such a method. Nav-
igation systems based on this principle have been implemented
successfully on some military jet fighters and cruise missiles. In
case of small UAVs and more specifically for unmanned heli-
copters, this method does not appear to be appropriate. Compared
to jet fighters, UAV helicopters cover short distances at very low
speed so the altitude variation is quite poor in terms of allowing
ground profile matching.

The terrain database used in this work is represented by 2D or-
thorectified reference images. The use of reference images for
aircraft localization purposes is also investigated in (Sim et al.,
2002). The work focuses mainly on the image processing is-
sues and gives less emphasis to architectural and fusion schemes
which are of focus in this article.

TAN problem is of great interest not only for terrestrial applica-
tions but also for future space missions. One of the requirements
for the next lunar mission in which NASA/JPL is involved, is to
autonomously land within 100 meters of a predetermined loca-
tion on the lunar surface. Traditional lunar landing approaches
based on inertial sensing do not have the navigational precision
to meet this requirement. A survey of the different terrain nav-
igation approaches can be found in (Johnson and Montgomery,
2008) where methods based on passive imaging and active range
sensing are described.

The scope of this article is to present experimental results of a
TAN approach where a single video camera is used to extract two
different type of information: relative displacement (odometry)
and absolute position (image registration). This is a very practical
and innovative concept. The approach presented is implemented
on a Yamaha Rmax unmanned helicopter (Figure 1) and tested
on-board during autonomous flight-test experiments.

3 SENSOR FUSION ALGORITHMS

The sensor fusion architecture presented in this article is depicted
in Figure 2.

The state estimation problem is divided in two parts. A Kalman
filter (KF) is used to estimate the INS errors ˆδxk while a point-
mass filter (PMF) is used to estimate the horizontal (north-east)
position x̂p. The reason why the state estimation problem has
been decomposed in this way is that the estimation of δx̂k can be
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Figure 2: Sensor fusion architecture.

modeled as unimodal linear Gaussian process while for x̂p a full
probability distribution has to be maintained over the 2D image
registration area.

3.1 Kalman filter

The KF implemented estimates the INS errors instead of the plat-
form states directly (error dynamics formulation). The advantage
of such formulation lies in the fact that the dynamics of the INS
errors are much slower than the platform dynamics itself, hence,
the error dynamics KF can be implemented with a slower rate.
The estimated errors are used to correct the INS navigation so-
lution. This is realized in practice by feeding back the estimated
errors to the INS as it is shown in Figure 2. For the KF implemen-
tation a linearized INS error dynamic model is used. More details
can be found in (Britting, 1971, Shin, 2001). The state-space
model used in the KF has the following standard linear structure:

˙δxk = Fδxk + Gu (1)
δyk = Hδxk + e (2)

where Equation 1 represents the dynamics model of the state evo-
lution and Equation 2 is the measurement equation.

δxk = [δh δvn δve δvd εφ εθ εψ δax δay δaz]
T

represents the KF error-state vector (altitude, 3D velocity, 3 atti-
tude angles and 3 accelerometer biases) and

δyk = [hins−hbaro, vinsn −vodomn , vinse −vodome ]T (3)

represents the measurement vector (difference between the INS
solution and sensor measurement). For the altitude measurement
a barometric sensor is used (hbaro). The barometer measures
the absolute atmospheric pressure. This sensor is usually used
to compute the differential pressure between a point of known
altitude (usually the take-off position) and the current flight posi-
tion. The differential pressure is then converted in altitude varia-
tion (meters) relative to the take-off position. The velocity north



(vodomn ) and velocity east (vodome ) measurements are derived from
the odometry. Finally, u and e are the process and measurement,
Gaussian distributed, white noises. The optimal estimation of the
error-state vector ˆδxk is computed from the well known Kalman
filter recursion.

3.2 Point-mass filter

The point-mass filter (PMF) is used to fuse measurements coming
from the visual odometry and image registration modules. The
PMF computes the solution to the Bayesian filtering problem on
a discretized grid (Bucy and Senne, 1971). In (Bergman, 1999)
such a technique was applied to a TAN problem where a digital
terrain elevation database was used instead of digital 2D images.
The PMF is particularly suitable for this kind of problems since it
handles general probability distributions and non-linear models.

The discretized dynamic model employed to solve the 2D local-
ization problem is represented as follows:

xpt = xpt−1 + uodomt−1 + v (4)

p(ypt |x
p
t ) (5)

where Equation 4 represents the dynamic equation for the state
evolution and 5 the measurement likelihood.

xp = [pn pe]
T

is the 2D state vector representing the north and east position,
uodom is the position displacement coming from the visual odom-
etry and v is the process noise. The process noise is assumed
white and Gaussian distributed.

It is worth to notice that, while the state evolution Equation 4 is
described as a linear Gaussian process, the measurement likeli-
hood (5) is expressed in the most general form, which means that
no assumptions are made on its shape (in the KF the likelihood is
assumed to be Gaussian). The measurement likelihood p(yp|xp)
is provided by the image registration step as it will be explained
later in the article.

The solution x̂p of the state estimation problem (4)-(5) is obtained
by solving the Bayesian filtering recursion on a discretized 2D
grid mesh. The grid used in this application is uniform with N
number of points and resolution δ. The discretized recursion is:

p(xpt (k)|Yt−1)=

N∑
n=1

pv(x
p
t (k)−u

odom
t−1 −xpt−1(n)) p(x

p
t−1(n)|Yt−1)δ

2

(6)

αt =

N∑
n=1

p(yt(n)|xpt (n))p(xpt (n)|Yt−1)δ
2 (7)

p(xpt (k)|Yt) = α−1
t p(yt(k)|xpt (k))p(x

p
t (k)|Yt−1) (8)

x̂pt =

N∑
n=1

xpt (n)p(xpt (n)|Yt)δ2 (9)

Pt =

N∑
n=1

(xpt (n)− x̂pt )(x
p
t (n)− x̂pt )

T p(xpt (n)|Yt)δ2 (10)

with Yt−1 = y1:t−1 and k = 1...N . The terminology p(xpt (k)|Yt)
indicates the value of the probability density function correspond-
ing to the point k on the grid. Equations 6 and 8 represent the time
and measurement updates respectively while the estimation of the
minimum variance state vector and its uncertainty are computed
from Equations 9 and 10 respectively.

The convolution operation in the time update (6) requires N2 op-
erations and computationally is the most expensive operation of
the recursion. For this reason the PMF approach becomes com-
putationally unfeasible for real-time applications when the state
dimension is greater than 3 or 4. In this application we have a 2D
state vector and the PMF works excellently even in real-time. In
this application a uniform static grid mesh gives a sufficient accu-
racy but adaptive grid algorithms also can be used. The idea with
the adaptive grid is to dynamically increase the grid resolution in
regions with high probability while decreasing the resolution in
other regions. This should produce a more accurate estimation
solution. More details on the PMF implementation can be found
in (Bergman, 1999).

A different algorithmic approach to the Bayesian filtering prob-
lem is represented by the particle filter. In the particle filter ap-
proximation, the Bayesian recursion is solved on a stochastic grid
where the grid is represented by particles. The particles become
more dense in regions with high probability and vice versa. The
particle filter is computationally more efficient than the PMF. On
the other hand other kind of problems arise when using the parti-
cle filter approach. In any case the particle filter represent a valid
alternative to the PMF.

4 VISUAL ODOMETRY

Visual odometry for aerial navigation has been object of great in-
terest during the last decade. In the early work (Amidi, 1996) it
was shown how a visual odometry is capable of stabilizing an au-
tonomous helicopter in hovering conditions. Recent works (Fri-
etsch et al., 2008, Michaelsen et al., 2004) on visual odometry for
airborne applications are based on homography estimation un-
der a planar scene assumption. In this case the relation between
points of two images can be expressed as x2 ∝ Hx1 where x1

and x2 are the corresponding points of two images 1 and 2 ex-
pressed in homogeneous coordinates and H is the 3x3 homogra-
phy matrix. The relation is valid up to a scale factor. The visual
odometry described in this article is based on robust homography
estimation.

The camera rotation and displacement between two camera po-
sitions c1 and c2, can be computed from the homography matrix
decomposition (Hartley and Zisserman, 2003):

H = K
(
Rc2c1 +

1

d
~tc2~nc1T

)
K−1 (11)

whereK is the camera calibration matrix determined with a cam-
era calibration procedure, ~tc2 is the camera translation vector ex-
pressed in the camera 2 reference system,Rc2c1 is the rotation from
camera 1 to camera 2, ~nc1 is the unit normal vector to the plane
being observed and expressed in the camera 1 reference system
and d is the distance of the principal point of the camera 1 to the
plane. For this work a pin-hole camera model is used.

The homography matrixH is estimated from a set of correspond-
ing corner features being tracked from frame to frame. H can be



estimated using direct linear transformation (Hartley and Zisser-
man, 2003) with a minimum number of four feature points (the
features must not be collinear). In practice the homography is
estimated from a higher number of corresponding features (50
or more). The feature tracker used in this work is based on the
well-known KLT algorithm. The algorithm selects a number of
features (corners) in an image according to a ”goodness” criteria
described in (Shi and Tomasi, 1994). Then it tries to re-associate
the same features in the next image frame. In any case, incorrect
feature association can occur. A method to identify incorrect fea-
ture correspondences is therefore desirable. One popular method
is the random sample consensus (RANSAC) algorithm (Fischler
and Bolles, 1981). In Figure 3 the RANSAC algorithm has been
applied on a set of features tracked in two consecutive frames.
On the left are represented the feature displacements computed
by the KLT algorithm while on the right the set of outlier features
has been detected and removed using RANSAC.

Figure 3: On the left is displayed the set of features tracked with
the KLT algorithm. On the right the outlier feature set has been
identified and removed using the RANSAC algorithm.

Once the homography matrix has been estimated it can be decom-
posed into its rotation and translation components in the form of
Equation 11 using singular value decomposition as described in
(Hartley and Zisserman, 2003). However, homography decom-
position is a poorly-conditioned problem especially when using
cameras with a large focal length (Michaelsen et al., 2004). The
problem arises also when the ratio between the flight altitude and
the camera displacement is high. For this reason it is recom-
mendable to use inter-frame rotation information from other sen-
sor sources if available. The odometry presented in this work uses
rotation information from the INS. Equation 11 can be rearranged
as follows:

~tn~nnT = d
(
Rc2n

T
K−1HKRnc1

T − I
)

(12)

where~tn is the camera displacement vector expressed in the navi-
gation reference frame (north-east-down),Rc2n is the rotation ma-
trix from the navigation frame to the camera 2 frame and Rnc1
is the rotation matrix from camera 1 to the navigation frame.
In (Conte, 2009) can be found more details on the derivation of
Equation 12.

The rotation matrices Rc2n and Rnc1 are taken from the compen-
sated INS solution (Figure 2). This fact creates an undesirable
correlation between the measurement noise and the process noise
in the KF since the odometry information is used to update the
KF. This problem was analyzed in (Conte, 2009) through Monte
Carlo simulations where a dependency between the altitude d and
the estimation accuracy was found. It was shown that below 200
meters altitude the state estimation accuracy was marginally af-
fected by the correlation problem. On the other hand, the accu-
racy degrades at higher altitude.

In order to compute ~tn from Equation 12, the parameters d and

~nn must be found. The distance to the ground d can be mea-
sured from an on-board laser or radar altimeter. Alternatively,
a terrain altitude database could be used, if available, to derive
both d and ~nn. The flight-tests presented in this article where
performed over a flat area, therefore the differential barometric
altitude, measured with an on-board barometric sensor, was di-
rectly used as a measurement of the ground altitude. The flat
terrain condition imposes also ~nn = [0, 0, 1].

Finally, indicating with RHS the right hand side of Equation
12, the north and east helicopter displacement computed by the
odometry are:

tnnorth = RHS1,3

tneast = RHS2,3 (13)

The computed (north-east) odometry displacement are used as in-
put ~uodom in Equation 4. For the Kalman filter update a north and
east velocity (vodomn , vodome ) were required (Equation 3). This
was simply obtained dividing the odometer displacements by the
image processing rate.

5 IMAGE REGISTRATION

Image registration is the process of overlaying two images of the
same scene taken at different times, from different viewpoints and
by different sensors. The registration geometrically aligns two
images (the reference and sensed images). Image registration has
been an active research field for many years and it has a wide
range of applications. A literature review on image registration
can be found in (Brown, 1992, Zitova and Flusser, 2003).

For the application described in this article the registration po-
sition of the two images is not required but only the degree of
similarity of the sensed image for every location of the refer-
ence image. The similarity criterion used is the normalized cross-
correlation of intensity images (Pratt, 1991). After the correlation
map between the two images is found, the likelihood p(yp|xp),
which is used as observation in the PMF, is computed by a nor-
malization step.

Before computing the correlation map, the sensed image is scaled
and aligned to the reference image using the altitude information
from the pressure sensor (as for the odometry) and heading in-
formation from a magnetic compass. Pitch and roll angles are
small for this application therefore the associated image defor-
mation is neglected. After the alignment and scaling steps, the
cross-correlation is computed. If S is the sensed image and I is
the reference image, the expression for the two-dimensional nor-
malized cross-correlation is:

C(u, v)=

∑
x,y

[S(x, y)−µS ][I(x−u, y−v)−µI ]√∑
x,y

[S(x, y)−µS ]2
∑

x,y
[I(x−u, y−v)−µI ]2

(14)

where µS and µI are the average intensity values of the sensed
and the reference image respectively. Figure 4 depicts a typical
cross-correlation result between a sensed image taken from the
Rmax helicopter and the reference image of the flight-test site.

For computational reasons, the cross-correlation is performed on
a restricted window of the reference image. The window is cen-
tered around the current platform position estimates. It must be



Figure 4: Typical normalized cross-correlation result between the
sensed image and reference image. The distribution represents
the likelihood of the measurement observation used to update the
PMF.

pointed out that the correlation between the reference and sensed
images does not correspond to the helicopter absolute position
likelihood directly. A horizontal offset correction must be ap-
plied to the cross-correlation map in order to compensate for the
camera view angle. The offset correction is easily found using
the flight altitude and attitude angles information.

6 EXPERIMENTAL RESULTS

The proposed filter architecture has been implemented and tested
on-board the industrial Yamaha Rmax UAV helicopter (Figure
1). The total helicopter length is about 3.6 m. It is powered by
a 21 hp two-stroke engine and it has a maximum take-off weight
of 95 kg. The avionic system was developed at the Department
of Computer and Information Science at Linköping University
and has been integrated in the Rmax helicopter. The platform
developed is capable of fully autonomous flight from take-off to
landing.

The inertial measurement unit used is composed of 3 accelerom-
eters and 3 gyros and it is built-in the Yamaha Rmax helicopter.
The unit outputs accelerometer data at 66Hz and gyro data at
200Hz. The data were pre-processed with an anti-aliasing fil-
ter (20Hz) before sampling. The data were sampled at 50Hz
rate. The barometer and compass output data at 40Hz rate. The
video camera sensor is a standard CCD analog camera with ap-
proximately 45 degrees horizontal angle of view. The camera
frame rate is 25Hz and the images are reduced to half resolu-
tion (384x288 pixels) at the beginning of the image processing
pipeline to reduce the computational burden.

The filter architecture is implemented on 2 on-board pc104 Pen-
tiumIII 700MHz computers. Network communication between
computers is physically realized with serial line RS232C and Eth-
ernet. Ethernet is mainly used for remote login and file transfer,
while serial lines are used for hard real-time networking. The
implementation of the filtering architecture has been split among
the two computers. In the first pc104 is implemented the Kalman
filter running at 50Hz (and the control system for autonomous
flight). On the second pc104 are implemented the visual odom-
etry, image registration and point-mass filter all running at 7Hz
rate. Data were exchanged between the two PCs through serial
line. For the PMF a 80x80 meters grid of one meter resolution
was used. Consequentially, the image registration was computed
on a moving 80x80 meters restricted portion of the reference im-
age. The flight-tests were performed in an emergency services
training area in the south of Sweden. The reference image of the
area used for this experiment is an ortho-rectified aerial image

of 1 meter/pixel resolution. The results of the terrain-aided navi-
gation algorithm are compared to a navigation solution given by
an INS/GPS Kalman filter assumed as reference. The RTK GPS
used has a sub-meter position accuracy.

Figure 5 depicts the evolution of the filter probability density
function (PDF). The initial density for xp0 is assumed Gaussian
distributed. It can be observed how, after a few iterations, the PDF
evolves developing several peaks confirming the multi-modal na-
ture of the problem.

t0 t0 + 1

t0 + 4 t0 + 8

Figure 5: Evolution of the PMF probability density function. The
capability of the filter to maintain the full probability distribution
over the grid space can be observed.

Figure 6 shows the horizontal position error. The position con-
verges in about 20 sec to a position error below 5 meters.
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Figure 6: Convergence of the position estimate.

Figure 7 shows the pitch angle error. As for the position, the pitch
error converges in about 20 sec. The pitch accuracy is below 1
deg after convergence.
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Figure 7: Convergence of the pitch estimate.

Figure 8 shows a UAV flight path flown at the flight-test site.
The helicopter flew a closed loop path of about 1 km length at
60 m constant altitude above the ground and with 3 m/s veloc-
ity. The picture presents a comparison between the position es-
timated from the PMF, visual odometer and GPS reference. The
PMF position is always close to the GPS position indicating a
satisfactory localization performance of the approach. In addi-
tion, it can be observed how the position of the visual odometry
alone is affected by a drift which is correctly compensated using



the information extracted from the geo-referenced image of the
flight-test site. The results in this plot were obtained running the
algorithm off-line using real flight-test data
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Figure 8: The figure displays the comparison between the flight
path computed with the point-mass filter (red), the odometry
alone (dashed white) and the GPS reference (blue).

In the first phase of the development, the off-line tests have been
helpful for tuning and refining the algorithms. In the second
phase, the algorithms have been implemented on-board the Rmax
helicopter and tested in flight. Figure 9 shows the flight-test re-
sults. The helicopter was partially flown in autonomous mode
with the control system using the state estimated from the sen-
sor fusion approach described in this article. The PMF path in
the figure was computed on-board the Rmax during the flight-test
and the flight data were downloaded after the flight. The path was
flown at an altitude of 55 m above the ground with a maximum
speed of 4 m/s.
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Figure 9: Real-time on-board position estimation results. Com-
parison between the flight path computed with the PMF (red) and
the GPS reference (blue).

7 CONCLUSIONS

The terrain-aided navigation approach proposed in this article is
suitable for implementation on-board a UAV platform and can
serve as a back-up state estimation approach in case the GPS
system fails. Global localization capabilities have been demon-
strated over an urban-like area with houses and a road network.
Global localization will be more problematic over a rural area in
absence of structured features. In any case, visual odometry per-
forms quite well even in rural areas and it can still be used to
greatly reduce the INS drift.
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