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Absfmcf-This paper addmses the robust fuzzy control 
problem for discrete-time nonlinear systems in the presence 
of sampling time uncertainties in a visual-servoing control 
scheme. The Thkagi-Sugeno (T-S) fuzzy model is adopted 
fur the nonlinear geometric model of a pin-hole camera, 
which presents secondurder nanlinearities. The case of the 
discrete T S  fuzzy system with sampling-time uncertainty is 
considered and a multi-objective robust fuzzy controller design 
is proposed for the uncertain fuzzy system. The sufficient con- 
ditions are formulated in the form of linear ma& inequalities 
(Lkll). The effectiveness of the proposed conholler design 
methodology is demonstrated through numerical simulation, 
then tested on a EVI-D31 SONY camera. 

Keywords- Visual-servoing, T-S fuzzy gain scheduled 
control, Linear Matrix Inequalities, sampling time uncer- 
tainty, Lyapunov robust stability, LQR guaranteed cost, 
multi-objective robustness. 

I. INTRODUCTION 

The overall objective of the Wallenberg Laboratory 
for Information Technology and Autonomous Systems 
(WITAS) at Linkoping University is the development of an 
intelligent command and control system, containing active- 
vision sensors, which supports the operation of a unmanned 
air vehicle (UAV). One of the UAV platforms of choice is 
the R50 unmanned helicopter, by Yamaha. The intended 
operational environment is over widely varying geographi- 
cal terrain with traffic networks and vehicle interaction of 
variable complexity, speed, and density. The present version 
of the UAV platform is augmented with a camera system 
and robust performance for the visual-servoing scheme is 
desired. Robustness in this case is twofold: I )  w.r.1 time 
delays introduced by the image processing system, these 
can vary in the interval [40,100] msec.; 2) w.r.1 parameter 
uncertainties as the camera focal distance and un-modelled 
dynamics which reflect on the feature position in the image 
[pX,py]' and the camera pose [Q,O+]~. In this context, 
our goal is to explore the possibilities for achieving robust 
performance w.r.t image feature tracking, and test a control 
solution in both simulation and on a real camera platform. 
Then we implement and test the resulting controller on the 
camera platform -to be later on mounted on the UAV. 

In this work we address the design of a controller that 
achieves stable and robust image feature regulatiodtracking 
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for a padtilt camera. The controller is obtained using a 
realistic nonlinear model of a pin-hole camera. The model 
used is a nonlinear MLMO system described in terms of 
a geometric model of a pin-hole camera with a vary- 
ing sampling-time. We employ a gain-scheduling approach 
based on the use of Takagi-Sugeno (T-S) fuzzy models 
[I], i.e.,firzzy goin-scheduling (FGS). The FGS design is a 
two-step approach (see [2], [3], [4]) - I )  the linearization 
of the model into a T S  fuzzy model; 2 )  synthesis of linear 
controllers and a gain scheduler with guaranteed global 
stability and robustness properties w.r.t time delays. 

In many cases it is very difficult, if not impossible, 
to obtain the accurate values of time stamp in a system 
whose control depends on an asynchronous feedback, due 
to - in the case of our setup- the delays occurring in the 
feature extraction process. The inaccessibility to the system 
parameters or on-line variation of the parameters ( focal 
distance or noisy feature reading ) are yet another factor 
for decreased the control performance. This motivates the 
use of the FGS approach to cope with the parameters' 
variation aforementioned. The stability analysis of a fuzzy 
system is not easy, and parameter tuning is generally a 
time-consuming procedure, due to the nonlinear and multi- 
parameuic nature of the fuzzy control systems. Moreover, 
it is very important to consider the robust stability against 
parametric uncertainties in the T-S fuzzy-model-based con- 
trol systems. This remains to he a central issue in the study 
of uncertain nonlinear control systems. Robustness in fuzzy 
model-based control in discrete-time models with fixed 
sampling-time and parametric uncertainties has been studied 
before 151. Asymptotic stability for T S  fuzzy system with 
fixed and known time-delays was addressed for both the 
continuous- and discrete-time cases in [6]. Augmented sta- 
bility with guaranteed-cost design for T-S fuzzy controllers 
in discrete-time case with fixed sampling-time is presented 
in 171. Our novel contribution in this work is to reflect these 
approaches altogether into a scheme to tackle the problem of 
unceltainty due to varying sampling-time and unstructured 
uncertainties. The idea that the system is described as a 
combination of locally linear sub-models where the varying 
sampling-time is a premise to the fuzzification motivates 
the use of FGS approach and performance analysis through 
LMls. 

The paper is organized as follows: Section I1 introduces 
the general scheme for the visual-servoing control problem 
and presents the camera and image processing model. In 
section IIJ the model is further developed and discretized 
into the T-S fuzzy form using the FGS approach. The 



controller design method for robust stabilization in discrete- 
time of the T-S fuzzy systems in the presence of varying 
sampling-time and parametric uncefiainties is proposed in 
Section IV. Section V shows controller design feasibility 
and simulation results. Finally, conclusions are given in 
Section VI with some discussion. 

11. VISUAL-SEKVOING SYSTEM 

A. General scheme 

We will present in this section the global visual-servoing 

The system illustrated by Fig. I functions as follows: 
scheme. 

The camera has its own internal rate and pose con- 
trollers. Its inputs are reference values of padtilt rates 
w: and w;. The output of this subsystem is the camera 
orientation (pose), and Oy, and a video-stream of the 
region exposed. 
The video-flow is processed by the image-grabber 
and image-processing subsystem. The image grabber 
'samples' the optical flow into separate images (25 
imageshec.) which are buffered for further image pro- 
cessing: It is here that time-delays of varying nature 

The image processing inputs the images at a certain 
rate, and outputs a position p = k , p y ]  in image 
coordinates of a panicula feature (see Fig. 1). This 
data is feeded hack in real-time to the visual controller. 
Funhermore, the position p reading can he altered by 

uccur. 

. Model parameters and nn-modelled dynamics may 
affect the performance: In our setup, the camera +rice 

mounted on the UAV performing lateralllongitudinal 
accelerations and tums- will see a degradation of its 
padtilt performance due to Coriolis forces induced by 
the UAV motion. These conditions affect the perfor- 
mance of the camera, and the dynamics induced are 
not considered for the control design. 

In this work, we will consider these factors as uncer- 
tainties in the dynamics of the visual-servoing scheme. The 
following subsections will present more details about the 
model used and the measures taken to minimize the action 
of the factors aforementioned in the pelformance of the 
visual-servoing system. 

B. Camera and image-pprocessing model 

This section is presenting the camera and image- 
processing (CIP) model. The padtilt camera subsystem is 
basically consisting of two DC motors used for positioning 
the camera toward a direction of interest. From a system 
point-of-view, the image processing suhsystem is basically 
consisting of a sampler and a geometlic transformation from 
camera posehate to feature position in the image. 

In order to derive a model suitahle for control design, we 
make the following assumptions: 

I )  the CIP subsystems are lumped together and we 
assume that the resulting system is continuous 

2) the control input to the lumped system is angular 
rate commands w = [%, q]. and the output is the 
position, p = [p,, py]  of the feature in the image 
frame. 

3) the acceleration dynamics of the camera DC-motors 
are neglected, only the integration part of the dynam- 
ics is considered. 

4) the model is described w.r.t the camera frame. 
The pin-hole camera geometric model is featured as an ideal 
perspective projection, and represented as follows 

where pc  = b;, p f . ,  p;]' is the position of a single feature 
by *e point pc- in the camera frame centered 

noise. 
The objective of the controller subsystem is to position 
the camera so that the feature is centered in the image - 
(see Fig. 2). It delivers thus a profile of reference values 
in terms of camera pose-rates to be regulated, to bring 
the (moving) feature to the center of the image. 

Many factors may be responsible for the degraded sta- 
bility and performance for the control scheme presented 
above: . Time-delays can occur from both the feature extrac- 

tion process or ullknowdunmodelled dynamics of the 
camera control loop: The performance of the feature 
extraction process could extend from 40 msec. (video- 
stream rate), to a 100 msec. (computer system inter- 
ruptions). Fig. 2. The mnU01 objective 

Feslure p d m  p - l r . ~ ~  
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at the pin-hole of the camera. f is the focal distance 
for the camera lens. Using the assumptions (1-3) above, 
assuming that the camera moves with translational velocity 
f l  = b:> p;, $ I T  and angular velocity w = [w,: q, y] r 
and deriving (1) w.r.t time, expressed in the camera frame 
leads to the optical flow equation 

Using assumption (4) (see also [SI), the camera is con- 
strained only to padtilt motions. The CIF’ model is sim- 
plified to the expression 

where p = [pX,py]’ is the translational velocity of the 
feature p in the image frame, and w = [ m X , q l r  is the 
angular velocity of the camera. In the standard state-space 
formulation, the system looks as follows 

where x = [XI, x2IT and U = [u l ,  uZIr denote p and w ,  
and 

A = O Z ;  W = [ $  -Y (4) 

The model (3) shows nonlinearities in the B matrix in (4), 
and has to he furthermore represented in discrete-time. In 
the following section we will develop further the system 
using the FGS approach. 

111. T-S FUZZY CIP MODEL DESIGN 

A. The continuous T-S Fuzzy CIP model 
The FGS approach used in this work consists of the 

following: The original nonlinear model is linearized by 
bounding the nonlinearities in the state by linear functions 
[ 9 ]  - in this way, the nonlinear model is represented by a 
Takagi-Sugeno fuzzy model, which boils down to convex 
combination of linear sub-models. 

In what follows we will describe in more detail the above 
design. From (3), we see that there exist three nonlinearities 
to he dealt with in the control matrix B. 

These nonlinearities are hounded w.r.t the image size in 
terms of width and height (x1,x~) subject to 

In order to avoid further confusion between membership 
functions symbols b,,,,,(x) and their respective boundaries 
b;,,,,, we will use the terms F;,,,(z) for nonlineaities b,(x), 

~ 
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with z = [XI, x ~ ] ~ , n , m  = 1..2, and s = i, j , k  = 1..2 relates 
to the membership regions. For the nonlinear terms in (4) 
we choose a linear hounding w.r.t (5 )  such that the fuzzy 
system obtained represents exactly the nonlinear system in 
(2) .  Thus, the membership functions are derived as follows 

F l l ( z )  = * = F:l .b;, +Fi; .  b:l; ~f 

where 0 5 F,,F?, ,  5 1 and Fdm + F?,,, = 1. By solving 
the above equations we obtain the following membership 
functions: 

The graphs illustrating the membership functions F;,,, are 
shown in Fig. 3.  The dynamics of the overall T-S CIP model, 
is described by a set of 8 fuzzy ’IF-THEN’-rules with fuzzy 
sets in the antecedents and LTI systems in the consequents. 
The system in (3) reads now as 

8 8 

r= 1 ,=I 
X= x w , ( z ) ( A x + B , u )  = x w , ( z ) B , u  (6)  

This system is obtained from a fuzzy rule base where a rule 
r is of the form 

r : IF z is Frl and z is F/> and z is Ft, THEN i = B,u (7) 

where W J Z )  are weights computed from the membership 
functions F&(z) for s = i, j , k  = 1..2 in the IF-part of the 
rules given a particular value of E ,  

Fig. 3. Membership functions F;,. Ff2 and F;, 



and the control matrix B, is defined as Iv. T-S FUZZY CONTROLLER DESIGN 

This section presents a fuzzy gain scheduled state- 
feedback controller for system in ( I  I), which is of the form 

8 

uk = - K ( a ) x k  = - Wr(2k)Krxk (13) 

where the weights w,(zk) are the ones presented in (8). From 
(11) and (13) we develop the closed-loop as follow 

I= I 

Y + I  = [I2 - % B ( x k ) K ( ~ k )  - m K ( ~ k ) l ~  

and the equivalent T S  fuzzy system for (14) develops as 

(14) 

8 8  

i= l  j-I 
X ~ + I  = c w i ( z k ) w j ( e k ) [ 1 2 + T ~ B i K j - m K j ] x k  (15) 

Notice that, as the control matrix Bi and the control gain 
matrix K j  differ for each region described by a rule r, AH 
is the same for all the regions. Also, in order to cope with 
the uncertainty in sampling time, the control matrix H from 
(1 I )  is represented in the discrete-time version of the rule 
(7), which is expanded into two rules, as: H ,  = T,,,~"B~ for 
r,;. and H, = zmBr for r-. This increases the number of 
rules to r = 16, and this transformation will -by convexity 
arguments- guarantee that the system is robust with respect 
to the varying sampling-time. Each rule r will he expanded 
as follows 

r,in : IFz is F;l and z is F[2 and z is Fll and z is zmh 
THEN i k  = (12 - Z,i&& -AH&) xk 

r - :  I F z i s F ~ l a n d z i s F ~ 2 a n d z i s F ~ l a n d r i s z , ,  
THEN 4 = (12 - Z,,B,K, -AH&) xk 

Notice that, in both the N k S  ?-,in and r,,, the gain K, is 
the same. The objective of the control design is to compute 
the feedback gains K j , ( j  = l..S), so that 

the closed loop Hz performance is guaranteed for 
the system as described in (10) , that is, without 
unstructured uncertainties AH. 
the system in (12) is robustly stable with as big y as 
possible to cope with the uncertainties. 

This is a multi-objective controller design problem w.r.t 
the above mentioned objectives. The following subsections 
describe how to design the controller for the two objectives 
separately. 

A. Optimal Hz cost design 
The discrete-time performance for a fixed and known 

time-delay controller of a has been discussed in [6]. Optimal 
H2 cost for discrete-time T S  without delays is presented 
in [7] .  In this section, we combine these results for the 
discrete-time version with varying sampling-time as de- 
scribed by (10). We show that the problem of minimizing 
an upper hound on a quadratic performance measure can he 
recast as a trace minimization problem. This is done subject 
to a set of LMIs, which guarantees that the quadratic cost of 
the system would not exceed a specified limit. To achieve 

In the following section the model in (6) is discretized. We 
define furthermore the parameters to consider in the de- 
scription of the closed-loop for the purpose of the controller 
design. 

B. Discretization of the fuzzy CZP model 

The image processing subsystem contains -besides the 
geometric transformation- an event-based sample-and-hold 
depending on the unpredictable behavior of the image 
processing software (IPS). The nominal sample time T, is 
sampling time of the image grabber, which is T,, = 40 
msec. However, this sampling-time might increase to z,, = 
100 msec. This interval [zmim, T-] represents time-sampling 
uncertainty. One of the objectives of the control design 
is to take this varying sample-time in consideration, The 
discrete-time equivalent to (3) is obtained by using Euler- 
approximation as follow 

X ~ + I  = Gxk+H(xk)~k (9) 

wherexk=[xl(k),xz(k)]', u i = [ a , ( k ) , ~ ~ ( k ) ] ~ ,  C=I2  and 
H(xk)  = +,). x k + ~  is the next feature in the image, and T 
the sampling time, defined in the interval [Tm&, 7-1. Using 
the preceding notion, we deduce the discrete-time version 
of the T-S fuzzy model from (6) and we obtain 

8 

r= I 
X ~ + I  = wr(zk)(xk + zkB,uk) (10) 

with zk  = [ q ( k ) , x ~ ( k ) ] ~  and w&) are the weights de- 
scribed in section U-B. We consider as well uncertainties 
contained in the discretized CIP model, described in terms 
of Unstructured norm hounded uncertainties acting on the 
control matrix H. These uncertainties are assumed to origi- 
nate from the discretization scheme (Euler-approximation), 
parameter related uncertainties (focal distance of the cam- 
era), as well as noise in the feature position reading. We 
can not give an explicit quantification of these last two 
uncertainties, thus we augment (9) and simply write the 
resulting uncertain system as 

Xk+l = G X k + N ( X k ) U I , f A H U k  (11) 

Thus, the equivalent T S  fuzzy model for (11) is as follows 

8 
x k + ~  = ~ w , ( z k ) ( x k + ~ ~ B ~ u n + ~ ~ ~ p )  (12) 

,=I 

where AH = yIzAI2, and A is any time-vluying matrix such 
that ArA 5 12 and y is a positive unknown constant descrih- 
ing the 'size' of the unstructured uncertainty. One other 
objective of the control design will then he to maximize 
the closed-loop system robustness w.r.t y. This will he 
developed in the next section. 
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guaranteed H2 performance, the following cost function is 
minimized 

12 12 
0 0  

-4Y O& -YK: -YKT 0 0 

KjY 0 -I2 0 
KiY 0 0 -12 0 0 
0 12 0 0 -a12 0 
0 12 0 0 0 -CY12 - 

Ojjk -Y 0 0 

J =  ~ x ~ Q x k + u ~ R u k  (16) 

subject to (IO) and (13). This is the common LQR cost- 
function used in linear optimal control (see [7]). Minimizing 
the cost function (16) results in tinding the positive-definite 
matrix P, solution of the following Lyapunov equation 

j=l  

(c - H K ) ~ P ( G  - H K )  - P+ Q + K ~ R K  = 0; 
K = R - ~ H ~ P  

where Q 2 0 and R 2 0 and Y = P-’. For easing the 
annotations we detine the matrices Njk and 0, as follows 

Nik = GiY - @iKjY; 
(17) 

Ojjk = (Gi+Gj )Y  - ( T ~ E ~ K ~ + I ~ E ~ K , ) Y  

The solution of the optimal cost problem is dealt using 
the LMI approach by solving the following optimization 
problem 

Min tr(2) Subject to 

i =  1.2, j < is 8 , k =  1..2 

Y N i  Y Q i  XTR: ... 
Nik Y 0 0 ... 0 

0 12 0 ... 0 
RiXl 0 0 12 ._. 

- Y O?. Y Q :  XFR: . ._ XTR: 
Oijk 7 0 0 ... 0 
Q:Y 0 12 0 ... 0 

RJX8 0 0 0 ... 12 

RtXl 0 0 12 ... 0 

. .  . .  

In order to cope with the uncertainty in sampling time, 
the LMI constraints that contain the control matrix H are 
duplicated into two LMIs: one with H, = T,&, and the 
other with H, = rmrB, as we did for the tules in section Iv. 
If the above LMIs are feasible, we calculate the controller 
gains as 

Kj = XjY-l  (19) 

The obtained 4 ’ s  make the closed-loop asymptotically 
stable w.1.t the varying T. 

E. Optimal robust stability design 
Robust fuzzy control for a system as described by (12) 

is treated in [5] .  Using this framework for our problem, we 
obtain the optimally robust furzy controller w.r.t unstmc- 
tured uncertainties in (15) by solving the following M I  
optimization problem 

Min a Subject to 
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Q and R in (18), and the weighting parameter I in (21). 
These parameters are set to: Q = Diag(10-4, 10-4),R = 
Diag(10-6, and I = ,001. We achieve feasibility of 
the problem in (21). and by minimizing the linear objective, 
we obtain the P matrix verifying the optimal robustness 
augmented by a guaranteed cost 

We achieve a feasible solution of required accuracy with . hest objective value: 1 = 6.22 IO6 . t r ( Z )  = 6.07 IO6,)'= 79 
Next, we will perform a series of simulations in Matlab- 

Simulink. These simulations are executed comparing the he- 
havior of the system with regards to time-sample variations, 
for each control channel (pan and tilt). The controllers are 
implemented in C-language and are used to control the real 
camera platform as well. 

The first simulation is performed for the regulation of po- 
sition reference values of a point p (image feature), for both 
sampling times ren = 40 msec. and T,, = 100 msec. All 
values of sampling-time within the limits [r,h,z,-] show 
stable behavior. Fig. 4 shows the response by regulation 

Fig. 4 shows both the error profiles (upper-pan) and 
tbe camera regulation responses for the x-channel (middle- 
pa t )  and y-channel (lower-part). The regulation is done 
for the size of the image. The error is settled to zero 
after e270 msec. for the system sampled atr  = 40 msec., 
while for the system sampled at T = 100 msec., the error 
settles after ~ 2 3 0  msec. The middle- and lower-pats of 
Fig. 4 show a step-response for each channel. The system 
sampled at z,j,, has a smoother response, which translates 
to a camera rotation without shake, which in term translates 
to a settlement without overshoot. The system sampled at 
T,- has a dead-beat behavior with faster response (up to 

W.1.t p d  = (0,O). 

Fig. 4.  Comparison between systems sampled 1 4 0  and 100 msec. for 
I@atiO" 

140 msec. to reach 90% of the reference value) and an 
overshoot of (X 6%).  

The second simulation is performed for the tracking of 
the same feature, for both sampling times T,,, = 40 msec. 
and = 100 msec. with inducing in the reference values 
an error profile of a sinusoidal shape. Fig. 5 shows both the 
error profiles (upper-pat) and the camera tracking responses 
for x-channel (middle-pat) and y-channel (lower-part). The 
tracking error presents a saw-teeth shaped oscillation around 
the sinusoidal shape of the error fluctuation. This oscillation 
is due to the integration factor that the sampled position 
undergo in the closed-loop, thus is more pronounced for 
the time sampling T,-. The oscillation does not appear in 
the regulation case because of the signal flatness between 
two reference values. The oscillation is hounded to x 8% of 
the error amplitude, while the error fluctuation is hounded 
to x 2% of the amplitude of the tracked profile of reference. 
The delays between reference values and output response 
for the tracking scheme are respectively about 80 msec. for 
the system sampled at T = 40 msec. and 70 msec. for the 
one at T = 100 msec., that is for both the channels (x,y). 

for regulation. Fig. 6 show a scenario in which a beacon 
whose pattern permits to identify the feature is placed 
suddenly in the image field of a the camera. The camera 
is controlled in angular rate control mode, and responds 
by centering the feature in the image.Fig. 6 shows both the 
error profiles (upper-pat) and the camera pose responses for 
the x-channel (middle-pan) and y-channel (lower-pan). The 
last two profiles in Fig. 6 are in degrees, and these readings 
are done at sampling time of x88 msec. The x-channel 
presents an overshoot of x 14%. with a time response of 
x 1.3 sec. for both channels.The profiles show overshoots 
for both the x- and y-channels; this occurs mainly due to 
coupling between the two channels. The time responses for 
the real platform are longer than this of simulation model. 

Third, we run an experiment on the real camera platform, . 
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Fig. 6. Camera angles regulation using vngulvr rate conuol 

This is due to the camera DC-motor closed-loop dynamics, 
which are not taken into account in the model used for 
simulation. 

Last, we proceed similarly as experiment 3,  with moving 
the camera over the pattem, or moving the pattem in front of 
the camera. This results in a profile tracking scheme whose 
results are illustrated in Fig. 7. Both the error profiles for 
the x- and y-channels are shown in the upper-part of Fig. 7 ,  
and the camera pose responses for the x-channel (middle- 
part) and y-channel (lower-part) illustrate the rotation of the 
camera in pan and tilt in order to center the feature in the 
image. The amplitude of the error fluctuation is higher the 
one in the simulation case. This is due to the latency of the 
camera DC-motors responses to the control signal. The last 
two profiles in Fig. 7 are in degrees. The sudden artifacts 
in the pose profiles are mainly due to reading errors of the 
camera angles (absence of sensor-data when queried by the 
control software), and do not affect i n m y  case the control 

performance. 

VI. CONCLUSIONS 
This paper presented a novel method for the design of a 

Fuzzy gain scheduled visual-servoing controller for a padtilt 
camera whose characteristics and dynamics are patially 
known and whose control-loop depends on image process- 
ing of a tracked feature which suffers a varying sampling- 
time. The controller is based on a nonlinear geometric 
model. This setup was tested in both extensive simulation 
and experiments on the real camera platform, The results 
show the effectiveness of the proposed design method. 

The next step in this work will be dedicated to exploring 
the robustness of the system developed to both sampling- 
time uncertainty and external disturbances in actual UAV 
flight seuaii. 
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