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Abstract— Efficient task allocation with timing constraints
to a team of possibly heterogeneous robots is a challenging
problem with application, e. g., in search and rescue. In this
paper a mixed-integer linear programming (MILP) approach
is proposed for assigning heterogeneous robot teams to the
simultaneous completion of sequences of tasks with specific
requirements such as completion deadlines. For this purpose
our approach efficiently combines the strength of state of
the art Mixed Integer Linear Programming (MILP) solvers
with human expertise in mission scheduling. We experimentally
show that simple and intuitive inputs by a human user have
substantial impact on both computation time and quality of the
solution. The presented approach can in principle be applied to
quite general missions for robot teams with human supervision.

I. INTRODUCTION

During disaster relief the efficient coordination of response
teams and an appropriate allocation of available resources
to mitigation tasks is indispensable [4]. Different types of
tasks such as exploring locations and supplying survivors
with resources within certain deadlines have to be completed
by several different robot types. We consider the problem
of assigning heterogeneous robot teams, i.e, robots having
individual capabilities, for the simultaneous completion of
sequences of tasks with specific requirements such as com-
pletion deadlines. The problem is sketched by a motivating

Fig. 1. Motivating example: Two UAVs are cooperatively examining
targets in two separated rooms. The task-sequence assignment from UAVs
to targets, i.e., each robot’s set of targets and the sequence of visiting them,
is computed by human-assisted optimization introduced in this paper.

example shown in Figure 1. Two robots have to cooperatively
explore target locations in an a priori known indoor environ-
ment. The goal is to reduce the total completion time, i.e.,
the time needed from the start until the last target has been
visited. For a human operator it is easy to see that the best
solution is to assign one robot to each room since otherwise
both robots would explore together one room after another,

which turns out to be inefficient. However, automated task
allocation needs to consider a look-ahead of at least 5 tasks
into the future in order to come-up with the (intuitively)
better solution. State of the art constraint solvers such as
Gurobi [3] need already 7 minutes for solving this simple
problem. In a more realistically and challenging setup, tasks
are additionally defined by completion deadlines such as it
would be the case in our rescue example where survivors
need to be supplied with water and health kits in time.
Scheduling with time constraints is also hard for humans
making the deployment of automated planning techniques
indispensable.

Task allocation is a fundamental problem in robotics
and of combinatorial complexity with increasing look-ahead.
Whereas for 1-step look-ahead a polynomial centralized
solution exists [6], n-step look-ahead assignments imply to
solve the Traveling Salesman Problem (TSP) [8]. Constraint
Satisfaction Problems (CSPs) are widely used to model
combinatorial problems in AI. Solvers to these problems
are either computing solutions that are satisfying constraints
(classical constraint satisfaction), or optimize an objective
function by selecting configurations with particular costs or
utility (constraint optimization). In contrast to other works
that focused on decentralized constraint optimization [14;
10], we are investing the problem of mission scheduling from
a central command post [5].

In this paper we introduce a novel method for efficient
human assisted task-sequence assignment. For this purpose,
the strength of state of the art Mixed Integer Linear Pro-
gramming (MILP) solvers is coupled with human expertise in
mission scheduling. Our approach combines mission related
constrains added by a human via a user interface with a
constraint solver taking into account physical constraints
of the environment such as travel times between different
locations. We experimentally demonstrate that the proposed
approach significantly outperforms automated problem solv-
ing executed on its own. Simple and intuitive inputs by a
human user can have substantial impact on both computation
time and quality of the solution.

The reminder of the paper is organized as follows. In
Section II we discuss related work and in Section III, we
provide a formal description of the problem that we are
interested in. In Section IV we formulate our solution based
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on MILP and in Section V its extension for adding a
human into the loop is presented. In Section VI we describe
our experimental setup and present our results. We finally
conclude in Section VII,

II. RELATED WORK

For solving constraint satisfaction problems, either cen-
tralized or distributed methods have been presented in the
past. As already mentioned, 1-step look-ahead can be solved
centrally in polynomial time by deploying the Hungarian
method [6]. However, optimal n-step look-ahead assignments
are intractable also for a centralized solver already for a
moderate size of n, since they imply to solve the Traveling
Salesman Problem (TSP) [8]. Koes and colleagues intro-
duced a centralized n-step look-ahead solver, the so-called
COCoA architecture for handling coordination problems by
a CSP-based approach [5]. In contrast to the presented work,
they did not discuss the integration of a human supervisor.
From their presented results it appears that their approach
could not convince in terms of scalability towards increasing
number of targets, robots, and number of look-ahead steps.

Decentralized CSP solvers were mainly designed to solve
1-step assignments that are for example related to the graph
coloring problem. In the literature there exists a rich set of
both complete and incomplete algorithms for solving Dis-
tributed Constraint Optimization Problems (DCOPs). Well
known solvers are the Distributed Stochastic Algorithm
(DSA) [14], and the distributed versions of arc consistency
called distributed soft arc consistency (SAC) [9]. SAC al-
gorithms simplify a DCOP into a soft arc consistent DCOP
in a distributed manner. Each agent knows only about the
constraints involving its variable and must thus communi-
cate with neighboring agents to exchange information. A
classic complete DCOP search algorithm is Asynchronous
Distributed Optimization (ADOPT) [10]. ADOPT uses lower
and upper solution bounds in a distributed and asynchronous
manner for backtracking.

There have been several extensions to the DCOP for-
mulation proposed. Yeoh et al. extended the static DCOP
formulation towards a model considering a finite sequence
of static DCOPs [13]. Their approach focused on reducing
computation time when solving each static DCOP in the
sequence rather than modeling dependencies between sub-
sequent DCOPs. To this end, they proposed to incrementally
solve static DCOPs while reusing results from previous
computations. Constraints between static DCOPs, i.e., the
explicit modeling of changes over time, are not consid-
ered in their model [11]. Other related extensions include
a continuous-time model where agents have deadlines to
choose their assignments [12] and a model where agents can
have imperfect knowledge about their environment [7].

III. PROBLEM DESCRIPTION

We consider the problem of assigning n robots to m tasks
over a sequence with finite horizon. Consider, for example,
the situation after an earthquake where a collapsed building
has to be searched for victims. Due to potential aftershocks

and further collapses it might be too dangerous for human
rescue personnel to enter the building. Therefore, a team R
of robots is sent to explore the building, to find victims, and
to supply the victims with water and first aid kits. A human
supervisor H can support the team coordination of the robots
from a remote location.

An a-priori map of the building is available, where H can
define a set of locations L. Each location j ∈ L shall be
examined by at least one robot i ∈ R. Whenever a robot
detects a victim, it is added to the set V of victims. Each
victim k ∈ V needs to be revisited after a specific time for
follow-up supplies, until it is actually rescued.

To explore a location j ∈ L, a robot i ∈ R needs to reach
the ∆L surrounding of j (usually an ellipsoid), and scan it
with a sensor, that is suitable to detect human evidence (e. g.,
a camera). Especially ∆L.z (the height range of the visiting
area) can typically be large, which implies that j can be
either explored by a UAV (without the need to land there),
or by a UGV. For supplying a victim k ∈ V with water or
health kits, a robot i ∈ R has to approach the ∆V radius
of k, with ∆V < ∆L. In particular, ∆V .z is usually small,
which forces a UAV to land at k. Robot i needs to stay at k
for a certain time tV1 for providing supplies to the victim.

In general, there are n robots, i ∈ R, 0 ≤ i < n, and a set
of m tasks j ∈ T = L∪V, 1 ≤ j ≤ m. The final number m
of all tasks is not known in advance, because the supervisor
H can define new tasks during the mission, and victims can
be detected while the robots are working on the mission.
Each robot i ∈ R can only work on a single task j ∈ T at
a time, but can sequentially execute one task after another.
The cost κij for robot i to execute task j is defined as the
expected time required to accomplish the task. In particular
this includes the time to reach a destination and the time a
robot has to wait until it can do something else. Additionally,
a revenue ρj is paid for completing tj .

For each robot i ∈ R, a cost matrix Ki ∈ R(m+1)×m is
given, that defines the cost for executing task j2 ∈ T after
finishing task j1 ∈ T , with entries κij1j2 , j1 ∈ T∪0, j2 ∈ T .
Entries κi0j describes the cost for executing task j starting
with the current configuration (note that j was defined to be
between 0 and m).

IV. MILP FORMULATION

In order to formulate the problem as a mixed-integer linear
program, we define binary variables xij , that equal 1 if task
j ∈ T is assigned to robot i ∈ R, and zero otherwise.
The robots can plan a fixed number of p tasks in advance.
Each task can be assigned to exactly one robot, or being not
assigned at all (which can happen if m > p · n). This leads
to the following constraints:∑

i∈R
xij ≤ 1 ∀j ∈ T (1)

∑
j∈T

xij ≤ p ∀i ∈ R (2)

To account for the order of tasks, that are assigned to the
robots, we introduce binary variables yijk, that indicate, if
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task j is the k-th task for robot i:
p∑

k=1

yijk ≥ xij ∀i ∈ R, ∀j ∈ T (3)

The robots start with an empty allocation, but may not
explicitly be idle later in the schedule, which results in:

yi00 = 1 ∀i ∈ R (4)

yi0k = 0 ∀i ∈ R, ∀0 < k ≤ p (5)

No robot can have more than one task in the same slot of
its schedule. ∑

j∈T
yijk ≤ 1 ∀i ∈ R, 0 ≤ k ≤ p (6)

Furthermore, a robot can only have a task k in its schedule,
if it also has a task k − 1.∑

j∈T∪{0}

yij(k−1) ≥
∑
j∈T

yijk ∀i ∈ R, 1 ≤ k ≤ p (7)

Given these constraints, we define the objective function as
the sum of all costs, that arise for executing the assigned
tasks in the given order, and subtract the revenue earned for
accomplishing the assigned tasks:∑
i∈R

∑
j1∈T

∑
j2∈T

p∑
k=1

yij1k−1 ·yij2k ·κij1j2 −
∑
i∈R

∑
j∈T

xijρj (8)

In this form, the objective function is non-linear, because
of the product yij1k−1 · yij2k. We solve this by introducing
binary variables zij1j2 , that indicate that task j2 follows task
j1 in the schedule of robot i.

zij1j2 ≥ yij1k−1 + yij2k − 1

∀i ∈ R, ∀j1 ∈ T ∪ {0}, j2 ∈ T, ∀ 0 ≤ k ≤ p
(9)

The resulting MILP with linear objective function is given
by:

minimize
∑
i∈R

∑
j1∈T

∑
j2∈T

zij1j2 · κij1j2

−
∑
i∈R

∑
j∈T

xijρj

subject to Constraints (1) – (7) and (9)

(10)

So far, the MILP only describes the multi-agent scheduling
problem without any timing constraints. However, the victim
tasks have timing constraints. Each task has parameters
tjmin ≥ 0 and tjmax ≤ ∞, that describe the earliest and latest
time the task can be accomplished without penalties. Based
on this, we model the time t̄j when task j is scheduled to
be completed. The matrix E with entries ηij1j2 describes the
time for each robot to execute task j2 after executing task
j1. This matrix may be equal to the cost matrix K, but this
is not required, as K will be used later for modeling inputs
from a human supervisor.

We furthermore add variables p1j and p2j , that reflect if
a task is scheduled too early (and hence the robot has idle
time), or too late, given the time constraints of all tasks.

p1j ≥ tjmin − t̄j ∀j ∈ T (11)

p1j ≥ 0 ∀j ∈ T (12)

p2j ≥ t̄j − tjmax ∀j ∈ T (13)

p2j ≥ 0 ∀j ∈ T (14)

t̄j is modeled as recursive constraints based on the current
schedule.

t̄j ≥ zi0j · ηi0j + p1j + tnow ∀i ∈ R, ∀j ∈ T (15)

t̄j2 ≥ (t̄j1 +p1j2 +ηij1j2) · zij1j2 ∀i ∈ R, ∀j1, j2 ∈ T (16)

Equation 16 is non-linear, but because the variables zij1j2
are binary, it can be replaced by:

t̄j2 ≥ t̄j1 + p1j2 + ηij1j2 −M · (1− zij1j2)

t̄j2 ≥ 0 ∀i ∈ R, ∀j1, j2 ∈ T
with M = tnow + ρj2 · n · p

(17)

So far, the time is only modeled for tasks that are also
scheduled. The following constraints model the best possible
time for a task, that is not yet scheduled.

t̄j2 ≥ (1−
∑
i∈R

xij2) ·min
i∈R

max
j1∈T

((t̄j1 + ηij1j2) · xij1) (18)

Also this constraint is non-linear, on the one hand because
of the min and max, and on the other hand because of the
product between the variables. To linearize this constraint,
we introduce more variables t̂ij , that model the time when
task j could be finished, if it would be executed after the
end of robot i’s schedule:

t̂ij2 ≥ t̄j1 + ηij1j2 −M · (1− xij1)

t̂ij2 ≥ 0

with M = tnow + ρj2 · n · p
(19)

With this, Equation 18 is now reduced to:

t̄j ≥ min
i∈R

t̂ij −M ·
∑
i∈R

xij ∀j ∈ T (20)

However, Equation 20 is still non-linear because of the min.
To get rid of this non-linearity, we introduce binary auxiliary
variables dij , that represent if t̂ij is the minimum value
for a specific task j ∈ T , and variables t̃j , that represent
the minimal value. With this, Equation 20 resolves to the
following constraints:

t̃j ≤ t̂ij ∀i ∈ R, ∀j ∈ T (21)

t̃j ≥ t̂ij −M(1− dij) ∀i ∈ R, ∀j ∈ T,
M = tnow + ρj · n · p

(22)

∑
i∈R

dij = 1 ∀j ∈ T (23)

t̄j ≥ t̃j −M ·
∑
i∈R

xij ∀j ∈ T (24)



Exceeding the time constraints is penalized in the objective
function. Idle time for waiting until a task can be started (p1j)
is penalized with a factor α1. The time a task is accomplished
too late (p2j) is penalized with a factor α2. Typically, α2 >>
α1, because not meeting a task’s constraints is more critical
than idle time. The final objective function is defined as:∑

i∈R

∑
j1∈T∪{0}

∑
j2∈T

zij1j2 · κij1j2 −
∑
i∈R

∑
j∈T

xijρj

+
∑
j∈T

(p1j · α1 + p2j · α2)
(25)

Overall, the constraints matrix quickly gets very large.
Both, the number of variables (the columns of the matrix)
and the number of constraints (the rows of the matrix) grow
linearly with the number of robots and with the planning
horizon and quadratically with the number of tasks. Because
the constraints depend on the variables, the overall size of
the matrix (and therefore the required calculation time) grow
much faster. For a given problem, the number of robots and
tasks cannot be adjusted, therefore, reducing the planning
horizon is the only possibility to reduce the problem size for
solving the whole problem in reasonable time.

V. HUMAN IN THE LOOP

Our goal is to support the automated task assignment
process with inputs from a human supervisor. These inputs
can have positive impacts on both solution quality and com-
putation time. On the one hand, an expert supervisor such
as a first responder can have significant implicit knowledge
that is not modeled explicitly in the system. For example,
the expert knows approximately the whereabouts of people
in a collapsed building after a disaster. Therefore, it would
make sense to focus the search on this area although this
might appear initially as a suboptimal search strategy from
an abstract algorithm’s perspective.

On the other hand, even basic user inputs in terms of
constraints can have substantial impact on the computation
time of the algorithm. To solve the MILP in real-time can
already for moderate problems turn out to be computationally
infeasible. Interestingly, in some scenarios crucial parts of the
optimal solution can be immediately apparent to a human
supervisor, but need extraordinary time to be computed by a
solver. For example, a human can easily identify clusters of
tasks that are optimally assigned to a single robot rather than
sharing them among the team which would induce additional
travel costs.

We propose a user interface, that allows the supervisor
to express intuitive constraints, which are then automatically
translated into constraints for the MILP. For this purpose
we use the graphical user interface rviz from the ROS
(Robot Operating System) library with interactive markers
for expressing constraints between robots and tasks. Note
that this interface is not optimized for efficiency since this
is not the primary focus of this work. In the following we
describe 5 different modes (A-E) of adding user feedback to
the MILP.

A. The expert wants the team to search a specific region
either strictly at first or at higher priority

We implement strict assignments by adding hard con-
straints to the MILP. Given there is a single task j that the
human wants to be accomplished, the following constraint
will be added: ∑

i∈R
xij = 1 (26)

So far, this does not say anything about when the task has to
be executed. If the task has to be among the first N tasks in
the schedule of a robot with N < p, the following constraint
is added: ∑

i∈R

N∑
k=1

yijk = 1 (27)

If the supervisor wants instead that the task is executed
within a specific time limit, the deadline tjmax is adapted
accordingly, and a hard constraint requiring the task to be
finished before the deadline is added:

t̄j ≤ tjmax (28)

However, in the worst case, adding hard constraints can ren-
der the problem infeasible, e.g., when deadlines are chosen
too strictly. Thus, inputs by the supervisor are more safe to
be integrated as soft constraints. To achieve that task j is
preferably part of the optimal solution either the revenue ρj
can be raised or the cost κikj to execute this task can be
lowered ∀i ∈ R, k ∈ T ∪ 0. A soft constraint on a time
limit can be added by defining a deadline tjmax , but without
putting a hard constraint on t̄j .

B. The supervisor wants to group k tasks, to be executed
jointly

As an example, consider the scenario in Figure 1. If not
more than two robots are available to work on these tasks, it
is apparently a good solution to execute the tasks in the left
room as one group, and tasks in the right room as a second
group. To model this command as a soft constraint, the
costs to execute sequences within the group J are lowered.
Depending on how strong this soft constraint is intended to
be, κij1j2 is scaled with a factor 0 < a < 1, ∀i ∈ R j1, j2 ∈
J . The smaller the factor a is chosen, the more likely will
a robot that works on one of these tasks also execute the
other tasks in the group J . To model the same request as
a hard constraint, the following constraints with new binary
variables gi are added to the system:

k · gi ≤
∑

j1,j2∈J
zij1j2 ∀i ∈ R (29)

∑
i∈R

gi = 1 (30)

This constraint requires, that one robot has at least k tasks
of J in its schedule. Parameter k must not be larger than the
planning horizon p, otherwise the problem is infeasible.



C. The supervisor wants to exclude the consecutive execu-
tion of tasks j1 and j2

In some cases, it can be obvious for a human, that certain
sequences of tasks can never be part of any good solution. In
the example in Figure 1, connections between most tasks in
the left and the right room are apparently not very effective.
To exclude a specific sequence j1j2 from the set of feasible
solutions, the following constraint is added:

zij1j2 = 0 ∀i ∈ R (31)

As soft constraints (the sequences are still allowed, but
unlikely to be selected), the costs κij1j2 for executing j2
after j1 can be scaled by a factor b > 1.

D. The supervisor wants (all or some) robots to focus on a
specific task type

For example, the supervisor may decide to first have a
quick look at the whole environment, to collect potential
victim locations, which shall be investigated after everything
is explored, and not immediately. This effect can be achieved
by modifying the revenue values ρj . Let T1 ⊂ T be the tasks
that the robots should focus on, and T2 = T\T1. To shift the
robots’ focus towards tasks in T1, the revenue for these tasks
is scaled by a factor a > 1. If the assignment of tasks in T2
shall be highly unlikely, the revenue can be set to 0, i. e.,
ρj = 0 ∀j ∈ T2. Equivalently, the costs κij1j2 for executing
tasks j2 ∈ T1 can be reduced by a factor 0 < b < 1, and
raised by a factor c > 1 for tasks in T2 respectively.

In case the tasks in T2 shall be completely excluded, a
hard constraint can be added:

xij = 0 ∀i ∈ R,∀j ∈ T2 (32)

If this focus shall only be defined for a subset of robots (e. g.,
robots of a specific type, with a specific capability, or only
for a single robot), these factors and constraints are added
only for the affected robots. Adapting the revenue values is
not possible in that case, because they are common for all
robots.

E. A robot’s autonomy shall be stopped

Stopping a robot’s autonomous actions can be necessary,
e. g., for allowing an operator to manually control a robot
i. This implies that the robot should not automatically be
assigned to a task. To forbid that any task j ∈ T is assigned
to robot i, the following constraints are added:

xij = 0 ∀j ∈ T (33)

VI. EXPERIMENTS AND RESULTS

All implementations in the presented experiments are
utilizing ROS (www.ros.org). The MILP is modeled
using the python interface of Gurobi [3]. We compare the
performance between a fully autonomous robot team and
a supervised autonomous robot team. All supervisor inputs
are given prior to the start of the mission, to avoid biases
due to the interface or human performance. In the follow-
ing we present results from both simulated and real-world

experiments. The results from simulation are separated into
a homogeneous and heterogeneous robot team cooperation
scenario.

A. Simulation: Homogeneous Cooperation

In the first set of experiments, two unmanned aerial
vehicles (UAVs) have to cooperatively explore a small en-
vironment consisting of two rooms as shown in Figure 1.
Our solver works in an incremental manner by producing
sequences of multi-robot team assignments each of them
having maximally the length of the pre-defined planning
horizon p. Hence, the length of p can have significant
influence on the solution quality, particularly if it is smaller
than the length needed by the optimal solution.

We compare the solutions computed by the autonomous
solver with the solutions computed with human assistance.
In this experiment the input by the supervisor was simply to
assign for the first optimization step one robot to task 13 in
the left room shown in Figure 1. Any other assignment was
computed by the solver.

The results are summarized in Figure 2. We ran 10 trials
per configuration, except for planning horizon 9 due to
memory limits. It can be seen that up to a planning horizon of
4 tasks ahead (which is less than half of the tasks per room)
the traveled distance and mission time is much higher for the
autonomous trials. This is because both robots first explored
the right room together, and then explored the left room
together. The autonomous missions with planning horizon 4
are exceptionally bad because both robots explored 4 targets
in the right room, at this point it was locally optimal to
continue in the left room, and hence one robot had to return
to the first room afterwards. However, for a planning horizon
of 5 or higher, it already takes more than 7 minutes to
autonomously calculate the solution, compared to less than
90 seconds with a single input from a supervisor. Hence,
with input from a supervisor, not only a better solution is
found with a smaller planning horizon, also with the same
planning horizon the solution is calculated in much shorter
time.

Having a look at the size of the MILP, it can be seen in
Table I, that the problem size is equal for both, the supervised
and the autonomous trials, except for only one constraint,
which is the one that has been added by the supervisor. As
shown in Table II, this constraint is very important since it
facilitates a substantial reduction of the problem size when
executing the fast presolve algorithm of the MILP solver
leading to the speed-up in the subsequent computation.

We also evaluated cases in which more user input is
provided such as grouping targets by soft constraints to
incentives that they are handled by the same robot. In the two
rooms example we let the supervisor generate two groups,
one for targets in the left and one for targets in the right
room. While the optimal sequence of handling tasks had still
to be computed by the solver, the input significantly speeds
up the computation. For planning horizon 9 the average
calculation time was more than 50% lower than for the
autonomous calculation with planning horizon 8. (Note that

www.ros.org


Fig. 2. Results for the two-rooms example with calculation times depicted in log scale (rightmost figure). Note that results for calculations of planning
horizon 9 without human supervision have been omitted due to memory limits on the used computer.

fully autonomous scheduling with planning horizon 9 could
not be calculated.) The calculated optimal solution is shown
in Figure 2.

planning
horizon

rows columns nonzeroes

auton. superv. auton. superv. auton. superv.
1 2262 2263 940 940 7930 7931
2 2952 2953 978 978 10132 10133
3 3642 3643 1016 1016 12334 12335
4 4332 4333 1054 1054 14536 14537
5 5022 5023 1092 1092 16738 16739
6 5712 5713 1130 1130 18940 18941
7 6402 6403 1168 1168 21142 21143
8 7092 7093 1206 1206 23344 23345
9 7782 7783 1244 1244 25546 25547

TABLE I
NUMBER OF ROWS (CONSTRAINTS), COLUMNS (VARIABLES) AND

NONZEROES (DEPENDENCY BETWEEN ROWS AND COLUMNS) FOR THE

PROBLEM IN FIGURE 1.

planning
horizon

rows
(presolved)

columns
(presolved)

nonzeroes
(presolved)

auton. superv. auton. superv. auton. superv.
1 1064 1028 126 109 2880 2469
2 2060 1408 810 468 16704 9500
3 2712 2315 846 792 21674 21433
4 3364 3000 882 862 24048 23709
5 4016 3652 918 898 26244 26288
6 4668 4304 954 934 28458 28492
7 5320 4956 990 970 30654 30696
8 5972 5608 1026 1006 32850 32900
9 6624 6260 1062 1042 25364 23989

TABLE II
NUMBER OF ROWS, COLUMNS AND NONZEROES FOR THE PROBLEM IN

FIGURE 1 AFTER APPLYING PRESOLVE.

B. Real Quadcopter Experiment: Cooperative Exploration

We used the same experimental setup as described above
for conducting real-world experiments on two Ar.Drone
2.0 quadcopters. Since we are mainly interested in the
coordination algorithm and execution times, we utilized
a Vicon Nexus Tracking System composed of ten cameras

Fig. 3. Optimal solution for the problem in Figure 1 found with planning
horizon 9.

Fig. 4. Routes of the quadcopters in the real experiments. Left: fully
autonomous. Right: manual allocation of task number 9.

and reflecting markers attached to the tracked objects for
obtaining highly accurate pose estimates of the robots. On
top of this, used the same ROS-based software as in the
previous experiments for trajectory planning and a controller
based on Engel et al. [2]. Furthermore, we had to extend
the existing ROS AR.Drone driver for allowing to control
several UAVs at the same time.

As can be expected due to observations from previous
simulation runs, a short planning horizon lead to the strategy
where both robots are entering the first room together,

https://www.researchgate.net/publication/261114125_Camera-based_navigation_of_a_low-cost_quadrocopter?el=1_x_8&enrichId=rgreq-42a1c5d63e5d326695b8b1ed90d5e6e9-XXX&enrichSource=Y292ZXJQYWdlOzI2MTM1Mjk4NDtBUzoxMzIyNjczMzA1MTA4NDhAMTQwODU0NjM5NzA2Mw==


visiting all targets there, and then approaching the second
room. When initially assigning one task in the second room
to one of the robots, targets are visited more efficiently, i.e.,
in both rooms simultaneously. The resulting allocations for
both experiments can be seen in Figure 4.

However, we learned another important lesson when ex-
ecuting this experiment in the real-world instead of inside
the simulation environment: The wind caused by a flying
quadcopter can largely influence the flight properties of
another quadcopter flying in the close vicinity. This makes
it much more challenging for algorithms to control the
robots properly, particularly when they are operating close
to each other. Therefore, the computed team coordination,
that typically tends to distribute the robots, is not only
reducing mission time, but also lowers the risk of colliding
quadcopters. The video accessible at http://youtu.be/
zojjc2FOfQA shows the performance of the UAVs with
and without supervisor support.

C. Simulation: Heterogeneous Cooperative Search and Res-
cue

For experiments with a heterogeneous robot team, we
considered the more complex scenario of a large RoboCup
rescue arena as used in RoboCup 2009 (Figure 5). The arena
features different terrain types (flat, ramps, light and heavy
stepfields), that require the robots to have different navigation
capabilities. The three robots in the team are a wheeled robot,
a tracked robot, and a UAV. The wheeled robot can navigate
fast on flat floor, but cannot negotiate stairs or stepfields. The
tracked robot can negotiate all obstacles except walls, but is
very slow. The UAV can fly to all locations very fast, but
landing is risky, especially on stepfields, or even impossible,
for example on stairs or steep ramps.

Since in this scenario different robot types are inducing
different travel costs with respect to the terrain, an efficient
path cost planner has been utilized. We base our travel cost
planner on value iteration, a popular dynamic programming
algorithm frequently used for robot planning [1]. As shown
by Figure 5 the planner takes as input a classified elevation
map in which important structural elements such as stairs
and ramps are discriminated. Value Iteration computes then
efficiently for each grid cell (ex, ey) on the elevation map
the costs for reaching a goal cell (gx, gy). These costs are
composed of travel distance as well as costs for overcoming
different types of terrain indicated by the classification.

We ran three experiments with heterogeneous robots in the
large arena. The results are summarized in Table III.

For the first experiment in this arena, we defined search
tasks in the two flat areas (in the bottom left around the
starting location, and in the upper right area) and on the
second level, that is reachable via stairs or a steep ramp
(Figure 6). A human can recognize quite easily, that it is
best to send the UAV to the other side of the arena (tasks
1–9), and let the ground robots work on the tasks close to
the starting location (tasks 10–20), because the wheeled robot
cannot cross the stepfields at all, and the tracked robot needs
much more time to negotiate the difficult terrain than the

Fig. 5. Computation of plan (blue line) and plan costs on classified eleva-
tion maps (Model of the RoboCup Rescue arena 2009). Showing traversable
(green) and non-traversable (red) terrain. Furthermore, showing stairs (cyan),
ramps (yellow), and heavy stepfields (violet) and light stepfields (orange) .

Fig. 6. Setup for experiment 1 in the large arena. The colors specify
different terrain types as in Figure 5. Numbers specify exploration task. A,
B, and C are the starting positions for the three robots.

UAV. However, without supervisor input and with a short
planning horizon, the UAV works first on tasks close to the
starting area (and hence takes away tasks from the UGVs),
before flying to the other side of the arena. The supervisor
input requires the UAV to have task number 7 in its first
schedule. With a greedy scheduler (planning horizon 1),
this assignment immediately leads to an improvement of the
mission time by 35% compared to the fully autonomous trial.
In both cases, the calculation time is very low. In this specific
configuration, planning horizon 4 is sufficient for the planner
to autonomously send the UAV to the other side of the arena
immediately. In that case, the mission time stays the same
also with supervisor input, however, the time to calculate this

http://youtu.be/zojjc2FOfQA
http://youtu.be/zojjc2FOfQA
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solution is reduced by 65% (almost 3 minutes compared to
less than 1 minute) with this single input. This indicates that
the results from Section VI-A can be transferred to larger
scenarios with heterogeneous team members.

For the second experiment, we added a timing constraint to
task number 14. This constraint cannot be met by the tracked
vehicle, because driving up the stair or ramp takes too much
time. The wheeled robot cannot reach this location at all,
hence, the only robot who can meet this constraint is the
UAV. The scheduling, especially with the timing constraints
for victims, is difficult for a human, but the MILP solver
can take care of this. As before, the supervisor requests the
UAV to have task number 7 in its first schedule. With fully
autonomous scheduling and planning horizon 2, the UAV
executes the sequence (17, 14, 11, 10, 4, 2, 1, 3, 5, 8, 9,
6, 7), hence, the robot executes a task on its way to the
victim, and also executes tasks on the way to the other side
of the stepfields. It turns out that the mission time for both
solutions differs only marginally. However, the supervised
solution required only 50% of the calculation time compared
to the autonomous solution.

In the third experiment, we added a further timing con-
straint to task number 3. The tendency of the results are
similar as before: the solution quality is similar in both
trials, but the timing constraints make the MILP much more
difficult to solve. The autonomous planning takes 45 seconds,
while the planning with the single human input is reduced
to 12 seconds.

Time con-
straints

Mode Planning
horizon

Mission
time

Travel
costs

Calc.
time

none

autonomous 1 1160.4 2366 0.4
supervised 1 855.8 1922 0.4
autonomous 4 826.2 1863 159.8
supervised 4 843.6 1874 57.7

task 14 autonomous 2 982.8 2370 9.7
supervised 2 1009.4 2380 4.8

tasks 3, 14 autonomous 2 1096.2 5510 45.3
supervised 2 962.6 5603 11.8

TABLE III
RESULTS FOR EXPERIMENTS WITH HETEROGENEOUS ROBOTS IN THE

ROBOCUP RESCUE ARENA.

VII. CONCLUSION AND OUTLOOK

We proposed a novel approach for assigning task se-
quences with timing constraints to robot teams that allows to
combine human capabilities in mission scheduling with state
of the art constraint solving techniques. The supervisor can
define intuitive constraints to the allocations, which are inter-
nally translated into constraints to the MILP. The presented
experimental results clearly demonstrate the potential of this
approach for both increasing the solution quality (i.e. reduc-
ing mission time), and mission assignment computation time,
even when dealing with intractable problems. Besides that,
automated constraint solving has the benefit of computing
optimal sequences given inter-dependencies and deadlines of
single tasks.

For future work, we are planning to significantly improve
the user interface in order to further foster interactions
between the user and the task allocation based on the
MILP formulation. For large problems, interactions during
the mission runtime can be expected to have a larger impact
on the solution quality than interactions before the start of
the mission.
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