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Abstract
For a robot situated in a dynamic real world environment the

knowledge of its position and orientation is very advantageous
and sometimes essential for carrying out a given task. Particu-
larly, one would appreciate arobust, accurateandefficientself-
localization method which allows a global localization of the
robot. In certain polygonal environments a laser based localiza-
tion method is capable of combining all these properties by cor-
relating observed lines with ana priori line model of the environ-
ment[5]. However, often line features can rather be detected by
a vision system than by a laser range finder. For this reason we
propose an extension of the laser based approach for the simulta-
neous use with lines detected by an omni-directional camera. The
approach is evaluated in the RoboCup domain and experimental
evidence is given for its robustness, accuracy and efficiency, as
well as for its capability of global localization.

1 Introduction
For a robot, the knowledge of its position and orientation
is very advantageous and sometimes essential for carrying
out a given task. In general, this can be achieved by a
self-localization method that integrates sensor and odom-
etry data over time. The challenge here is to estimate the
robot’s current pose accurately and robustly despite of sen-
sor noise and ambiguous observations.

In dynamic environments, such as robotic soccer in the
RoboCup F2000 league, an additional challenge is to carry
out this process within a short amount of time. When robots
move faster than a meter per second decisions have to be
made within a few milliseconds. In such dynamic environ-
ments, one has to find a good trade-off betweenrobustness,
accuracyandefficiency.

In this paper we contribute a robust and accurate self-
localization method that determines the robot’s pose by
fusing features detected by a laser range finder (LRF) and
an omni-directional vision system. The method exploits
the polygonal structure of the environment by matching
straight lines extracted from the sensor data with ana pri-
ori line model. We adapted and enhanced the efficient
LineMatchalgorithm that was originally utilized for match-
ing lines extracted from LRF scans[5]. The proposedEx-
tended LineMatchalgorithm localizes the robot with com-
parable efficiency and can be carried out with lines from
either one or both sensors simultaneously. Furthermore,
by incorporating vision data, theExtended LineMatchal-
gorithm allows for a unique global localization of the robot
in the RoboCup domain. The line extraction carried out

by the omni-directional vision system is additionally sup-
ported by a specific mirror design as proposed by Marchese
et al. [10].

Previous research on vision-based localization in the
context of office-like environments focused particularly on
robustness[11; 16; 4]. The proposed methods are mainly
appearence based and carried out by e.g. applying Princi-
pal Component Analysis (PCA) on images taken at par-
ticular positions in the environment. The global position
of the robot is then determined by the correspondence be-
tween images and their topological representation in an
eigenspace created by the PCA. Arraset al. proposed a
robust and accurate localization method that combines ex-
tracted lines from a camera and an LRF. The method does
not support global localization in their test domain[1].

Previous research in the RoboCup domain focused par-
ticularly on efficiency. Iocchiet al.and Limaet al.favor the
use of theHough transformfor correlating image lines and
model lines in the hough domain. Their method is efficient,
but relies on an already good estimate of the position and
the orientation of the robot and can’t recover from heavy
localization errors[8; 9]. Restelliet al.utilize evidence ac-
cumulation based on a fixed discretization of the hypothe-
ses space[12]. Their results indicate a strong correlation
between accuracy and efficiency. Haneket al. match line
segments with a 3D model of the field. But the use of only
a single frontal camera makes their approach vulnerable to
not perceiving the necessary number of features[7].

The proposed method has been evaluated regarding ef-
ficiency, accuracy and robustness in the realistic scenario
of the RoboCup F2000 league. Experimental results show
that our method represents a good trade-off between the
three properties. Furthermore, results demonstrate that the
method is capable of solving thewake-up problemwhere
global localization is carried out without prior knowledge
about the initial pose.

The remainder of this paper is structured as follows. In
the next section we briefly summarize the omni-directional
camera system we use. Section 3 shows the filtering of
lines extracted from the sensor data. In Section 4 we de-
scribe theEnhanced LineMatchalgorithm for the simulta-
neous use of vision- and laser range finder data. Section 5
reports results from a series of experiments evaluating our
approach. In Section 6 we conclude and give an outlook on
future work.



2 The Omni-Vision System
When designing a vision system, one usually has to find
an appropriate trade-off between accuracy and the avail-
able field of view. One advantage of omni-directional vi-
sion systems is that this trade-off can be biased towards the
own requirements by an adequate mirror design. Follow-
ing the suggestions from Marchese and colleagues[10], we
designed our omni-vision system (see Figure 1(a)) accord-
ing to the following requirements of the RoboCup-domain:
Firstly, objects in the near vicinity of the robot have to be
recognized with high accuracy in order to facilitate obstacle
avoidance and handling of the ball. Secondly, far-off or tall

(a) (b)

Figure 1: (a) The omni-directional camera system and (b) an
image taken close to the center circle.

objects, e.g. other robots, have to be recognized, whereas
accuracy plays not an important role. Thirdly, features pro-
viding evidence of the robot’s location, e.g. field lines, have
to be recognized with a constant distance error in order to
simplify the self-localization process.

Based on these requirements we calculated a mirror pro-
file which is composed of three parts[10]. The first part
is isometricand shaped such that it removes distortion due
to the mirror projection. This part allows a linear mapping
from objects on the field to the camera image up to a dis-
tance of6 meters as shown around the center in Figure 1(b).
The second part is designed withconstant curvatureand
does not remove the distortion of the image, but allows a re-
liable detection of high and far-off objects with a maximum
height of0.6 meters and up to10 meters away. The third
part, designed with curvature as well, allows an accurate
detection of objects within a range of0.2m and0.8m as
shown for the ball in the outer region of Figure 1(b). Figure
2 shows the calculated profile and a prototype of the mirror.
From a camera image such as the one shown in Figure 1(b)
relevant features useful for self-localization, namely lines
and regions of pre-defined colors (e.g. the blue and yellow
goals in the Robocup-domain) are extracted. This is done
by firstly classifying the image pixels utilizing theCMVi-
sion library [2], which also provides sets of regions (blobs)
representing clustered pixels of the same color.

(a) (b)

Figure 2: (a) The calculated profile and (b) the manufactured
mirror.

The extraction of the field lines is carried out by, firstly
detecting the color transitions in the classified image and
secondly, by building lines from these transitions. In or-
der to allow the use of a fast divide and conquer line ex-
traction method that was originally developed for LRFs[3;
6], transitions are sorted by their angle, similar as range
measurements are provided by a LRF. For this reason, tran-
sitions are detected by raytracing with a2◦ resolution from
the image center to the end of the isometric projection of
the mirror as shown by Algorithm 1[13].

Algorithm 1 OmniScan(B)

Input: Color segmented imageB
Output: Lists of transitionsT in polar coordinates
Ti := empty,∀i ∈ {1, 2, .., max}
for all φ do

layer := 0;
pixel := CenterOfImage(B)
while pixel ∈ IsometricPart(B) do

if isTransition(pixel) then
layer := layer + 1
Tlayer := Tlayer ∪ (d(pixel), φ)

endif
pixel := NextP ixel(pixel, φ)

endwhile
endfor
return T

The functionisTransition(pixel) detects if there is a
color change to a certain color (e.g. white for field lines)
at the current pixel. The functionNextP ixel(pixel, φ) re-
turns the next pixel in direction ofφ. For pixels outside the
isometric part of the mirror,pixel ∈ IsometricPart(B)
returnsfalse. Both functions are efficiently realized as
pre-computed lookup tables.

Found transitions are stored by their polar coordi-
nates in a transition listT1. After a transition has been
found, the search continues along the same ray and sub-
sequently found transitions are stored in the transition lists
T2, T3...Tmax respectively. We name thenth transition list
the nth layer of the omni-scan. Figure 3 shows the four
layers of an omni-scan that has been generated from the
image shown in Figure 1(b). Due to the isometric shape of
the mirror, pixel distances are easily mapped to real world
distances by multiplication with a constant value.



Figure 3:Four layers of transitions detected from field lines.

3 Line Filtering

From the laser range measurements and the layers of tran-
sitions found in the camera image, line segments are ex-
tracted in timeO(n log n) wheren is the total number of
data points[3; 5; 6]. We apply a series of filters to these
line segments for obtaining line data that is more suitable
for our localization method.

LRF line filtering: It is assumed that valid line segments
provided by the LRF sensor can be associated with polyg-
onal objects of a specific color. For example, line segments
generated from the two goals on the soccer field can ei-
ther be associated with the color blue or yellow. Based on
this assumption, line segments which cannot be associated
with one of the pre-defined colors are filtered out. More-
over, line segments that are significantly shorter or longer
than the given model lines, are filtered out as well.

Vision line filtering: As shown in Figure 4(a), the re-
sult of the vision line extraction algorithm can also be im-
proved. Sensor noise but also the center circle caused non-
perpendicular lines. Furthermore, lines were partially split
into smaller segments. In order to improve the quality of

(a) (b) (c)

Figure 4: Lines extracted from the transition layers of Figure
3. (a) without filtering (dashed lines indicate the principal axes),
(b) after applying the orthogonality filter and (c) after merging
segments located on the same straight line.

the vision line set, we apply an orthogonality filter and
merge, if appropriate, segments to lines. Of course, this
can only be done if all model lines are either parallel or per-
pendicular. The orthogonality filter generates a histogram
above all angles modulo90◦ which accumulates the length
of each line at the position of its angle and angles adja-
cent within a tolerance of10◦. By this, long lines, whose
angle estimates are usually more accurate, get a stronger
weight than short lines. The angle at the maximum of the
histogram then represents the principal axis of the lines and
consequently all lines which deviate too much from this di-
rection can be removed. The result of applying the orthogo-
nality filter to the line set from Figure 4(a) is shown in Fig-
ure 4(b). In the following, co-linear lines (within a certain
tolerance) are merged if their distance is within a certain
range. The resulting line set is shown in Figure 4(c).

4 The Extended LineMatch Algorithm
TheLineMatchalgorithm determines a set of position hy-
potheses by correlating lines extracted from the sensor data
with a model containing the location of significant lines in
the environment. For determining the currently best pose
estimate the most plausible hypothesis is taken and fused
with odometry using an extended Kalman filter[5].

With field lines extracted from the camera image and
preprocessed as described in the previous section, the orig-
inal algorithm[5] can be applied without modifications.
Recursively all pairings between observed field lines and
a priori model lines are examined:

Algorithm 2 LineMatch(M, L, P)
Input: model linesM , detected linesL, pairsP
Output: set of positions hypothesesH

if |P | = |L| then
H := {P}

else
H := ∅
l := SelectLine(L, P )
for all m ∈ M do

if VerifyMatch(M, L, P ∪ {(m, l)}) then
H := H ∪ LineMatch(M, L, P ∪ {(m, l)})

endif
endfor

endif
return H

SelectLineselects the next line that should be matched and
VerifyMatchverifies that the new(m, l) pairing is compat-
ible with the set of pairingsP already accepted.

However, we now allow that a fixed number of ob-
served lines can beoutliers1. Since such a line is ignored
by VerifyMatch, the algorithm can better cope with false
line readings and inacurracies in the line extraction pro-
cess. To incorporate the outlier-match we simply aug-
ment the set of model lines by an extra ”outlier line”:
M := M ∪ {outlier}.

When called asLineMatch(M,L, {}) the algorithm
returns possible mappings between observed linesL and

1In our experiments we allowed up to two outlier lines



model linesM . As such a mapping implies a position
where the image possibly has been taken, each mapping
represents a hypothesis of where the robot was located at
this time. Each hypothesis can be evaluated in terms of the
deviations between

• the input lines and the matched model lines
• the observed and the estimated angles to prominent

color regions (e.g. goals)
• the estimated pose and the current pose estimate from

the Kalman filter

The most plausible hypothesis is now taken as the one
which maximizes the weighted average between these in-
fluence factors. Doing so always ensures reliable position
tracking once the robot is globally localized. However, in
the RoboCup environment, at many locations enough field
lines and at least one goal is visible so that even the robot’s
global position on the field can uniquely be determined.

We further enhanced the basic algorithm to deal with
field lines extracted from the camera image and lines ex-
tracted from a laser scan at the same time2. For example,
in the RoboCup F2000 league, goal boxes or sponsor lo-
gos can be detected by a laser range finder with high preci-
sion. The extension is accomplished by introducing differ-
ent types for lines provided by the camera system and the
laser range finder, respectively. Now,VerifyMatchaddition-
ally checks the line types and discards a set of pairingsP
as soon as it contains a pairing with differing line types.

Basically,VerifyMatchrates a match based on the sum of
the deviations between input lines and their corresponding
model lines. This allows to account for the different preci-
sions of the sensors by simply weighting these deviations
according to the involved line type.

Depending on the available features in the environment
either laser range finder data only or vision data only or a
combination of both can be utilized for the self-localization
process. The only thing that has to be changed is the hand
crafted line model of the environment. Figure 5(a) shows a
typical scene, including extracted features, in the RoboCup
environment as perceived by the omni-directional vision
system. Figure 5(b) shows the same scene from the point
of view of the laser range finder, inluding one extracted line
of a goal box. Figure 5(c) shows the resulting pose estimate
based on the scan- and vision lines. Note, that the color of
the top line indicates a line considered to be an outlier.

Even though at first sight the algorithm’s complexity is
O((|M ||L|)|L|) (VerifyMatchrequiresO(|L|) time in gen-
eral) it can be shown that its upper bound can be assessed
as O(|M |3|L|2) if no outlier lines are allowed[5]. The
rationale behind this is that only in the first two recursive
steps all possible pairings have to be considered. After that,
all degrees of freedom for rotating and translating the in-
put lines are fixed and further recursive levels only verify
that match. However, if outliers are admitted, the degrees

2Camera and laser range finder are synchronized by project-
ing their reference positions to the same point in time based on
information from odometry

(a) (b)

(c)

Figure 5:(a) Lines and goal orientations extracted from the cam-
era image, (b) a line extracted from a laser scan taken in the same
scene and (c) the resulting pose estimate with an outlier at the top.

of freedom might not be fixed until all outliers are deter-
mined. For this, with a maximum ofk outliers, |M |k+2

recursive calls might be necessary. Subsequently, for each
pairing another|M ||L|mappings have to be considered for
verifying the match. Since for the firstk +2 recursive calls
VerifyMatchrequires onlyO(k + 2) time, the worst case
upper bound can be assessed asO(((k + 2)|M |)k+3|L|2).

5 Empirical Results

In order to verify the efficiency, accuracy and robustness of
the Enhanced LineMatchapproach we conducted a series
of experiments with one of our CS Freiburg players[15]
(Figure 6(a)) in a typical RoboCup scenario (Figure 6(b)).
The player is aPioneer I mobile robot equipped with a

(a) (b)

Figure 6:(a) A CS Freiburg player, (b) the experimental setup.



Sony Vaio PCG-C1VEnotebook (600 MHz, 112MB), a
custom-made kicking device, aSICK LMS200laser range
finder and a custom made omni-directional vision system
based on aSony DFW-V500digital camera providing YUV-
images at a 640x480 pixel resolution with 30 frames per
second. The laser range finder provides depth information
for a 180◦ field of view with an angular resolution of0.5◦

and an accuracy of 1cm. We collected vision and laser
range finder data in in a realistic game scenario with sta-
tionary and moving obstacles. For obtaining reference po-
sitions we set up walls around the field and carried out the
original laser-basedLineMatch-localization method while
collecting the data. As the walls may filter out noise which
usually arises from objects outside the field we randomly
put a couple of colored labels along the walls for confusing
the vision system. By adding stationary obstacles close to
the walls we ensured that only rather short lines can be ex-
tracted from the laser scans. This way, in conjunction with
the color labels, noise is also generated for the laser based
detection of the goal boxes.

From the data we computed the average run time of the
algorithm and added different levels of Gaussian noise to
the odometry data for determining the accuracy and robust-
ness of our approach. Figure 7 shows the vision and LRF
data our robot collected during the experiment. Note, that

(a) (b)

Figure 7: Collected laser (a) and vision data (b) plotted with
respect to the reference position. Grey dots indicate detetected
line points. The colored bars at the field boundaries indicate the
direction and size of detected blobs of the goal colors. The robot’s
trajectory during the test run is plottet black.

from the LRF data only the goal lines are extracted and
matched. During the run the robot moved a total distance
of approximately 68 meters and turned about a total of 8000
degrees.

In the experiments we distinguish between three differ-
ent modes of theExtended LineMatchalgorithm. Firstly,
we ran tests with only lines extracted from the laser scans

as input for the algorithm. Secondly, only lines extracted
from the camera image were taken as input. Finally we ran
tests with both, laser range finder and vision data.

The Gaussian noise〈∆δ(δ),∆α(α),∆α(δ)〉 was added
to the (already naturally noisy) odometry readings asδ ←
δ + ∆δ(δ) andα ← α + ∆α(α) + ∆α(δ) when the robot
moves a certain distanceδ and turns a certain angleα [5].

Table 1 shows the average run times for the different
modes of the algorithm. Obviously the most time is spent

Only LRF Only Vision Combined
Preprocessing 1.2ms 25.2ms 26.4ms

LineMatch 1.0ms 5.6ms 7.2ms
Total 2.2ms 30.8ms 33.6ms

Table 1:Run time results on a 600 MHz Laptop.

for the extraction of the relevant features from the cam-
era image. Also not surprisingly, the matching procedure
needed the more time, the more lines it had as input. On
the one hand, the time measured for the combined version
reflects the fact that the algorithm doesn’t scale linearily.
But on the other hand, a total run time of less than 35ms
clearly shows the algorithm’s efficiency.

Figure 8 shows the distance error (a) and the angle error
(b) to the reference position for the different modes of the
algorithm under different levels of Gaussian noise. It can

(a)

(b)

Figure 8: (a) Distance and (b) angle error to the reference posi-
tion for different levels of Gaussian noise.



be seen, that only the LRF-mode suffered from the increas-
ing noise levels whereas the combined mode and the vi-
sion mode showed to be very robust even against high extra
odometry noise. Due to the higher accuracy of the LRF the
combined mode performed slightly better than the vision
mode. Quite noticeable is the high angular accuracy for all
modes. Especially the combined mode and the vision mode
showed only little distance deviations to the reference posi-
tion. Please note, that the combined algorithm requires the
synchronization between LRF and vision system. Since in
our current implementation this is done by projecting the
measurements to the same point in time based on the odom-
etry readings, the combined algorithm suffers additionally
from odometry noise. Nevertheless, a precision of up to
10cm and2.5◦ demonstrates the algorithm’s accuracy.

In order to verify the robustness of our approach we
counted the number of times where the robot was consid-
ered to be lost because its pose deviated from the refer-
ence pose by more than 0.5m or more than30◦. Figure 9
shows the times for the different modes of the algorithm
under different levels of Gaussian noise. With little noise

Figure 9:Number of times (in %) where the position error was
above 0.5m or above30◦.

in odometry all three modes showed a very robust perfor-
mance. Using the combined mode and the vison mode, the
robot was lost in less than4% of the cases even under high
noise levels. However, too little features were available for
the LRF-mode to compensate for highly noisy odometry
readings and the robot got lost too frequently.

In the above experiments we were able to perfectly ad-
just the YUV-bounds for the color classification of the cam-
era image. However, quite often this is not feasible because
the environment isn’t iluminated uniformly or the lighting
conditions change over time. Therefore, we conducted a
second experiment in order to evaluate the algorithm’s per-
formance when color bounds are only adjusted poorly.

In the same environment as before we let the robot move
around the field in a similar way as before. This time, how-
ever, the color classificator for the white field lines was ad-
justed more conservatively such that fewer lines could be
detected in the camera images. We also made the LRF-
based recogniton of the goal lines more difficult by moving

the bottom obstacle in Figure 7(a) closer in front of the blue
goal.

Figure 10 shows the distance error (a) and the angle error
(b) to the reference position for the different modes of the
algorithm in the second experiment. As can be seen, espe-
cially the distance accuracy of the purely vision-based and
purely LRF-based method suffered from the harder exper-
imental conditions. At the same time, the combined pro-
cessing of LRF lines and vision lines lead to a significantly
higher accuracy than processing either only LRF lines or
only vision lines. Figure 11 shows the corresponding num-

(a)

(b)

Figure 10:(a) Distance and (b) angle error to the reference posi-
tion for different levels of Gaussian noise.

ber of times when the robot position was considered to be
lost. Obviously, the robustness of the algorithm is clearly
increased if the combined mode is used.

In a final test we evaluated our approach’s ability to solve
the wake-up-problem, i.e. to localize globally. We cali-
brated the vision system for detecting the field lines as good
as possible and positioned the robot at 15 different loca-
tions on the empty field (see Figure 12). After startup we
checked by visual inspection if the robot was localized cor-
rectly. The test was succesful for all positions and thus
demonstrates the ability of the proposed algorithm to un-
ambiguously localize the robot globally in the RoboCup
environment.



Figure 11:Number of times (in %) where the position error was
above 0.5m or above30◦.

Figure 12:Robot positions for thewake-uptest.

6 Conclusion and Outlook
We proposed a method for the combined correlation of line
features detected by an omni-directional camera and a laser
range finder with an a priori model of the environment. The
resulting localization method has been evaluated in a typ-
ical RoboCup scenario which represents a highly dynamic
and noisy real world environment. It has been shown that
the algorithm is efficient, accurate and robust at the same
time. In the RoboCup context global localization is possi-
ble instantly and without ambiguities.

In the RoboCup domain only few line features are de-
tectable by a LRF. Under ideal lighting conditions enough
field lines can usually be detected in the camera images.
Under such conditions, combining the vision data with
LRF data doesn’t improve the localization performance
considerably. However, if the vision process is disturbed
and less field lines are visible, the combined algorithm per-
forms clearly better than the purely vision-based or purely
LRF-based mode. Obviously, the combined algorithm
compensates for the lack of data if only the data of one
sensor would be used.

The algorithm’s combined version adds considerably to
the generality of the approach. Since vision and laser lines
can be utilized interchangeably it should be possible to eas-
ily apply the method in other environments such as office
environments, ware houses or even outdoor scenarios.

Future work will include extensions and tests for these
environments, as well as a further parameter refinement for
achieving a higher accuracy.
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