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Abstract

This paper presents and overview of the basic and
applied research carried out by the Computer Vision
Laboratory, Linkoping University, in the WITAS
UAV Project. This work includes customizing and
redesigning vision methods to fit the particular needs
and restrictions imposed by the UAV platform, e.q.,
for low-level vision, motion estimation, navigation,
and tracking. It also includes a new learning struc-
ture for association of perception-action activations,
and a runtime system for implementation and exe-
cution of vision algorithms. The paper contains also
a brief introduction to the WITAS UAV Project.

1 Introduction

The WITAS! Unmanned Aerial Vehicle Project? is
a long-term basic research project at Linkoping Uni-
versity (LiU), Sweden, which involves cooperation of
different departments at LiU, as well as a number
of other universities and companies. The project is
currently in its second phase, terminating at the end
of 2003, which is focused on integrating software and
hardware systems developed in the project on a heli-
copter platform that will be used for demonstration
of various aspects of the project.

One goal of the project is to demonstrate a fully au-
tonomous UAV for applications such as traffic mon-
itoring and surveillance, emergency services assis-
tance, photogrammetry, and surveying. To meet this
goal, basic and applied research has been carried
out in a wide range of topics; a software architec-
ture for deliberative/reactive behaviour, a helicopter
flight control system, a task-based planning system,
a chronicle recognition system for identifying com-
plex vehicular patterns on the ground, geographical
information and knowledge databases for on-board
use, multi-modal interfaces (including dialogue) for
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ground operator/UAV communication, and an on-
board image processing system. Most of these topics
are or will be covered in other publications [1], and
this paper focuses on the research carried out within
the project by the Computer Vision Laboratory, LiU.

2 The WITAS UAV

The UAV platform used in the project is a slightly
modified Yamaha RMAX helicopter manufactured
by Yamaha Motor Company and is commercially
available in Japan as a radio-controlled platform for
spraying pesticides on crops. It is approximately
2x1 meters, has a maximal payload of 30 kg, and
can provide approximately 150 W of electrical power
for the on-board equipment. In addition to the
RMAX sensors included with the platform, a Hon-
eywell HMR3000 digital compass, a static pressure
sensor, a Boeing digital quartz INS, a temperature
sensor for the PC104, a video link to the ground sta-
tion, and a differential GPS have been added. The
platform is evolving and additional sensors may be
added in the future.

A PC104 board (Pentium P5, 266MHz) is currently
being used as the heart of the control system which
executes all real-time control tasks for both the he-
licopter and camera system and collects all avail-
able sensor data. The helicopter is equipped with a
Sony FCB-EX470LP color composite video camera
mounted on a stabilized gimbal with a pan/tilt in-
terface which attenuates vibrations. Figure 1 shows
the experimental UAV platform.

Clearly, the limitations in payload and electrical
power provided by the helicopter impose restrictions
on the hardware used on-board. In particular, this
situation means that the computational power avail-
able for vision is much less than, e.g., a standard PC,
and a substantial amount of work has been spent
on customizing or redesigning existing vision algo-
rithms for various purposes to fit the available hard-
ware while still providing acceptable robustness.



Figure 1: The WITAS UAV Platform

3 Software architecture

The software architecture of the system is character-
ized at a coarse scale as a three level system, with
a deliberate system at the top, a reactive level in
the middle, and a processing level at the bottom.
There is also a set of knowledge databases which can
be accessed from all levels, e.g., the Geographic Data
Repository (GDR) that contains maps, aerial photos,
and terrain models, and the Dynamic Object Repos-
itory (DOR) which typically contains dynamic infor-
mation about ground vehicles. The various modules
of the architecture communicate using CORBA, al-
lowing system development and deployment on the
UAV to be made in a highly flexible way.

The deliberate layer is devoted to planning, e.g., of
mission tasks and flight paths, prediction, and chron-
icle recognition. The reactive layer includes various
high level controllers, e.g., of the helicopter, of the
camera, and of the image processing module, and is
implemented in the language CONTAPS developed
in the project. A CONTAP can be viewed as an aug-
mented automaton or a collection of triggered rules
which have local state and the ability to open com-
munication channels to other parts of the architec-
ture. The process layer is responsible for concurrent
computations of feedback loops tightly coupling sens-
ing with actuation.

The processing layer contains the image processing
module (IPM) which is responsible for all low and
medium level processing of images and image se-
quences. The IPM is based on a data-flow processing
model, and contains a library of nodes which process
data at various levels of complexity. By means of
a simple API (IPAPI), a CONTAP can construct

data-flow graphs, e.g., for tracking, motion estima-
tion, etc, and use a runtime system to allocate re-
sources and execute the graphs. The runtime system,
TIPAPI-Runtime, is developed within the project and
is presented in more detail in section 10.

4 QOperational scenarios

As mentioned above, the application area for the
WITAS UAV is related to traffic situations, e.g., de-
tection of specific events such as overtaking or U-
turns, tracking of ground vehicles, and estimation
of various features of a vehicle such as velocity and
type.

A typical mission of the UAV could be to fly to a
certain point close to a road, and then to hover and
observe the road segment in order to detect a specific
event. This could be that a certain vehicle appears
on the road segment, or that a vehicle makes some
type of action, e.g., stopping at a crossing. These
events are then reported back to the ground opera-
tor.

A more advanced scenario could be that the UAV,
once it detects a certain vehicle, starts to track the
vehicle. This can be made both with the camera and
by moving the helicopter. In both cases, the tracking
requires a certain amount of planning to be made by
the higher levels of the system, e.g., to predict where
and how the vehicle is going to move on the ground,
and to manage occlusions from buildings, etc.

A still more advanced scenario is to make the UAV
assist a ground vehicle to either intercept a tracked
vehicle or to get to a specific location in an urban
area with traffic jams. The latter case requires the
UAV to be able to detect and estimate the size of the
traffic jams, and to find free paths around them.

In this and other scenarios, the UAV should be
able to autonomously navigate between points, track
ground vehicles, and estimate various features and
detect events related to individual vehicles or pairs
or even large sets of vehicles. All these tasks require
various types of subtasks to be executed in the IPM,
and the following sections present some of these sub-
tasks which have been developed particularly for the
WITAS UAV Project.

5 Fast filtering techniques

The more advanced IPM subtasks, e.g., landmark
tracking and motion detection, require spatial or
even spatio-temporal filtering of the camera images
to be made. This includes filtering for detection of
lines/edges and estimation of their orientation, or de-
tection of corners and other local symmetries. One
basic research topic of the project has been devoted



to simplifying the implementation of such filters, re-
sulting in a set of estimation method of local features
which are highly efficient compared to previous im-
plementations. This optimization is a prerequisite
for allowing image processing to be made on the lim-
ited computational capacity available on-board the
helicopter.

The method is based on the idea of approximating
local image neighborhoods by polynomials, where
the coefficients are determined from a weighted least
squares problem. For certain classes of weight func-
tions these polynomial expansion coefficients can be
computed very efficiently by a hierarchical scheme of
1D filters, and the filter coefficients as well can be
computed quickly in closed form, avoiding the need
for any optimization procedures. The expansion co-
efficients can be used to construct various types of
features, e.g., of local orientation, local symmetries,
and motion [2, 7].

6 Motion Estimation

One subtask of the IPM is to detect moving objects
on the ground. If such an object can be determined
to be on a road, it is most likely a vehicle of some
type, and is therefore of interest in the various sce-
narios presented above. However, estimation of local
image motion is not enough to detect moving ob-
jects since the camera is moving at all times, adding
a global motion to the estimated motion field. In-
stead, more or less standard techniques have been
used for estimating the global motion field and sub-
tract it from the estimated motion field it to get a
residual field corresponding to moving ground ob-
jects.

However, the camera motion due to the engine vi-
brations and the wind are too fast to allow nor-
mal spatio-temporal filtering of the camera image
sequence for estimation of local motion. Also, the
temporal depth of the filtering has to be rather short
to fit the available computational power. Therefore
a two-frame multi-scale method for estimation of lo-
cal image motion has been developed, based on the
previously mentioned polynomial expansion of the
image. By comparing the expansion coeflicients of
two subsequent frames it can be estimated how large
the local displacements are. This works best when
the displacements are small relative to the scale of
the polynomial expansion but at coarse scales finer
details are lost. The solution is to use a multi-scale
scheme where the estimates are propagated from
coarser scales to finer, thereby keeping the succes-
sive displacements small at all scales. The result is
a dense motion field which can be computed with a
reasonable tradeoff between efficiency and robustness
(3] See figure 2.
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Figure 2: Two successive frames from a test flight
at Revinge (top), the estimated dense motion field
(bottom left), and the residual field after estimat-
ing and eliminating the background motion (bottom
right).

7 Camera position estimation

The reactive layer on the WITAS helicopter platform
deals with objects situated in a 3D World Coordinate
System (WCS), while objects as seen by the camera
are 2D, and expressed in a Camera Coordinate Sys-
tem (CCS). In order to convert WCS coordinates to
CCS coordinates, the camera position, the up vec-
tor, and the heading have to be known. Given the
world model in the GDR, CCS coordinates may also
be converted to WCS coordinates.

One subtask developed for the IPM is a visual
odometer. This is a system that computes the 3D
displacement and change in orientation of the cam-
era, based on estimates of local image displacements.
A visual odometer can act both as a backup, and as a
complement to other position sensors, such as DGPS
and INS.

As already mentioned, the temporal aliasing in the
camera image flow makes it necessary to use two-
frame methods for motion or displacement estima-
tion methods. For the visual odometer system, a
method based on tracking of a sparse set of image
regions was chosen. It typically keeps track of 50-60
local image regions over a longer time sequence. A
region is automatically discarded when the matching
value drops below a given threshold, and new regions
to track are selected automatically by looking at lo-
cal peaks in the second eigenvalue of the structure
tensor.

Regions are tracked by template matching in re-
sponse images from horizontal and vertical edge fil-
ters. Since edge filter responses are statistically



Figure 3: Position estimation using a homographic
model. The estimated camera position is marked as
a green boz.

sparse, and low-magnitude coefficients hardly affect
the result at all, the templates can be pruned to use
only 10% of the total number of coefficients. This
results in a speedup of a factor above 3 in the total
computations compared to full grey-scale correlation
methods [5].

The computation of updates of the camera position
are done using a homographic model, i.e., the ground
is assumed to be planar. The homographic approxi-
mation of the geometry is chosen since it results in a
closed form solution of the estimation, which reduces
the computational load. When using a calibrated
camera, the camera location, the view vector and
up vector can also be extracted from the estimation
procedure. See figure 3. [4].

At high altitudes the homographic assumption works
well, since regions not conforming to the model are
detected as outliers and removed from the estima-
tion. However, when flying near buildings, at low
altitudes (below 70 meters), the method becomes in-
creasingly less accurate. However, this situation is
detected by the visual odometer subsystem, and sig-
naled to the reactive layer that controls the IPM.

8 Fast tracking

Tracking of ground vehicles is an important func-
tionality, where the primary information about the
vehicles’ positions is provided by the IPM. Again,
because of the limited computational power available
on-board the helicopter, computationally optimized
methods have to be used and one such method has
been developed within the project [8].

The new method is based on traditional template
matching, but on binary information rather than on
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Figure 4: Fast entropy matching

the image intensity. This implies that the match-
ing stage is extremely fast, and even allows multiple
vehicles to be tracked simultaneously. To get the bi-
nary data on which the matching is performed, both
the image and the template image is input to a pre-
processing stage that compares the intensity values
in pairs of image points. The pairs can be distributed
either in a regular array or randomly, and each com-
parison results in one bit. Each individual bit may
not be a robust representation of the corresponding
image region, but given that the set of pairs is suf-
ficiently large (256 bits have been used in 32x32 re-
gions with acceptable results), the generated set of
bits is sufficiently representative of a region to allow
matching on the binary data to be used. Once the
preprocessing has been made, the matching reduced
to only counting matching bits, for with low level
optimization can be done. The resulting algorithm
can be described as a maximum entropy matching
technique since it represents each image region as a
set of bits and measures the number of bits which
differ between two regions.

The matching procedure is illustrated in figure 4.
Note that the preprocessing stage need only be ap-
plied on the template each time it is updated.

9 An associative
perception-action structure

Low and medium level computer vision can be made
using traditional techniques, typically based on con-
volution in combination with non-linear operations,
to obtain feature descriptors of various types. How-
ever, already at medium level and in particular at
the higher levels of image data processing, where per-
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Figure 5: Channel representation of a scalar x =7

cepts are used to initiate and control actions of the
system, it is becoming more and more apparent that
the operations have to be learned rather than pro-
grammed. In the project, a new learning method
based on an associative perception-action structure
has been developed [6].

The method is based on the so-called channel repre-
sentation of information, for which a real valued vari-
able is represented by a set of channels where each
channel represents the certainty or strength that the
variable has a certain value, see figure 5. The vari-
able can for example represent local orientation or
position of a line or edge. The distribution of the
channels in the range of the variable, and the specific
function of each channel, is rather arbitrary as long
as a certain overlap between the channels is main-
tained. Given a specific value of the variable, we
get a specific activity in the corresponding channels,
typically with non-zero values in only a few chan-
nels. Vice versa, with appropriate choices of channel
functions, the activity of the channels can be used
to reconstruct the value of variable. Hence, from
a formal point of view, the channel representation
is a one-to-one mapping from (typically) a real value
number to a set of real numbers. This representation
has some advantages which makes it useful for in-
formation representation. First, multiple hypotheses
about two or more values of the variable can be rep-
resented in an easy manner. Second, learning based
information processing methods can be greatly sim-
plified and become extremely fast since the repre-
sentation, in general, is sparse as only a fraction of
the channels are active at the same time, and since
the channels have values in a limited range (typically
[0...1]).

The newly developed learning technique associates
a set of input channels to a set of output channels,
by means of a linkage matrix C, i.e., each output
activation U is computed as C A, where A is the
input activation. A set of input and output activa-
tions can then be represented as columns in matrices
A and U, and the goal of the learning stage is to
minimize the difference between C A and U (super-

vised learning). Traditionally, this is done by trying
to minimize a least squares error, and is solved using
either steepest descent techniques or explicit inver-
sion of a correlation matrix.

The channel representation allows both the train-
ing and the subsequent processing to be made much
more efficient than the traditional techniques be-
cause of the sparsity of the data and that simple
linear operations can be used in the processing. Fast
numerical methods for inversion of sparse and range
limited matrices are now available and can be used to
compute C, even for very large matrices. The spar-
sity of the input data implies that also C is sparse,
consequently associating only a few input channels to
each output channel. This mean that once the train-
ing has been performed, each output channel can be
computed using a simple and fast linear combination
of only a few input channels.

Figure 6 illustrates how the learning technique can
be used for recognition of vehicles. The system has
first been trained to associate image features, cor-
responding to images that contain the specific vehi-
cle at different orientations, to a channel represen-
tation of the vehicle’s orientation (parameters 6 and
¢). The top image shows a test image containing
two such vehicles on a structured background, and
one vehicle partially occluding the other. The image
also shows the curvature based features as clusters of
bright lines. The bottom image shows two distinct
clusters, corresponding to activation in the output
channels that represent the orientation of the two
vehicles. These can then be projected back to the
test image to give the position of the vehicles, repre-
sented by the two larger circles.

10 Image processing runtime system

The various vision subtasks presented above takes
place in the IPM, for which dedicated hardware re-
sources are allocated. In the project different hard-
ware platforms are being used for the IPM, in par-
ticular the development platform is different from
the target platform. Also, during the operation of
the system one essential property is the possibility
of reconfiguring the IPM for different types of pro-
cessing, e.g., having different accuracy, robustness,
and speed.

Taking these demands into account implies that a
highly flexible runtime system for the implementa-
tion and execution of vision algorithms is needed for
the TPM. The solution consists of an API (IPAPI)
which is the declarative interface that other compo-
nents in the architecture can use to create, manipu-
late, configure and execute various vision algorithms.
It also includes IPAPI-Runtime, the runtime compo-
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Figure 6: A test image with two vehicles (top), and
the corresponding output channel activation (bottom)

nent that manages the configuration and execution of
vision algorithms, dynamically allocates memory for
buffers needed during execution, interfaces to the im-
age controller and other components in the architec-
ture, and manages an existing library of pre-defined
vision algorithms [9].

IPAPI-Runtime is implemented in the Java program-
ming language. The use of Java offers a number of
advantages; rapid prototyping, support on a number
of different hardware/software configurations, access
to an ever growing number of APIs for various pur-
poses, e.g., both CORBA support and a powerful
toolkit for building graphical applications is avail-
able. Thanks to the recent JIT technology for Java,
it is also reasonable to implement the actual data
processing in Java, i.e., the execution inside the
nodes of the graphs. Only certain nodes for which
the execution time is critical, e.g., convolution, have
also been implemented at native level using JNI. In
these cases the optimization has been targeted to use
processor specific instruction sets for acceleration of
floating point operations, e.g., Altivec for PowerPC
or SSE for Pentium. A result of this work is a grow-
ing library of nodes which implement various image
processing operations, some of them in Java, and
some optimized at native level.

In IPAPI, graphs can be defined as new node classes
and instantiated as nodes in other graphs. This im-
plies that relatively complex graphs, containing a
large number of nodes, can be implemented with-
out too much work. Furthermore, memory manage-
ment, scheduling of execution and data flow can be
customized for various purposes. This flexibility in
scheduling is lacking in existing systems of similar
type such as AVS, Khoros, JAI, etc.
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