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Abstract—Exploration is an important aspect of robotics,
whether it is for mapping, rescue missions or path planning in
an unknown environment. Frontier Exploration planning (FEP)
and Receding Horizon Next-Best-View planning (RH-NBVP) are
two different approaches with different strengths and weaknesses.
FEP explores a large environment consisting of separate regions
with ease, but is slow at reaching full exploration due to
moving back and forth between regions. RH-NBVP shows great
potential and efficiently explores individual regions, but has the
disadvantage that it can get stuck in large environments not
exploring all regions. In this work we present a method that
combines both approaches, with FEP as a global exploration
planner and RH-NBVP for local exploration. We also present
techniques to estimate potential information gain faster, to cache
previously estimated gains and to exploit these to efficiently
estimate new queries.

Index Terms—Search and Rescue Robots; Motion and Path
Planning; Mapping

I. INTRODUCTION

N this paper we study the problem of planning for ex-

ploring an unknown area. We propose a novel method,
Autonomous Exploration Planner (AEP), which improves
upon the state-of-the-art method Receding Horizon Next-Best-
View planning (RH-NBVP) [1]. RH-NBVP uses a sampling
based approach to pick out the next best view point [2] in
combination with Rapidly-exploring Random Trees (RRT) [3]
to produce traversable paths, weight the samples and execute
the first edge before replanning again. The score for each node
in the RRT is the volume of unmapped space that would be
covered by the sensors from the corresponding pose, weighted
with the cost of going there.

In this work Receding Horizon Next-Best-View planning is
used as a local exploration strategy and is combined with
Frontier exploration [4] for global exploration. When new in-
formation is available close to the agent, the local exploration
strategy is used, but when it is far away from any information
gain, cached points with high information gain are planned
to instead. This leads to a frontier exploration behavior, but
where frontiers are whole regions of space. This avoids the
problem of RH-NBVP getting stuck locally.

Furthermore, our proposed approach (AEP) out-performs
RH-NBVP in terms of run-time and computational complexity,
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without compromising on performance. Our contributions are
as follows:

1) The potential information gain g is estimated using ray-
casting and cubature integration. The ray-casting is done
sparsely to reduce computational load, while still main-
taining performance. This reduces the computational
complexity of estimating g from inversely quartic growth
O(1/r*) of RH-NBVP down to inversely linear growth
O(1/r) in our approach, where r is the map resolution.

2) The sampling space for the RRT is reduced by one
dimension. Instead of sampling in the full planning
space (z,y, z, ), sampling is done in (z,y, z). This is
made possible by a 360 degree ray-casting operation to
estimate the potential information gain and selecting the
best yaw.

3) The potential information gain g is estimated using
cached points from earlier iterations.

4) Cached points are used for interpolation of new queries.
Earlier works do not discuss the underlying continuous
nature of the potential information gain function g. In
this work we model g as a Gaussian Process over the
continuous domain of R®. This allows us to calculate
an estimate of g in the entire R3 together with the
uncertainty of the estimate, given the cached points.

The approach is evaluated on three synthetic benchmark
environments, one synthetic large 3D environment, and a real
experiment running onboard a small indoor drone. Everything
presented in this work is released as open source! to enable
replication of experiments, easy integration and to encourage
further development.

II. PROBLEM DESCRIPTION

The problem addressed can be summarized as follows:
Given a bounded 3D-volume V that an agent e.g. a drone
wishes to explore, which actions should the agent perform to
explore V' completely and as fast as possible? Each point in
this volume, x € V C R3, can take the two values: free or
occupied, i.e. V(x) = (free|occupied).

Complete exploration means that the agent has created a
map M covering the volume V and every point x in the
map, that can be observed by any of the agent’s sensors, has
been observed as free or occupied, i.e. M(Xreachable) =
(free|occupied). Points that are non-observable, e.g. hollow
spaces without openings, the inside of thick walls or space out
of range, will still be unmapped even after the exploration has
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been completed. If no prior information is given, every x in
the map is initially unmapped. Due to the active nature of
the problem, it has to be solved online.

III. RELATED WORK

Autonomous exploration is a problem that has been studied
for more than 20 years. Early methods explored the environ-
ment for example by following walls. Frontier exploration
[4] was the first exploration method that could explore a
generic 2D environment. It defines frontier regions as the
borders between free and unmapped space. Exploration is
accomplished by extracting frontiers and navigating to them
sequentially. This idea is still the basis for much of the
literature on mobile robot exploration. Depending on the ap-
plication different trade-offs are made between paths lengths,
information gain, etc. Additional constraints can be added to
ensure, for example, that the uncertainty in the robot position is
kept low [5] or that the system actively tries to close loops [6]
as a way to reduce uncertainty in SLAM. Frontier exploration
is further developed and modified for high speed drone flight
in [7]. By extracting frontiers in the field of view (FoV) and
selecting one that minimizes the change in velocity, they can
ensure high speed flight. When there are no more frontiers in
the FoV, a plan is made to the nearest frontier outside the FoV
using Dijkstra shortest path.

In computer vision and graphics, view planning or sensor
placement is the equivalent of exploration in robotics. The
aim is to find placements of the sensor to build a model of
an object or structure. Much of the work in this domain can
be traced back to [8], where the Next-Best-View problem was
introduced.

In [2] Gonzalez-Banos and Latombe take the Next-Best-
View algorithm into the mobile robot exploration domain. In
this domain the cost of moving the sensor, i.e. moving the
robot has to be considered. They also introduced a sensor
model in the planning process. This is rational since the aim of
exploration is to see all of the environment with the equipped
sensors rather than going to all the places that have not been
explored yet. The score of a view point is weighed with the
cost of going there.

The methods so far only consider the gain in information
at the next view point. However, a mobile robot will acquire
information when moving there as well. By growing a tree
outward from the agent, the planning process can take into
account the information gain over the entire path. This strat-
egy was presented as the Receding Horizon Next-Best-View
planner (RH-NBVP) [1]. To plan paths that reduce positioning
uncertainty, [9] presents an extension to the RH-NBVP. A
second planning step is performed to find paths that makes
sure that the agent revisits known landmarks.

There are also other ways to approach the exploration prob-
lem. Potential field methods have been proposed to perform
exploration [10], [11], in which the agent follows stream lines
into unmapped space. By using a simulation of expanding gas
[12] finds frontiers that are used for exploration. Exploration
using multiple robots has been done in several works, e.g.
[13], [14], to reduce the total exploration time.

In summary, while [7] report that their frontier based explo-
ration method perform better than RH-NBVP, by optimising
the way the drone flies so as to maintain high speed, we find
RH-NBVP to be the most promising method for general 3D-
exploration. The potential gain function allows us to control
how to perform the exploration in ways that go beyond
directing the sensor towards frontiers between unknown and
free space, and it is easy to adapt to any sensor configuration.
We therefore base our method on RH-NBVP and show that we
can get better result than [7] for low speed flight and there is
room for improvement to adapt it for high speed flight, which
we leave for future work. We perform our method against RH-
NBVP in detail as there is source code available, and against
[7] by evaluating it in the same simulated environment.

IV. BACKGROUND

A. Potential Information Gain

The potential information gain at a pose is the volume
of the unmapped area that is covered if the agent is placed
there. This value is used to give the nodes a score, which is
used to prioritize and choose one that should be planned to.
The potential information gain is weighted with the negative
exponential of the cost to travel there [2], i.e. the score of
node x is

s(x) = g(x) exp(—Ac(x)), ¢))

where g(x) is the potential information gain in x, ¢(x) is the
cost of going to x and A is a coefficient to control how much
distance should be penalized.

Different A\ values make the agent act differently. A high A
penalizes movement hard and makes the agent perform careful
exploration nearby before moving into the next region, while
a low A\ will have the effect that the agent will move faster
towards completely unexplored space, missing details that it
has to go back to later and fill in.

B. Receding Horizon Next-Best-View planning (RH-NBVP)

In RH-NBVP the score s(x) is used for exploration planning
by growing an RRT [3] outward from the agent [1]. Each node
x in the RRT is given the score s(x) + s(p(x)), where p(x)
is the parent node of x.

When the tree has been grown to a predetermined size, N,
the branch that leads to the node with the highest score is
extracted. Only the first edge of this branch is executed, after
which the planning process is repeated and a new RRT is
grown. The remainder of the best branch is kept as a seed to
next iteration.

If the RRT has been grown to a size of N nodes, but the
score of the best node is still under a threshold g,..,, the tree
is grown further until the best node has a score greater than
Jzero- If the tree reaches a size of N,,,, and the currently best
node still has a score less than g..,,, the exploration process
is considered complete and terminates.



V. PROPOSED APPROACH

Our method, Autonomous Exploration Planner (AEP),
builds on RH-NBVP [1]. We observe that when an agent using
RH-NBVP has explored everything in its nearby surroundings
and the nearest frontier is far away, this frontier will typically
have a very low score and the agent tend to terminate the
exploration prematurely. This is caused by the exponential
decay in the score as a function of cost of travel. Either small
scores are ignored and the exploration will be incomplete or
all scores above zero will be included, but then the exploration
will focus on very small information gains nearby that could
be skipped. This means that large environments becomes
expensive to explore. This can partly be handled by careful
tuning of the A parameter. However, this has to be done for
every environment and it typically requires several attempts.
To be able to continue exploration also in large environments
and reduce the need for tuning, we suggest to marry the ideas
of Next-Best-View planning and frontier based exploration.
We use the former for local exploration planning and the latter
for global planning.

When the agent has explored everything in its nearby
surroundings, the nearest frontier will be far away. The score
for nodes at the frontier, if any found, have dropped down
to almost zero due to the exponential weighting. To continue
exploration also in large environments, we cache nodes with
high potential information gain from previous RRTs and
consider them as planning targets. This addition will lead to
a frontier exploration behavior [4] on the global scale, while
the receding horizon NBV exploration behavior is still kept
on the local scale.

A. The Potential Information Gain Function (g)

In [2] g(x) is defined for all x € (x,y,z, ). We define
instead g(x) for x € (x,y, %), and let ¢ be the value that
maximizes g, (X, @), i.e.

g(x) = argmax g, (x, ¢) (2)
]

That is, the potential information gain function g(x) is defined
as the volume of the unmapped space that would be covered
when the agent is located in position x and face the direction
that would cover most unmapped space.

This is efficiently calculated by doing ray-tracing 360°
around the agent, calculating the potential information gain
for every narrow slice and using sliding-window summation
to find the information gain for every yaw angle. The yaw
angle that corresponds to the maximum value for g, (x, ¢) is
then chosen. The estimation of g, (x, ) is further discussed
in the implementation section VI. g(x) is dependent on the
FoV since g,(x, ) also depends on the FoV.

Calculating the best yaw instead of sampling yaw angles
reduces the sampling space from four dimensions (x,y, z, ©)
to three (z,y, z). As the experiments show, this leads to more
efficient exploration.

B. Caching and Estimation

We cache queries, made when growing the RRT, for later
use. These are observations of the underlying continuous

potential information gain function g. When a new point is
queried, we first assess if it can be confidently estimated from
the cached points. If the posterior variance for the cached point
is low enough, 0?(x) < 02 .., it will be used. Otherwise, the
potential information gain will be calculated explicitly in the
queried point and the result will be added to the cache.

In this work we view g as a continuous function. This
function was presented by [2], but it was only sampled from
and no attempt was made to explicitly estimate it. In their
work they present an image of a map with points sampled
from this function. We have taken the same map (shown in
figure 1), and calculated the information gain for every point
in the map to illustrate the continuous nature of g.

Fig. 1: Left: figure reconstructed from [2] that shows sampled
points in which the potential information gain has been evalu-
ated. Right: the continuous potential information gain function
g evaluated over the same map. Red means high information
gain. White means zero information gain.

A Gaussian Process [15] is used to model the continuous
potential information gain function g, with cached points as
observations of the latent function. In figure 2b a Gaussian
Process predictive distribution has been evaluated on a grid
based on the observations shown in figure 2a.

New measurements might affect g and we need to recal-
culate cached points that are in the range of being possibly
affected. In our system this corresponds to points that are
within double the distance of the maximum sensing range
from the agent’s position. If the cached point has a value of
zero, it will not be recalculated as g is a monotonic decreasing
function over time given our assumptions and it cannot be
lower than zero.

C. Frontier Exploration

We suggest to define the frontiers as nodes with high po-
tential information gain from previously expanded RRTs, i.e.
the points cached in the previous section. These cache points
support both faster calculation of the potential information
gain and the frontier exploration. It can clearly be seen in
figure 2a how cached points have high information gain close
to the frontier (the border between free and unmapped space).

The exploration process is considered complete when there
is no potential information gain nearby and there are no more
cached points with high value.

A possible direction forward is to investigate ways to base
the exploration strategy on the estimates from the Gaussian
process directly, but this is left for future work.



(a) The map as seen from
above with cached points.
Bright pink means high poten-
tial information gain, dark blue
means low.

(b) The Gaussian Process pos-
terior mean over g given the
observations (cached points)
from figure 2a.

Fig. 2: Both images illustrates the map during the exploration
process. The black area is occupied, white free and gray
unmapped.

VI. IMPLEMENTATION

This section describes key details of our method. As an
underlying map representation we use OctoMap [16].

A. Estimation of g,(x, ) Using Sparse Ray Casting

For a given x the value of g,(x,p) is estimated by
casting rays outward from the sensor and summing up all the
unmapped volume elements that the ray crosses.

Fig. 3: Volume element dV'
A volume element dV is depicted in figure 3 at radius r

away from the sensor in direction (6, ¢). Its dimensions are
(A, Ag,Ay) which gives a volume
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For a given yaw direction ¢, the potential information gain
is the sum of the potential information gain of all volume
elements inside the FoV.
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The information gain given a yaw direction and a position
9o (%, ) is simply g, (p) with the world frame translated so
that the sensor is in the origin.

B. Collision Checking

The collision checking between two positions (p1,p2) is
done efficiently by querying the OctoMap for all voxels inside
the bounding box spanning the space between the two points,
expanded with the radius of the bounding sphere around the
agent 7.

All voxels inside the bounding box are then queried, if
marked as occupied, it is checked whether it is inside a
cylinder with end points between p; and p», and has the radius
rp. It is also checked whether the voxel is inside one of the
spheres with radius 7, and origin in p; and ps.

If an occupied voxel is inside the cylinder or any of the
spheres, the path is marked as not collision free, otherwise it
is considered free to traverse.

C. Gaussian Process Interpolation

Each measurement of the underlying function g is expensive
and so is querying the current world model represented by
OctoMap. The physically motivated assumption that g is a
continuous function that varies smoothly across space implies
that collected measurements will contain information about not
yet measured points on g. Uncertainty in g across continuous
space is represented by placing a Gaussian process prior on
g, g ~ GP(m(-), k(-,-)), modeling ¢g with a distribution over
functions [15].

Using a Gaussian likelihood makes the posterior a closed
form solution, and it is possible to infer (interpolate) the value
of g everywhere in R? as a mean and a variance, conditioned
on the observed data (cached points). For example, for x, €
R then g(x.) ~ N (jix., 02, ).

A Gaussian process is a Bayesian nonparametric model
fully defined by its mean function m(-) and kernel
(covariance) function k(-,-). Here zero mean is as-
sumed m(-) = 0 for convenience and the RBF-kernel
k(x;,x;) = exp(— 3 |/ % — x; [|?) is used because of
the smooth shape of g.

If the posterior variance is below a threshold o2, ., Wwhen
g(x4) is evaluated for a query then the posterior mean py,
is returned. Otherwise the query is performed explicitly and
the node x, (together with g(x,)) is added to the cache. For
computational reasons a local GP is used, where only points
within a certain distance of x, are used for estimating g(x).



Each data point x = (z,y,2) also has an associated yaw
angle, which is the yaw in that point that maximizes g,,(x, ¢).
When a point is queried it is assigned the mean value of the
GP posterior and the yaw angle of the nearest neighbor.

D. Computational Complexity

The computational complexity is critical, since the agent
often has limited computational resources. Especially if it
is an aerial vehicle. For every iteration of the algorithm an
RRT is grown with N nodes. For every added node one gain
estimation and one collision check has to be performed.

1) Gain estimation: The complexity of the gain estimation
is the number of horizontal rays n times the number of vertical
rays m divided by the resolution of the map r, i.e. O(nm/r).
An improvement over RH-NBVP (O(1/r4)[1]).

2) Collision checking: For collision checking the number
of voxels, inside the bounding box spanning the start and
the end point, are inversely cubically proportional to the map
resolution, i.e. O(1/r3).

3) Total computational complexity: The total computational
complexity per iteration is O(N (nm/r +1/r3)). The number
of iterations needed scales linearly with the volume V' of the
environment. This gives the overall computational complexity
for the exploration problem using our method (AEP) as
O (VN (22 4 1),

VII. EXPERIMENTAL EVALUATION

We evaluate our method (AEP) in the context of a small
indoor drone. As [1] is the method against we primarily
compare, we perform some of the experiments in the same
environment as [1] (Fig. 4a). We perform both simulated and
real world experiments.

Simulated experiments have been conducted in three dif-
ferent environments to evaluate how the different parts of the
proposed method contribute to the overall performance.

All tests have been performed under the following condi-
tions:

o The agent starts in the origin with zero yaw angle.

o The agent performs an initial action, which is to go 1
meter forward. This to make sure that the planning is
performed with some initial information at hand.

e A hard time limit is set to 20 minutes, to limit the time
which an experiment can take.

Unless specified otherwise these parameters are used:

Map res. T 0.1 RRT max len. l I m
Nodes in RRT N 30 Max nodes Nimax 400
Horiz. rays n 10 Vert. rays m 10
Gain thres. Gzero 2 Var. thresh. 02 02
Degress. coeff. A 0.5 Bounding rad. Th 0.75 m

A. Effects of Sparse Ray Casting and Collision Checking

The apartment environment, shown in figure 4a, is a quite
simple environment, but used for computational benchmark-
ing (also used in [1]). In this environment, exploration is
performed with two different resolutions (0.4 m and 0.1 m)

to investigate influence resolution has on the runtime. Each
resolution is tested with the following configurations:
o AEP: Our method.
« RH-NBVP?: No modifications except for interfacing with our
simulation environment.
« RH-NBVP+C: RH-NBVP with efficient collision checking.
¢ RH-NBVP+RC: RH-NBVP+C with sparse ray gain estimation.

I

FL
TS ]

(c) Office

I

(b) Maze

| —
-

(a) Apartment

Fig. 4: The three environments used for benchmarking.
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Fig. 5: Exploration progress for resolutions 0.1 and 0.4 m,

N = 15, with sparse ray-casting and more efficient collision
checking turned on or off in environment Fig 4a.

gain estimation \ collision checking
per | iteration node iteration node

AEP r=0.4 0.0786  0.0042 0.0132  0.0003
AEP r=0.1 0.0556  0.0033 0.0735  0.0029
RH-NBVP+RC  r=0.4 0.0160  0.0009 0.0032  0.0002
RH-NBVP+RC  r=0.1 0.0368  0.0020 0.0168  0.0009
RH-NBVP+C r=0.4 0.1043  0.0046 0.0039  0.0002
RH-NBVP+C r=0.1 | 10.4860 0.6349 0.0135  0.0008
RH-NBVP r=0.4 0.0981  0.0042 0.6648  0.0277
RH-NBVP r=0.1 | 10.0713 0.6317 4.8951  0.3073

TABLE I: Computational times in seconds for gain estimation
and collision checking.

Figure 5 shows clearly that RH-NBVP performs similarly
with or without sparse ray-casting and efficient collision
checking when the resolution is 0.4 m. When the resolution
is increased to 0.1 m, a big difference can be noticed between
whether ray-casting and efficient collision checking is enabled
or not. With both enabled, the exploration time is almost
independent of resolution.

When the sparse ray-casting has been disabled, the explo-
ration process takes significantly more time and it cannot finish
within the time limit of 20 minutes. We can see in table I that

2RH-NBVP has been taken from the nbvplanner git repo of ETHZ ASL
https://github.com/ethz-asl/nbvplanner



the computational time has increased from 0.098 s to 10.07 s
per iteration, as opposed to the increase from 0.016 s to 0.037
s when the sparse ray casting estimation was enabled. This
means that the drone has to stand still in the air for about 10
seconds every iteration performing calculations.

Disabling the efficient collision checking makes the explo-
ration process even slower (almost 5 seconds per iteration)
with the higher resolution (0.1 m).

Our method (AEP) explores the entire apartment in less
than 200 seconds on average, no matter the resolution. The
computational time for collision checking grows with a factor
6 for the finer resolution, but it is still low enough not to
impact the exploration progress. The computational time for
gain estimation actually shrinks slightly. This is probably due
to that it is so small, and other overhead processes are taking
time.

B. Global Exploration Planning Using Frontiers

In this experiment, the exploration is performed with and
without frontier exploration enabled, denoted AEP and AEP-F
respectively. The tests are conducted in the maze environment
(fig. 4b). Figure 6 shows how AEP manages to explore the first
half completely in 240 seconds and reaches the other side of
the maze in 400 seconds. The AEP-F gets stuck in the first
half. For high A it never gets out, since it is only focusing on
very small information gains in the first half. With a low A
it eventually manages to get out and reaches the second half
after 600 seconds. Lower A will make exploration go faster
forward but will be less careful along the way. Figure 6 shows
one run for each method. Repeated experiments confirm that
these curves are representative.

1800
1600
1400
1200
E 1000
- -
§ 800
8
600
400 —— AEP A =0.75, Grero = 1, N = 100
/ AEP-F A = 0.25, Grero = 1
20| —— AEPF A =025 Gero = 2
7 AEPF A = 0.15, Grero = 2
0
0 200 400 600 800 1000 1200

time [s]

Fig. 6: Exploration progress in the maze environment with
frontier exploration enabled or disabled.

In figure 7 the paths of two runs are shown, the blue one
with frontier exploration enabled and A = 0.75, g,er0 = 1,
and the red one with frontier exploration disabled and A =
0.25, g,ero = 1. Both runs starts in the origin. The different s
were chosen because in AEP we want the potential information
gain to decay fast with respect to distance, so that global
exploration can take over when the gain is too low. If this
setting were to be used with AEP-F instead, the exploration
would be terminated too early in this case, as soon as the right
side has been completely explored.

The blue path with frontier exploration (AEP), explores
everything on the right side first. Then it makes a plan to
the next frontier, in this case where it started. This path is the
dashed line from the right side back to the origin. When at the
frontier, it explores the left side completely, and when there
is no more information gain left it terminates immediately.

The red path without frontier exploration (AEP-F), explores
the right side similarly to the blue path. However, when the
right side is explored completely it gets stuck there, looking
for very small gains. After several iterations it finally manages
to find its way to the frontier again. This relies on randomly
sampling the frontier. Repeated experiments shows that it can
find its way out sometimes after not too long time, but other
times it never finds its way out. It takes long time between
everything being explored and the termination condition is
met. This can be seen in figure 7 by looking at how much the
red line goes back and forth on the right side before leaving for
the left side. This is controlled by g.co. Too high g..-, and
exploration terminates too early, too low g,,, and exploration
never finishes.

10.0

7.5

5.0

25

0.0

=25

-5.0

=75

-10.0

-15 -10 -5 0 5 10 15

Fig. 7: The blue line shows the path for when frontier
exploration is enabled and the red when it has been disabled.
Solid line is the local exploration strategy, while the dashed
line is a path that has been planned to a frontier further away.
We clearly see that the blue path is shorter than the red and
that the drone moves less back and forth.

C. Best Yaw

The office scenario (see figure 4c) is designed to resemble a
normal office. The environment is consciously made varied to
test different aspects of the methods, for example a big meeting
room, smaller cubicles and a room not connected with any
walls. This environment will be used to compare all methods
and configurations against each other.

Figure 8 shows the results for our method (AEP), with
frontier exploration disabled (AEP-F), and with best yaw
also disabled (AEP-FY). Initially AEP-F performs better, but
eventually AEP-FY catches up and even passes AEP-F. An
explanation for this could be that AEP-F is indeed better
at exploration when there is something to explore nearby.



However, AEP-F gets stuck in the same space and for these
experiments it seems like AEP-FY finds its way out faster,
due to the randomness of the RRT algorithm.

D. Summary of Method Comparison

Figure 8 and table II also summarizes the result of all
methods in the office environment (fig. 4c). We can see that
our method, AEP, covers space very well without getting stuck.
Figures 6 and 7 also support this claim.

Fig. 9: Exploration in Power plant scenario also used in [7].
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Fig. 8: Exploration progress in the office environment.

gain estimation ‘ collision checking
per | iteration node iteration node

AEP r=0.1 0.0768  0.0025 0.1313  0.0040
AEP-F r=0.1 0.0687  0.0023 0.1183  0.0039
AEP-FY r=0.1 0.0679  0.0021 0.0675  0.0021
RH-NBVP+RC  r=0.1 0.0267  0.0009 0.0606  0.0020
RH-NBVP r=0.1 | 18.7900 0.6263 | 10.7180 0.3573
RH-NBVP r=0.4 0.1563  0.0042 1.3655 0.0371

TABLE II: Office environment computational time (seconds).

The difference between AEP and AEP-F might not seem so
big, but note that the environment does not contain that many
dead ends. The maze (Fig. 4b) shows the weakness of AEP-F,
that it gets stuck, and only with a very low A it manages to get
out. AEP on the other hand manages to reach the left part of
the map after 400 seconds (seen in Fig. 6). RH-NBVP suffers
from its expensive gain estimation and collision checking. It
performs much better when the resolution is turned down to
0.4 m or those functions have been changed for the faster ones
proposed in this work.

RH-NBVP+RC still performs slower than AEP-FY, al-
though they should be equivalent. This is likely explained
by different implementations and integration of measurements
into the OctoMap.

E. Large 3D World

We have tested our method in the Power plant scenario,
also used in [7], which can be obtained from the Gazebo
model library® . The scenario is (33 x 31 x 26) m. The fully
mapped world is shown in figure 9. We have used the same
map resolution, FoV and camera range as in [7] (table III), to
make the results comparable with their.

Map res. 0.2 m Camera range 7 m
FoV 115 x 60 deg | RRT max len. 3 m
A 0.75 Nmax 200
N 50

TABLE III: Parameters used in Power plant scenario.

Vmaz M/S ‘ AEP Rapid [7]
0.7 1185+£95 1245 £ 151
1.5 1037 £ 87 717 +94
2.5 941 +91 582 +26

TABLE IV: Exploration times for Power plant scenario.

Table IV shows the exploration times for AEP and Rapid.
AEP performs exploration faster than Rapid for v,,q, = 0.7
m/s, but slower for the higher speeds. The results cannot be
directly compared since we are not running their method in
our simulator, but it shows that our AEP method is competitive
although not yet leveraging the benefits of high-speed flights.

F. Real World Experiments

The method was tested on a real drone in our indoor
drone lab. The size of the area the drone can navigate
is (O m x 5 m x 25 m). Mocap was used to get the
pose of the drone, everything else was running onboard.
The environment and the final OctoMap can be seen in
figure 10. The initial position of the drone was in the middle
of the environment. The drone started off by flying into
the center of the smaller, inner, area and mapped it by
rotating in place, thereafter it proceeded to the bigger room
and mapped it completely. Videos of the real world experi-
ment can be found at: https://www.youtube.com/playlist?list=
PL5SwRR7C61QDYQUtvWwS5_QCOLM_ndGhbaQ.

VIII. SUMMARY & CONCLUSION

We have presented a new exploration planner (AEP) that
combines local and global planning for exploration, thereby

3https://bitbucket.org/osrf/gazebo_models/src


https://www.youtube.com/playlist?list=PL5wRR7C61QDYQUtvWw5_QC0LM_ndGhbaQ
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Fig. 10: Real world experiment consisting of two complex rooms and with exploration running onboard a real drone.

combining the strengths of receding horizon NBV planning
and frontier exploration. Our planner can explore large un-
known environments fast and without getting stuck. By using a
new way of estimating potential information gain, our method
scales well with map resolution as well as with the size of
the environment. The exploration process is sped up by a 360
degree potential information gain estimation to make the agent
point in the direction where most unmapped space is covered,
instead of relying on randomly sampling the orientation.
Computational time is saved by reusing previously estimated
potential information gains. Cached potential information gain
with a high value will always be close to a frontier, which we
use for global planning.

With our contributions, we have shown that RH-NBVP, can
perform on par with methods optimized for high speed drone
flights. As future work we propose that a kinodynamic model
is introduced in the RRT to incorporate a better model for the
motion of the drone and thereby allow the drone to maintain
higher speeds. Apart from that we also plan to investigate
strategies based directly on the estimated continuous informa-
tion gain function in the future.
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