
A Software Architecture for A.I. Systems Based on
Self-Modifying Software Individuals

Erik Sandewall
Department of Computer and Information Science

Linkoping University
58183 Linkoping, Sweden

erisa@ida.liu.se

ABSTRACT
The Software Individuals Architecture (SIA) is a frame-
work for defining software systems that are capable of self-
modification and of reproduction on the level of an inter-
pretive programming language. In abstract terms, a self-
modifying system is a labelled tree containing scripts at
some of its nodes; these scripts are effectively programs.
A computation in such a system executes a specific script.
In doing so it maintains a local computational state, but it
also uses and updates the labelled tree. The labelled tree,
the local computational state, and the command language
used for the scripts are all designed in such a way as to sup-
port self-modification and reproduction in a structured and
orderly fashion.

We have defined a practical system of this kind both on
an abstract and formal level and as an implementation using
Lisp as the host language. This architecture has been used
as a platform for several applications, including in particular
the speech and natural-language dialogue system for an in-
telligent autonomous unmanned aerial vehicle (UAV) in the
WITAS project. The architecture design has been revised
repeatedly as a result of using it for this application as well
as several others.

1. SELF-MODIFIYING SOFTWARE

1.1 The Case for Self-Modifying Software
We are interested in self-modifying software systems for

the following reasons:

1. It is a very little studied topic. The idea of self-modifying
software is met by many by disdain bordering on a
taboo.

2. If you consider the entire set of software in a computer
as the program of the computer, then all such global
programs are self-modifying. For example, installa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Lisp Conference ’03 New York, NY USA
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tion of new software on a computer constitutes self-
modification of the program. Correct and robust soft-
ware installation is an important and complex prob-
lem.

3. Several software plagues, including viruses, use self-
modification in order to survive the countermeasures.

4. On a philosophical note, it is a remarkable fact that
the von Neumann computer architecture is based on
program-data equivalence, which means that machine-
level programs are inherently capable of self-modification,
and yet all conventional programming languages make
a conscious design decision not to allow the program-
mer to modify the program. In other words, one of
the most significant properties of the hardware is taken
away from the programmer. It is interesting to explore
what a programming language and system will be like
if self-modification is allowed and supported properly.

These are reasons for considering self-modifying software
as an important approach to software technology that offers
new challenges and that has been very little studied.

1.2 The Case for Software Individuals
Besides the software-engineering motivation described above,

our interest in these issues also has an artificial intelligence
background, which leads us to impose a number of other re-
quirements on the system, besides self-modification as such.
The argument goes as follows: The long-range goal of AI
is to build systems that have and use intelligence of many
kinds and over a broad spectrum. Some of the necessary
requirements on such a system is the ability to learn, and
to acquire knowledge. This is only meaningful over longer
periods of time; an AI system should have a lifelength of
months, and preferably years. It should be able to modify
its own characteristics during that time. However, ordinary
computers do not easily sustain computations that go on for
years, in particular not if the same system must be highly
flexible and adaptive. Therefore we need a notion of soft-
ware that can exist and change itself over long periods of
time - a notion that combines concepts from programs and
from databases. (The collection of data in a database has
of course a high degree of persistence).

The present paper attempts to combine the software- tech-
nology aspect and the AI aspect of our work, but with an
emphasis on the former.

1.3 Definitions
We begin with the definitions for a generic self-modification

machine that is relatively abstract. Later on we shall spe-
cialize these generic concepts so as to become more concrete.

We define a self-modification machine as a fivetuple (C,

I, S, W, w0), where

C is a language, the expressions in which

are called *commands*

I is an *interpreter* for expressions in C

S is a domain of possible *system states* for

a *self-modifying system*. Every such state

is a structure containing labelled

elements each of which is a sequence of

commands in C

W is a domain of possible *working states*

during a computation with S

w0 is a designated member of W, the *initial

state*

Whenever we refer to C below we mean the SIA command
language, and not the programming language C.

The interpreter is a mapping from C x S x W to S x W. In
other words, given a pair (s, w) where s in S and w in W, each
command c will produce a new pair I(c, s, w) = (s′, w′). For
convenience we write this also as I(c, (s, w)).

If p = 〈c1, c2, ...cn〉 is a sequence of commands, then we
write I(p, s, w) in the obvious way for
I(cn, ...I(c2, I(c1, (s, w)))...)

We also write J(p, s) for the first element of I(p, s, w0).
Informally, J is the operation of applying a program p to a
system s, starting with the working state w0, and discarding
the working-state part of the component when all of p has
been executed.

If s is a system state and l is a label used in s, then
we write program(s, l) for the sequence of commands that s
associates with l. We extend the use of the operators I and
J asfollows:

I(l,s,w) = I(program(s,l), s, w)

J(l,s) = J(program(s,l),s)

The self-modification machine that is characterized by
these definitions is such that the system state of the self-
modifying system can contain both ’programs’ and ’data’,
it is possible to invoke programs that are located within
the system, and the result of executing such a program can
change the state of the entire system, including the programs
that it contains and the labels that those programs have.

2. THE ABSTRACT SOFTWARE INDIVID-
UALS ARCHITECTURE

The Software Individuals Architecture (SIA) is an experi-
mental implementation of a self-modification machine in the
sense defined above, with a particular goal of exploring the
ideas mentioned in the AI introductory section. We wish
to design a system that is capable of self-modification and
reproduction on the level of the software language(s). Other
approaches using genetic programming, for example, are not
being tried in this project.

The system state in SIA is a labelled tree with a partic-
ular structure, called a residence. SIA residences contain
subtrees called software individuals, and one of the key ca-
pabilities of a software individual is the ability for reproduc-
tion. That is, there are operations that are done relative to

a particular individual in the residence, and whose effect is
to construct one more individual and add it to the residence,
as a neighbor of the breeding individual. The newbred is not
in general a clone of the breeder.

Self-modification in SIA applies for individuals, therefore,
and the changes that an individual can perform on the rest
of the residence outside itself are fairly constrained. The
most important operation is that an individual can breed
another individual, but when doing so it only creates a sim-
ple individual with minimal contents. Then it is up to that
new individual to acquire information from its breeder and
from other neighbors, similar to how a child picks up knowl-
edge from many people and not only from its parents. It
is expected that this design will provide a high degree of
robustness for the overall system. It is important to address
the robustness problem since self-modification in itself in-
troduces new dangers of software errors, while at the same
time it also offers new ways of dealing with those errors.

2.1 The formal and the practical versions of
SIA

The SIA residence can be understood in a formal way
and in a concrete implementation sense. Formally, a SIA
residence is a finite tree with the following characteristics:

• Each node in the tree has a label, which is a symbol,
written as a conventional identifier (letters, digits, a
few special characters allowed).

• The daughter nodes of a given node must have dif-
ferent labels. Therefore, each node in a tree can be
characterized by the labels on the path leading to that
node, including its own label.

• Besides daughter nodes, each node also has a set of
labelled scripts. Each script is a sequence of commands
in the command language C. The labels for scripts are
of the form a.x or a.f.x where a is a symbol, f is
chosen from a small set of aspects, and x is chosen
from a small set of extensions. The scripts that are
attached to a given node must have different labels.

In the concrete implementation sense, a SIA residence is
understood as a directory structure (directory, subdirecto-
ries, and contents) in a computer system running a conven-
tional operating system, such as Linux or Windows. Nodes
in the formal interpretation of a residence correspond to di-
rectories; scripts correspond to alphanumeric files contain-
ing the sequence of commands in textual form; labels are
the names for subdirectories and files. (Labels of the form
a.f.x are implemented as a.fx using an extended set of ex-
tensions, in our current implementation). But in addition,
the concrete implementation of the SIA architecture allows
a greater variety of script languages, so that some scripts
may contain programs in ordinary programming languages,
and other scripts may contain data that are represented in
particular formats.

Note, however, that when other types of operating sys-
tems, and in particular their file systems become available,
then it will be possible to realize the tree structure of the ab-
stract SIA architecture in entirely other ways than mapping
it on the directory and file structure.

The formal interpretation of SIA architectures only mod-
els some aspects of the concrete implementation, therefore.
At the same time, some choices in the formal definition of

the architecture are motivated by considerations in the im-
plementation, and will appear as ideosyncracies unless one
is aware of that background. It is important to understand
that the formal model of SIA has not been designed ab-
stractly; instead it is an abstraction of an existing software
system that has evolved with multiple applications over sev-
eral years, and with successive redesigns in order to meet the
needs of those applications. The applications included the
speech and natural language dialogue system for an intelli-
gent UAV in the WITAS project, and a support system for
the editing process in scientific journals.

The following are some considerations that were impor-
tant in the concrete implementation, and that are partly
visible in the formal interpretation as well:

• A SIA residence shall resemble a mobile agent in the
sense that it can easily move between hosts. For exam-
ple, if a SIA residence is stored in a mountable memory
device, such as a USB flash memory, then it shall be
possible to mount that device into an arbitrary com-
puter and immediately start to execute programs in
the individuals of the residence. Similarly, if the resi-
dence is stored on a server then it shall be possible to
run it on different hosts even in cases where the execu-
tion makes use of resources that are available locally
on the hosts (that is, not on the server) and that may
appear differently on different hosts.

• A SIA residence shall also be absolutely portable be-
tween different operating systems and programming
languages, so that the tree representing the residence
can be moved to another such environment and can
perform computations there immediately and without
cumbersome reinstallations.

• SIA-based applications use an extended command lan-
guage with the following facilities in addition to those
that are included in the generic model for self-modifying
machines in Section I above:

– providing parameter data to programs that are
executed in an individual

– input and output of data, for example through a
web browser

– invoking system software of various kinds (web
servers, databases, etc)

– allowing SIA scripts to contain programs in pro-
gramming languages, e.g. in Lisp, and not only
in the SIA command language.

Later sections will describe the present, concrete version
of the SIA architecture. At this point we proceed with the
formal version.

2.2 Understanding self-modifying software
As a result of working with self-modifying software during

several years, we have made the following observation that
we think is very important: self-modifying software must be
understood in very different ways from ordinary software.
In particular, ordinary programs are commonly thought of
as ’documents’, and it is often assumed that the ideal pro-
gramming language would be one where programs can be
read like their own documentation. This assumption does

not work well for self-modifying programs, and trying to un-
derstand self-modifying programs like if they were ordinary
ones will only lead to problems.

The proper way of understanding self-modifying programs
may still be a research issue, but for the SIA architecture
we recommend thinking of the software as a collection of
nodes and their associated scripts for which there are several
distinct structures, namely:

• The quasi-static residence structure of the SIA resi-
dence as a labelled tree

• The startup structure which specifies how one script in-
vokes another one during the startup of a computation
in an individual within the residence

• The reproduction structure which describes how a res-
idence may be extended with additional individuals,
and how an individual may extend itself with addi-
tional components during a computation

The designs of these structures are highly interdependent.
Many aspects of the residence structure are dictated by the
requirements of the startup structure, and in particular by
the portability requirement on startup: computations shall
be able to start immediately, regardless of ’where’ an indi-
vidual happens to be located at a particular time. Other
aspects are determined in order to avoid using redundant
copies of the same data, which means for example that in-
formation that is used jointly by several individuals shall be
stored in one place and accessed by all of them, which means
it is best located on a high level in the residence so it is not
local to any of the individuals.

3. THE SIA RESIDENCE STRUCTURE
Since SIA residences are labelled trees, there will be sev-

eral occasions where we need to illustrate trees in this text.
We will ’draw’ them in textual form, as in the following
drawing of a minimal SIA residence:

GSIR

|

|- residmap.buc

|

|--- pioneer

|

|--- Ember

| |

| |- indivmap.buc

| |- invoke.buc

|

|--- Materiel

| |

| |- bkloader.lsp

| |- persist.lsp

| |- repro.lsp

| |- ad-acl.lsp

| |- ad-xlisp.lsp

| |- launch.lsp

| |- method.lsp

|

|--- Process

| |

| |--- progenit

| | |

| | |- progenit.bat

| | |- progenix.bat

| | |- progenit.sh

| | |

| | |--- Bucket

| | | |

| | | |- envload.buc

| | | |- progenit.ifb.buc

| | | |- progenit.ifm.buc

| | | |- progenit.if.buc

| | | |- progenit.buc

| | | |- progenit.ifx.buc

|

|--- Offering

| |-

The root node of this residence has the label GSIR. It
has one single daughter node, whose label is pioneer. The
granddaughter labelled Ember is associated with two scripts,
one of which has the label indivmap.buc, and so on.

Node labels in a SIA residence are of two kinds. There
is a small vocabulary of role labels that are written with a
capital first letter: Ember, Materiel, Process, etc. There
is also an open-ended vocabulary of object labels that are
written with small letters throughout, and that are chosen
by the user, just like identifiers in a programming language
are. A small number of object labels are reserved for use by
the kernel, namely those that occur in the tree above.

Script labels are of the form a.x or a.f.x where a is an
object label, and x is either of the following:

a) extension used by the abstract architecture: .buc

b) extensions and aspects that are required for the func-
tions of the concrete implementation. This includes .lsp

for the program files in a Lisp implementation, .bat and
.sh for invocation files in Windows and Linux environments
respectively, and also the aspects .ifb, .ifm, .if, and .ifx

as shown above, plus in fact a few other aspects.
An implementation in another programming language will

need to add scripts containing translations of the .lsp scripts.
(The current Windows-based implementation represents

extensions and aspect-extension pairs as follows, for histor-
ical and technical reasons,

.buc represented as .lsp

.if.buc represented as .if

.ifb.buc represented as .ifb

.ifm.buc represented as .ifm

.ifx.buc represented as .ifx

We intend to remove the first transformation so that .buc
scripts are represented by the .buc extension in the imple-
mentation, but the other representations will probably re-
main).

4. COMPUTATIONS IN SIA

4.1 The Working States
According to our generic model for self-modifying ma-

chines, a computation in SIA uses a system state and a
working state. The system state or residence always follows
the general pattern of the residence above, but it typically
contains additional individuals besides pioneer, additional

processes besides progenit, additional materiel scripts, and
so on. We shall now define the working state.

The working state uses the following types of atomic ex-
pressions:

• Role symbols, object symbols, and extensions, as used
in the residence. Role symbols will be written with ini-
tial capital letter and the remaining ones small letters.
Object symbols will be written with all small letters
(usually) or all capital letters (only for symbols rep-
resenting residences). Extensions will be written with
small letters only, and in the running text they will
often be marked by an initial point as a reminder, for
example .buc or .lsp. Digits and the characters ,
-, plus, and equal are also allowed in object symbols.
These kinds of expressions are jointly called symbols.

• System parameters, which are written with small let-
ters but with an asterisk (*) as the first and the last
character, for example *process*.

• Strings, which are written surrounded by ‘‘ signs, for
example ‘‘This is a string’’.

A SIA expression is an atomic expression or a composite
expression obtained recursively by forming lists surrounded
by parentheses, for example (this is a list).

A working state is a mapping from system parameters and
pairs of symbols, to SIA expressions. If w is a working state,
then we write w(p) for the value assigned by w to the system
parameter p, and w(i, a) for the value assigned to the pair
of the two symbols i and a.

Working states are partial mappings, that is, they do not
assign values to all system parameters and all pairs of sym-
bols. They are extended to complete mappings by defining
the value as the empty list () for those argument(s) not oth-
erwise assigned a value. This object is also written NIL. It
is obviously an atomic expression, and as such it is a fourth
type that is disjoint from the three types mentioned above.
NIL can not be an argument of w.

4.2 SIA commands
SIA commands are written as lists, for example

(set (capital sweden) stockholm)

The interpreter I defines how the pair of a system state
s and a working state w is updated by a SIA command
c. The arguments capital, sweden, and stockholm in the
example are interpreted as constants, i.e. they evaluate to
themselves. The opposite case, where an argument is to be
evaluated before use, is represented as (? f) where f is a
SIA form. The syntax and semantics of SIA forms is defined
below.

Commands that access or update the residence s need to
refer to particular nodes in it. This is done using paths. A
path h is a sequence whose elements are either of role sym-
bols, object symbols, or the special symbol UP. Such a path
identifies an arbitrary node relative to the base node that is
used in the computation. By convention, every computation
uses a base node that is located as (i Process p) relative
to the root of the residence, where i and p are object sym-
bols. The node located at (pioneer Process progenit) is
the only possible base node in the kernel residence showed
above, for example.

The choice of base node is specified during a computation
using the two parameters *individual* and *process*.
Every computation has a startup phase where the values
of a number of parameters and property pairs are set, and
these parameters belong to those set during startup.

The function target(n, h) determines a target node n′ if n
is a given node and h is a path, and is defined in the natural
way as follows:

target(n, NIL) = n

target(n, (UP h2 h3 ...)) = target(n’, (h2 h3 ...))

where n’ is the mother node of n

target(n, (h1 h2 h3 ...)) = target(n’, (h2 h3 ...))

where n’ is the descendant of n whose label

is h1, provided that h1 is different from UP

target(NIL, h) = NIL

The following are the basic commands and how they up-
date a computational state (s, w), where b is the present
base node:

(set p v)

where p is a parameter: modifies w so that

w[p] = v, otherwise s and w unchanged

(set (i a) v)

where a and i are symbols: modifies w so that

w(i,a) = v, otherwise s and w unchanged

(mknode h)

where h is a path: adds whatever nodes to s

that may be necessary so that target(b,h)

exists (is different from NIL)

(loads h a x)

where h is a path, a is an object symbol,

and x is an extension: executes the sequence

of commands stored in the script with the

label a.x and attached to the node at

target(b,h)

(loadm a)

defined as (loads (UP UP Materiel) a lsp)

This command is used for loading program

modules in the host language where SIA has

been implemented, for example in Lisp in our

case

(loadb a)

defined as (loads (Bucket) a buc)

This command is normally used for invoking

scripts that perform set operations, loadm

operations, or recursively perform new loadb

operations. The total effect of the loadb

operation shall therefore be to update the

working state w using information in the

system state s.

(saveb a)

where a is an object symbol. This command

is symmetric to loadb: it defines or changes

the contents of the script that the system

state assigns to the node at

target(b, (Bucket))

and with the label a.buc. The new contents

are such that whenever the (loadb a) operation

is later on performed with the same base node,

then assignments are made in w that reestab-

lish assignments that were in place when the

(saveb a) operation was made.

These are all the commands that are essentially needed for
the basic processes in the SIA architecture, that is, as the
basis for self-modification and for reproduction of individ-
uals and of processes. However, besides the commands we
must also specify the mechanism for the saveb command,
which relies on the use of prescriptions.

4.3 SIA Prescriptions
A prescription is a SIA expression that specifies how to

form the contents of a script, to be used in particular by
the operation saveb. An example will show how this works.
Suppose the user performs the following operations in se-
quence:

(set (bucket nordic) ((prop nordic bucket)

(prop sweden capital)

(prop denmark capital)))

(set (capital sweden) stockholm)

(set (capital denmark) copenhagen)

(saveb nordic)

The effect of this will be to create a script whose label
is nordic.buc and containing the first three of these four
SIA commands. In general, the operation (saveb a) is de-
termined by the prescription w(bucket, a). The prescription
shall be a list of prescription items which are processed as
follows.

(prop a i1 i2 ... ik)

causes expressions of the form

(set (ij a) w(ij, a))

to be added at the end of the script being

produced, for each ij between i1 and ik

(const p)

causes an expression of the form

(set p w(p))

to be added at the end of the script being

produced

(const p v)

causes an expression of the form

(set p v)

to be added at the end of the script being

produced

(loadm a)

causes an expression (loadm a) to be added

at the end of the script being produced

(loadb a)

similar to (loadm a)

(loads h a x)

similar to (loadm a)

Notice how the prescription associated with (bucket nordic)

requests the generated script to contain an assignment ex-
actly to (bucket nordic). In this way the prescription will

cause itself to be added to the generated script, so that it
will be reconstituted when that script is loaded.

This design using scripts and prescriptions has been mod-
elled on the “makefile” feature in Interlisp. (This feature is
not to be confused with the feature with the same name in
the Java language).

In general, the idea is to make it possible for software in
a SIA architecture to define parts of the residence structure
within its working state, either from scratch or being load-
ing and modifying those structures, and then to ’write’ the
desired system parts to the residence again. System updates
are therefore supported in a structured way.

4.4 Variable components in prescriptions and
in scripts

A prescription is a sequence of second-order commands:
when it is executed, it results in a new sequence of com-
mands (the script) which in turn will be executed when the
script is ’loaded’ e.g. using the loadb command. The sim-
plest form of prescription entries, and the simplest form of
script commands represent their arguments explicitly. How-
ever there are also situations where one wishes to evaluate
one or more of the arguments, either at the time when the
prescription is used for generating a script, or at the time
when the script is loaded into a computation. These two
cases are handled using the special symbols $ and ?, respec-
tively.

The loading-time evaluation operator ? is used as follows.
If a script should contain the following commands

(set *process* myprocess)

(set *newprocess* (? *process*))

then the value assigned to the system parameter newprocess
is obtained by looking up the value of the system parameter
process. The following alternatives are available when the ?

operator is used for the third argument of the set command:

(? p) where p is a system parameter -

evaluated as w(p)

(? (i a)) where i and a are object symbols -

evaluated as w(i,a)

(? ip x1 x2 ... xn) where ip is an object

symbol representing an *interpreter* -

the value is obtained by checking the

arguments (x1 x2 ... xn), but not

their recursive sub-expressions for

occurrences of ?, and then giving

the list of the evaluated arguments

to the interpreter named by ip. This

handle is intended to be used for

example for evaluating using a more

or less specialized theorem-prover.

A special case of the third form is:

(? lisp <form>) where <form> is a

CommonLisp expression - the form is

evaluated by the Lisp interpreter.

The scripting-time operator $ is similar except of course that
it is used in prescriptions and not in scripts. It can occur in
the following ways in prescription entries:

(prop a i1 i2 ... ik)

Each of the element a, i1, i2, ... ik can

be an expression of the form ($...) which

should evaluate to an object symbol.

(const p v)

The element p can be a $-expression which

evaluates to an object symbol. The element v

can likewise be a $-expression which

evaluates to an arbitrary SIA expression.

(const p)

This case can now be understood as an

abbreviation for (const p ($ p))

The single arguments of loadm and loadb commands

can likewise be $-expressions.

(loads (h1 h2 ... hn) a x)

Each one of the expressions h1, h2, ... hn, a,

and x can be a $-expression with an appropriate

value.

If ?-expressions occur in prescription elements, then they
are placed as is in the script being produced. However, if
the immediate argument of a ?-expression is a $-expression,
then the latter is replaced by its value as an argument of
?. Having a $-expression with a ?-expression as an explicit
argument is not possible (except in special cases when the
$-expression invokes an interpreter). On the other hand, it
is possible for a $-expression to evaluate into a ?-expression
which is then placed in the script being generated.

5. THE STARTUP STRUCTURE
We shift now to the structure of the startup procedure

when a computation is started in a SIA individual. The
proper design of this procedure is important for ensuring
the mobility of individuals, but it has influenced the resi-
dence structure, and it is also significant for the reproduc-
tion mechanisms. Reproduction of individuals and processes
is of course a stronger kind of startup. Also, some parts of
reproduction functionality occur during the first startup of
a new individual and process, much like some installation
’wizards’ in ordinary software arrange that some of the in-
stallation work happens the first time the newly installed
software is used.

5.1 The Startup Invocation Structure
The essential invocation structure is as follows. We use

the same diagram as for the residence structure, but now
the tree represents dynamic invocations and not position in
the quasistatic tree. We specify it for one particular entry
point, namely a Windows-style .bat file that calls the ACL
system with the command

alisp Bucket/admin.ifm.buc

in order to start a computation with the runmode called
admin. Notice that the base node for the computation is
a process node, for example (pioneer Process progenit).
The invocations go as follows:

admin.bat

|

|--- admin.ifm.buc

|

|--- bkloader.lsp

|

|--- admin.if.buc

| |

| |--- invoke.buc

| |

| |--- envload.buc

| | |

| | |- residmap.buc

| | |- indivmap.buc

| | |- method.lsp

| |

| |--- (use startup ’methods’)

| | |

| | |- ac-acl.lsp (adapt to

| | variety of Lisp)

| |

| |--- admin.buc (runmode)

| | |

| | |--- progenit.buc

| | | |

| | | |- persist.lsp

| | | |- repro.lsp

|

|--- launch.lsp

The file or script admin.ifm.buc is called the first loader
script. This script ust do two things:

• Load some initial definitions whereby subsequent, pro-
gramming language independent SIA script files can be
loaded

• Set some systems parameters that specify the present
computational environment

Some of those systems parameters are intrinsic to the first
loader script, and different first loader scripts set them dif-
ferently. This applies for example to the parameter that
specifies which OS is being used. Others of those system
parameters have to be determined e.g. by asking the oper-
ating system.

A complete software individual contains several OS script
files and their respective first loader scripts, which is how
the individual achieves immediate portability so it is always
prepared for running in different environments. However,
these different entry points converge quickly to invoking the
script admin.if.buc for the chosen runmode admin, as well
as the scripts that are in turn invoked by it. These scripts
are in SIA script notation, so they can be used by all entry
points. The information is spread on several scripts accord-
ing to where it is to be shared: some is common to the
entire residence (residmap.buc), some is common to the in-
dividual (indivmap.buc), some pertains to the atelier (more
about ateliers below)(localmap.buc), some is specific to the
variety of Lisp interpreter being used (ad-acl.lsp for the
ACL variety), and so on.

Besides the initial OS script file, for example a .bat file,
these scripts are of two main types: .buc scripts and .lsp

scripts. The latter contain ordinary Lisp function defini-
tions, and are assumed to be manually written and main-
tained. The .buc scripts, on the other hand, and generated
and re-generated from the SIA computations as directed by

the SIA prescriptions, and manual interventions into them
are nontrivial since they may violate consistency within the
file.

Notice, however, that it is the .buc “bucket” files that
tend to be the superior ones in the startup invocation hier-
archy, and that it is they that invoke the .lsp files, and not
vice versa. This is the key to the system’s self-modification
capability: by changing the data in the bucket files it is pos-
sible to change what happens during startup. In order that
it shall be practically possible and manageable for the sys-
tem to thus modify itself, it is essential that the expressive-
ness of the data in the bucket files is on the right level: not
too rich, not too poor. One important result of the present
experimental implementation will be to find out whether we
have found the right balance in that respect.

The bucket admin.ifm.buc has the following contents:

(load "../../Materiel/bkloader.lsp")

(setq *lispvariant* ’alisp)

(setq *os-family* ’windows)

(setq *debugmode* ’nil)

(loadbuckfile "../progenit/Bucket/admin.if")

(load "../../Materiel/launch.lsp")

This script loads the bkloader script for definitions of
how to load SIA scripts; then it sets a few system param-
eters, then it loads the .if.buc script whose contents are ex-
plained below, and finally it loads the materiel file launch.lsp
which is runmode-specific and defines how to conduct the
communication with the user or with external clients.

The admin.ifm.buc script is written in Lisp because it is
loaded into a naked Lisp system that has not yet loaded the
code for loading SIA scripts - that is what the file bkloader.lsp
does. Anyway, the remainder of this script after the first
item would have the following expression as SIA commands:

(set *lispvariant* alisp)

(set *os-family* windows)

(set *debugmode* nil)

(loadb (UP progenit Bucket) admin if)

(loadm launch)

Runmode-defining buckets have particular properties which
specify which materiel files to use in the place of bkloader
and launch, as were used here. Changing these properties in
the runmode’s bucket will lead to other materiel files being
used in the place of the ones quoted here.

In the final step of the startup procedure, the system loads
the materiel file launch.lsp or a replacement for it. This file
defines how the interactions with the user are to be made,
for example, a command-line interpreter. In several cases,
extensions to the most elementary system have been defined
by introducting a replacement for the launch file.

A comment about a technical detail, which however illus-
trates the complexities that lay behind the design choices in
the residence structure and the startup structure: The rea-
son for having launch.lsp as a separate entry in admin.ifm

and not in admin.if (which would avoid repeating the invo-
cation from several entry points besides admin.ifm) is that
in some system variants the file launch.lsp is kept open
during the entire run, which makes it impossible to rewrite
it during a run. If the invocation of launch were part of
admin.if then it would also not be possible to rewrite the
latter during a run, which would be a problem since the lat-
ter contains parameters that are sometimes changed during

runs so that the file needs to be re-written on occasions. The
script admin.ifm may also need to be rewritten occasionally,
but much more rarely.

How does one replace the file launch.lsp by a substitute
in order to obtain alternative or extended system behavior?
This is not done by changing the contents of the file - doing
so would be bad practice. Instead, a new file with a new
name is introduced, for example inlaunch.lsp. One of the
properties that is defined in the runmode script admin.buc

is what shall be the ’executive’. In the original system ker-
nel this property is set to “launch”, but if one changes it
then later regenerations of the script admin.ifm.buc for
the runmode at hand, and for its descendants, will invoke
inlaunch.lsp instead of launch.lsp in its startup proce-
dure.

The appendix shows the contents of other major scripts
that are involved in the startup sequence. The reader may
not wish to study every detail in them, but we show them in
order to emphasize that the actual kernel structure is quite
small. This is the result of a long period of refinement in
order to obtain maximal functionality from a structure of
minimal size.

5.2 The use of SIA methods
One of the facilities for flexibility and robustness is the

use of SIA methods already in the low levels of the system,
such as in in the startup procedure, where methods are used
for identifying aspects of the current computational environ-
ment such as, for example, the identifier of the host on which
the computation is performed. The machinery for defining
and using methods, as well as methods for these particular
purposes, are defined in the materiel file method.lsp, which
is invoked from the script called envload.buc. Once intro-
duced, methods are used for several other purposes in the
kernel, and they are available for use in applications.

5.3 Application specific individuals and pro-
cesses

One SIA individual may contain several processes which
are represented by neighboring subtrees under the Process

node in the individual. The idea is that computations take
place within processes, and each process can have one (but
at most one) computation running at any one time. Each
process may in turn contain a number of buckets under its
Bucket node. In general, buckets are used for storing data
that is local to the process, between the computations of the
process. That is, a new computation may fetch information
from the buckets of its own process, operate on them, de-
posit resulting information in those buckets, and terminate
the computation. The results are then available to later
computations.

We discussed by way of introduction the longevity re-
quirement on true artificial intelligence systems. Philosoph-
ically we take the perspective that a process in the Software
Individuals Architecture is really the subtree, or directory
structure, that represents that process within the individual
which in turn is within the residence. This is the structure
that persists for a long time, while it is also being to modify
’itself’ during that time. Computations are periods of activ-
ity for the individual, but they are not the individual nor a
part of it.

Some of the buckets are used for runmodes. If a process
has several runmodes, it is because there may be different

ways of operating the process, for example in user command-
line mode, or with a graphical interface, or via a web server-
browser connection. Each runmode r has a bucket script
r.buc, like other buckets, but in addition it has some other
scripts such as r.if.buc, r.bat, etc which are needed only
for those buckets that define runmodes.

Each process starts with a default runmode which has
the same name as the process itself. Additional runmodes
obtain other names.

Every new-bred individual contains one single process,
called progenit, with one single runmode which consequently
is also called progenit. This process may be used to spawn
additional processes for that individual. Those additional
processes may then also create additional runmodes for them-
selves. In general it is not recommended to add more run-
modes to the progenit process, because of its role in the
reproduction process.

When applications are built on the SIA platform, it is
intended that they shall be realized as additional individuals
and not within the pioneer individual, and furthermore as
additional processes within those individuals and not in their
progenit process.

Processes other than progenit follow the same pattern,
with one important difference: a runmode script e.g. admin.buc
has the following contents in a minimal process:

(SET (BUCKET ADMIN)

((PROP ADMIN BUCKET BUCKET-WORD STARTER

EXECUTIVE SPAWNER STARTUP INIT-PROCESS)

(LOADB PROGENIT)))

(SET (BUCKET-WORD ADMIN) "admin")

(SET (STARTER ADMIN) "bkloader")

(SET (EXECUTIVE ADMIN) "launch")

(SET (SPAWNER ADMIN) PROGENIT)

(SET (STARTUP ADMIN)

((LOAD-LISPVAR-SPECIFIC) (IDENTIFY-RESIDENCE)

(IDENTIFY-HOST) (IDENTIFY-ATELIER)

(IDENTIFY-CLONE) (REPORT-COMPUTATION-CONTEXT)))

(SET (INIT-PROCESS ADMIN) NIL)

(LOADB PROGENIT)

Compared to the contents of progenit.buc that are shown
in the appendix, the significant difference here is that the
last form causes the neighbor bucket progenit.buc to be
loaded, and it in turn loads the materiel scripts persist

and repro that implement key functionality. In addition, a
few additional properties are assigned to the process name,
such as a SPAWNER property. Once this framework has been
set up properly, the buckets for the new application oriented
processesd such as admin.buc, can include additional load-
ing commands for loading materiel and bucket scripts that
provide additional programs and data.

If there are several levels of spawning, so that ’progenit’
spawns ’admin’ which spawns ’user’, and so on, then there
will be a corresponding recursion of bucket loading opera-
tions during startup. The effect will be that the bucket file of
the original ancester is loaded chronologically first, and with
it the materiel files that it invokes, and then it continues in
the same way up to more recent ancestors.

6. EXTERNAL FACILITIES
Although one basic idea in the SIA architecture is to make

each residence as self-contained as possible, it is not possi-
ble to carry out that principle completely. Sometimes SIA

individuals need to refer to facilities that can not be placed
within the residence, for example, database systems. Those
other facilities may even be located at other hosts so they
are accessed over the net. Furthermore, if a SIA individual
is located on a remote server, then it may not be practical to
put all auxiliary file data there during a computation; one
may wish to use local files on the host at hand.

Finally, many SIA applications require the use of a large
and complex programming system, such as the Allegro Com-
mon Lisp (ACL) in the case of Lisp implementations. It is
not possible to have a copy of the entire ACL system within
a SIA residence, so the ACL system must be considered as
an external facility as well.

The conceptual device used in SIA for coordinating the
use of external facilities is called ateliers.

6.1 Ateliers
The basic idea is as follows. Suppose a residence con-

taining one or more SIA individuals is kept on a detach-
able memory device, for example a USB-connecting solid-
state (”pendrive”) memory. When that memory device is
attached to a host in order to perform runs of the individ-
ual(s) in the residence, then the host must also contain an
atelier that the individual can use. Conceptually, it is as
though the software individual is ’visiting’ the host and us-
ing an atelier in that host for doing its work which is the
computation.

The atelier is a directory structure that provides two things:
information about the availability and location of facilities
in the host that the individual can use, and space for tem-
porary data that the individual may need. In particular, the
atelier contains information about the location of the main
Lisp system (for example Allegro Common Lisp) in the host.

Ateliers are an open-ended resource, so different applica-
tions built on the SIA platform can make different require-
ments on the ateliers that they ’visit’.

6.2 The startup procedure using an auxiliary
Lisp interpreter

Computations for a SIA individual requires an interpreter,
for example a Lisp interpreter. Ideally this interpreter should
be included in the residence, so that if the residence is moved
to another host one still has the interpreter there, and in a
location that can be referenced in a standard way from the
base node where computations start. In practice, however,
it is not possible to include an entire, large Lisp system such
as the Allegro Common Lisp within each residence.

In order to proceed systematically, it is therefore necessary
to consider the ACL system as an external facility, and the
ateliers will specify the location of the ACL system in the
host at hand. How then are the computations started?

One possibility is to use path definitions in the operating
system, so that each host environment knows where “its”
Lisp system is located. We dislike this solution because then
some of the essential information is not under easy control
by the software individual itself.

The Windows variant of the present implementation of-
fers another solution, namely the use of the Xlisp system
as an auxilary system. The Xlisp interpreter is small (311
KB) and can easily be included in every residence. The
startup procedure for a run with a SIA individual contains
the following steps, therefore:

• the process starts running in a mini-interpreter (Xlisp)

which itself is included in the residence

• the process run identifies which host it is on

• the process then decides which atelier it wishes to use
on that host, using either information that it carries
with it (it may have a preferred atelier on each of sev-
eral hosts) or a default provided by the host

• the process loads information contained in the selected
atelier, including information about where the main
Lisp is located

• the process starts a run using the main Lisp system
and with information that is specific to the process.
This run also loads the atelier information

• later on during the run, it is able to use the atelier for
additional local information and for temporary mem-
ory.

However, for some purposes it is sufficient to use the
smaller Lisp system, in which case the step of invoking the
main Lisp is not necessary and the entire job can be done
in the Xlisp.

7. REPRODUCTION
The term reproduction is used here for three related oper-

ations in SIA: the breeding of new individuals, the spawning
of new processes within an individual, and the definition of
new runmodes within a process.

The design choices that have been explained for the res-
idence structure and the invocation structure are essential
for making it easy to implement reproduction. It is par-
ticularly significant that we have data scripts (the bucket
scripts) that invoke conventional program scripts (the Lisp
function definition files), because then the basic strategy for
reproduction is as follows:

• Generate the bucket scripts for the new individual

• Create a new subtree in the residence (a new subdirec-
tory structure, in terms of implementation) and copy
the bucket scripts into it

• Copy program files (.lsp files) to the nodes of the new
individual

The first one of these steps is supported by the operations
that have been introduced above, and the other two are
straightforward.

7.1 Elementary reproduction
Elementary reproduction uses the following commands.

The basic sequence for defining a new bucket is in general:

(curbk newbucket)

(initbk)

... add properties to the bucket

(writebk)

If the bucket is to be a runmode, then the sequence is:

(curbk newmode)

(initbk)

(modebk)

... add properties to the bucket

(writebk)

If the bucket is to be a process, then the sequence is:

(curbk newproc)

(initbk)

(procbk)

... add properties to the bucket

(spawn)

If the bucket is to be a new individual, then the sequence
is:

(curbk newindiv)

(initbk)

(indbk)

... add properties to the bucket

(breed)

The operations spawn and breed implement the work of
creating new nodes in the residence structure (aka new di-
rectories) and of copying buckets and materiel in them. All
essential information that is needed for this, for example the
list of materiel files that are to be copied from the parent to
the newbred individual is included as bucket-style data in
the parent, and is also forwarded to the newbred so that it
is aware of its own initial configuration.

In the case of spawning and breeding it may also be ap-
propriate to do

(writebk)

before or after the spawn or breed operation. This has the
effect of saving the description of the newly-reproduced ob-
ject in the reproducing process, for future reference.

7.2 Higher level reproduction
Higher level reproduction mechanisms are obtained by

commands that generate sets of scripts, or copy sets of pro-
gram files as one single package. The actual implementation
contains generic individuals that have been obtained from
the minimal kernel individual called pioneer, incrementing
it with additional materiel scripts and additional properties
for individual and process symbols. These facilities provide
individuals that have them with improved and higher-level
capability for reproduction, and for newbred individuals to
acquire information on their own.

One important facility for the exchange of software be-
tween individuals, both in general and as a way for new
individuals to inform themselves, is provided by the pack-
age and offering constructs. They work as follows: a new
facility is first developed within an individual, in particu-
lar by definition of new materiel files and modification of
the bucket scripts so that those new materiel files are also
loaded. When the extension is stable, it is used for defining
a package with a SIA script which effectively tells what is
to be done in order to load the package.

Once this has been done, an offering is defined in terms
of a package, plus an installation script that specifies what
needs to be done in order to make the package available to
an individual that does not already have it. The individual
producing the offering puts it into its Offering subtree, and
other individuals are able to pick it up from there.

It is interesting that these steps - packaging, export of
packages and offerings, and installation of offerings - have
been made in a very concise manner. The basic facilities
of the SIA architecture, such as the hierarchy of residences,
individuals, and processes, as well as the bucket concept and

the bucket vs materiel distinction, combine into a platform
from which one only needs a thin additional layer in order
to implement new functionality, such as relatively high-level
reproduction mechanisms.

8. RELATED WORK, REFERENCES
We do not know of any other current work that follows the

approach described here. The closest similarity is to some
of the work on mobile agents, in particular at the IBM Re-
search Lab in Japan a few years ago. Mobile agents need to
be able to ’encapsulate’ or ’linearize’ themselves in order to
be transmitted to a new host where they can start to oper-
ate again, which is vaguely similar to how buckets are used
in our system. Mobile agents also need a host environment,
analogous to the ateliers in SIA. However there are many
differences, such as the emphasis on mutual security in mo-
bile agents: the agent shall not be able to hurt its host, nor
shall the host be able to violate the integrity of the visiting
agent. These are not important issues in our design, since
we do not at this point foresee individuals going into hostile
environments, or being hostile.

The absence of literature about self-modifying programs
is a striking fact. We welcome of course any pointers to
related work that we may have missed.

’Allegro Common Lisp’ is a trademark of Franz Inc.

9. APPENDIX
The following are the full contents of the scripts in the

SIA kernel that were referenced in the article.

9.1 Lisp-specific invocation scripts
Startup of a SIA computation may start by invoking an

OS script file, such as a .bat file in Windows or a .sh file in
Unix. This file is defined to invoke a Lisp interpreter, or the
interpreter of the programming language being used, with
an argument for loading a particular first loader file. The
first loader file must do two things:

• Load some initial definitions whereby subsequent, programming-
language- independent SIA script files can be loaded

• Set some systems parameters that specify the present
computational environment

Some of those systems parameters are intrinsic to the first
loader file, and different first loader files set them differently.
This applies for example to the parameter that specifies
which OS is being used. Others of those system param-
eters have to be determined e.g. by asking the operating
system.

A complete software individual contains several OS script
files and their respective first loader files, which is how the
individual achieves immediate portability so it is always pre-
pared for running in different environments. However, these
different entry points converge quickly to invoking a num-
ber of common SIA scripts, at which point the environment
differences have been contained.

9.2 Programming-language-independent scripts
Once the initial scripts have been loaded, all following

data scripts are in SIA script and prescription languages,
which do not depend on any Lisp-specific ideosyncracies (ex-
cept, if you will, the use of S-expressions as such). The
following scripts have been mentioned.

The first SIA script to be invoked during the startup pro-
cess is runmode.if.buc, which has the following contents.
Lines starting with a ; are comment lines.

(set *runmode* progenit)

(set (bucket-word progenit) "progenit")

(set (startup progenit)

((load-lispvar-specific) (identify-residence)

(identify-host) (identify-atelier)

(identify-clone) (report-computation-context)))

(set (savebucket progenit)

((makebat-xlisp) (makebat-acl) (makebuck-ifb)

(makebuck-ifm) (makebuck-ifx) (makebuck-if)))

(set *process* progenit)

(set (process-word progenit) "progenit")

(set *runmode-word*

(? (get *runmode* ’bucket-word)))

(set *process-word*

(? (get *process* ’process-word)))

;; Load definitions of how to generate files in

;; startup chain

(loads (UP UP "Ember") "invoke" "buc")

;; Load description of the environment where

;; operating

(loadb envload)

;; Invoke methods, e.g. for tailoring to the

;; present variant of Lisp system

(lisp-eval (achieve-startup))

;; Load materiel files and other information that

;; is specific to the present process

(loads (UP (? *process-word*) "Bucket")

(? *runmode-word*)

"buc")

This script contains a number of direct assignments, plus
it loads three scripts, labelled invoke, envload, and (in the
loads command) progenit.

The envload script loads information about the compu-
tation environment. This information is located in scripts
in higher levels of the residence structure, since much of it is
shared between several processes or individuals. The script
has the following contents:

(set (bucket envload)

((prop envload bucket bucket-word)

(const *envload-ok* nil)

(const *startup-phase* t)

(loads (UP UP UP) "residmap" "lsp")

(loads (UP UP "indivmap") "indivmap" "lsp")

(loadm "method")

(const *envload-ok* t)))

(set (bucket-word envload) "envload")

(set *envload-ok* nil)

(set *startup-phase* t)

(loads (UP UP UP) "residmap" "lsp")

(loads (UP UP "indivmap") "indivmap" "lsp")

(loadm "method")

(set *envload-ok* t)

The progenit script has the following contents:

(set (bucket progenit)

((prop progenit bucket bucket-word process-word

starter executive spawner startup savebucket)

(loadm "persist") (loadm "repro")))

(set (bucket-word progenit) "progenit")

(set (process-word progenit) "progenit")

(set (starter progenit) "bkloader")

(set (executive progenit) "launch")

(set (spawner progenit) nil)

(set (startup progenit)

((load-lispvar-specific) (identify-residence)

(identify-host) (identify-atelier)

(identify-clone) (report-computation-context)))

(set (savebucket progenit)

((makebat-xlisp) (makebat-acl) (makebuck-ifb)

(makebuck-ifm) (makebuck-ifx) (makebuck-if)))

(loadm "persist")

(loadm "repro")

The essential operations here are to load the two materiel
files called persist and repro. The file persist contains
definitions for handling buckets, plus some minor other def-
initions. The file repro contains definitions for spawning
and breeding. It can be omitted for processes that do not
need the capability of reproduction, but it is included in the
standard kernel.

9.3 Script-generating scripts
The various scripts that have been defined so far are in-

voked, and invoke each other during the startup phase, and
they have been designed to be interpreted fairly directly.
They have to be regenerated from time to time, in partic-
ular as part of the reproduction processes, and when some
of the system parameters have been changed. Therefore, for
each of the startup scripts there is a corresponding script-
generating script, which generates the target script using a
process that is essentially a kind of partial evaluation rela-
tive to the current system state and computation state. The
script-generating scripts are collected in the invoke script
in the residence hierarchy, which has the following contents
in the initial system. Like everything else in the system it
can be redefined in more advanced and extended individuals,
and it is inherited by descendants:

(set (bucket invoke)

((prop invoke bucket)

(prop if invokedef)

(prop ifb invokedef)

(prop ifm invokedef)

(prop ifx invokedef)))

(set (invokedef if)

((const *runmode* ($ *b*))

(prop ($ *b*) bucket-word startup savebucket)

(const *process* ($ *b*))

(prop ($ *p*) process-word)

(const *runmode-word*

(? (get *runmode* ’bucket-word)))

(const *process-word*

(? (get *process* ’process-word)))

(loads (UP UP "ember") "invoke" "lsp")

(loadb envload)

’(achieve-startup)

(loads (UP (? *process-word*) "Bucket")

(? *runmode-word*) "lsp")

))

(set (invokedef ifb)

(

’(load "../../Materiel/bkloader.lsp")

(const *runmode* ($ *b*))

(prop ($ *b*) bucket-word)

(const *process* ($ *p*))

(prop ($ *p*) process-word)

’(setq *runmode-word*

(get *runmode* ’bucket-word))

’(setq *process-word*

(get *process* ’process-word))

(const *lispvariant* xlisp)

(const *os-family* windows)

(const *debugmode*)

’(loadbuck ’envload)

’(call-siamethod ’(identify-host))

’(call-siamethod ’(identify-atelier))

’(start-acl (get ’alisp ’lisp-place)

runmode-word)

’(report-failed-acl)

’(load "../../Materiel/launch.lsp")

))

(set (invokedef ifx)

(’(load "../../Materiel/bkloader.lsp")

(const *lispvariant* xlisp)

(const *os-family* windows)

(const *debugmode*)

(loadifbuck *b*)

’(load "../../Materiel/launch.lsp")

))

(set (invokedef ifm)

(’(load "../../Materiel/bkloader.lsp")

(const *lispvariant* alisp)

(const *os-family* windows)

(const *debugmode*)

(const *runmode* ($ *b*))

(loadifbuck *b*)

’(load "../../Materiel/launch.lsp")

))

9.4 Startup script using auxiliary interpreter
The use of an auxiliary Lisp interpreter for startup was

described in subsection 6.2. The script for this purpose is
as follows.

(load "../../Materiel/bkloader.lsp")

(setq *runmode* ’progenit)

(setf (get ’progenit ’bucket-word) ’"progenit")

(setq *process* ’progenit)

(setf (get ’progenit ’process-word) ’"progenit")

(setq *runmode-word* (get *runmode* ’bucket-word))

(setq *process-word* (get *process* ’process-word))

(setq *lispvariant* ’xlisp)

(setq *os-family* ’windows)

(setq *debugmode* ’nil)

(loadbuck ’envload)

(call-siamethod ’(identify-host))

(call-siamethod ’(identify-atelier))

(start-acl (get ’alisp ’lisp-place) *runmode-word*)

(report-failed-acl)

(load "../../Materiel/launch.lsp")

This script is written in Lisp and not as SIA commands
because the first expression loads the definitions for load-
ing SIA commands, and then one is already inside the Lisp
interpreter. The remainder of the script would have the fol-
lowing expression as SIA commands:

(set *runmode* progenit)

(set (bucket-word progenit) "progenit")

(set *process* progenit)

(set (process-word progenit) "progenit")

(set *runmode-word* (? (bucket-word (? *runmode*)))

(set *process-word* (? (process-word (? *runmode*)))

(set *lispvariant* xlisp)

(set *os-family* windows)

(set *debugmode* nil)

(loadb envload)

(lisp-eval (progn

(call-siamethod ’(identify-host))

(call-siamethod ’(identify-atelier))

(start-acl (get ’alisp ’lisp-place) *runmode-word*)

(report-failed-acl)))

(loadm launch)

