
High-Level Design of WWW Servers in Allegro
CommonLisp

Software Description

Erik Sandewall
Department of Computer and Information Science

Linkoping University
58183 Linkoping, Sweden

erisa@ida.liu.se

ABSTRACT
The web server facility in Allegro Common Lisp (ACL) uses
a straight-forward representation of HTML constructs as
Lisp structures. We have designed and implemented a higher-
level representation using an object-oriented approach, but
based on the ACL facility. The package and its specification
language is called the Web Resource Definition Language,
WRDL.

A resource expression in WRDL is a symbolic expres-
sion of the form (rn arg1 arg2 ... argn) where rn is the
resource-name and each argument is written as a Lisp form
that evaluates to a symbol or a string. The resource rn may
be implemented either statically using files, or dynamically
using active web pages. Webpage definitions in WRDL can
use such expressions for referring to the instance of the re-
source that is to be presented when clicking a dynamic link,
but also for referring to the resource that is to receive data
that are input in an HTML form. In particular, the argu-
ments of the resource may be composite expressions that
specify operations on data from the form.

The WRDL package can be used for defining resources
within the server at hand and the linkages between them,
but it can also be used for high-level specifications of the
interface to remote resources on other servers. The choice
of a static or dynamic implementation is made declaratively
so that it can be changed easily.

This package has a concise definition that is easily ex-
portable. It has been used as a tool that enabled rapid im-
plementation and modification of several moderately sized
applications.

1. INTRODUCTION
When invoking a function or a procedure in an ordinary

programming language, it is normally assumed that the ar-
guments may be given as composite expressions, and that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Lisp Conference ’03 New York, NY USA
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

they are not restricted to atomic constants or variable sym-
bols. However, although active web pages in HTML-based
web servers can be viewed as a kind of procedures, they do
not enjoy the same flexibility. The present paper reports on
a software package that extends the embedded web server in
the ACL (Allegro Common Lisp) system and that provides
it with the kind of functional flavor just described. In pass-
ing, the software also adds a number of other convenience
measures to the LHTML (Lisp-encoded HTML) of the ACL
server.

In the sequel we assume basic knowledge of HTML, in-
cluding the HTML syntax for active or dynamic web pages,
besides of course knowledge of Lisp.

2. BACKGROUND: THE ACL WEB SERVER
The ACL web server can be started and stopped at ar-

bitrary times during an interactive session with the system.
When running, it responds to http requests on a designated
port (usually port 80) according to specifications that have
been made before during the same session. There are three
main types of server specifications. File mapping specifica-
tions map a URL to a corresponding file or directory, for ex-
ample mapping http://www.mysite.info/btn/plants/ to
C:/website/plants/ for outside requests if the proper host
is designated as http://www.mysite.info/. (In the exam-
ples we shall assume Windows-type file paths but we use
forward slash in the place of backslash, which is consistent
with ACL conventions). Subdirectories and files contained
in the specified directory are mapped accordingly. The files
that are mapped in this way into the server-visible space
may be in HTML or any other format that makes sense to
a browser.

Static LHTML specifications are the second type. In this
case a URL such as

http://www.mysite.info/btn/plants/listing

is mapped to an expression in LHTML, which is HTML
coded as S-expressions. The LHTML encoding follows HTML
very closely, so for example

<h2>Title with an italic word</h2>

is coded as

(:h2 "Title with an " (:em "italic") " word")

and

Explain

is coded as

((:a href "explain.html" target "sep") "Explain")

Dynamic LHTML specifications, finally, allow one to asso-
ciate a URL with arbitrary computation in the web server.
The invocation of the dynamic “page” may contain parame-
ters, separated using the HTML convention using question-
mark and ampersand. These parameters are made available
to the computation that results when the request reaches
the web server, and the result of the computation may be
expressed using LHTML as just shown.

For example, suppose one wished to provide the site visi-
tor with distinct pages that present each one of many differ-
ent plants, and each plant is characterized by its Linnaean
latin name, such as “Taraxacum vulgare” for dandelion, or
“Rosa canina” for wildrose. This may be done using file
mapping, in which case the description of dandelion could
be stored in the file system on

C:/website/plants/taraxacum/vulgare/descr.htm

and accessed accordingly as

/btn/plants/taraxacum/vulgare/descr.htm

(The site part of the URL will be omitted from now on).
If instead the request is to be honored using a database, so
that the exact HTML for the response is to be assembled
dynamically for each request, then the access may instead
be written as

/btn/plantsbase?gnd=taraxacum&spc=vulgare

invocing the procedure that has been associated with the
dynamic webpage designator /btn/plantsbase, with the ar-
guments “taraxacum“ and “vulgare“ in the obvious way.

The design of the ACL webserver provides the program-
mer with considerable power and flexibility for programming
dynamic web pages and integrating them with statically
stored information and with other software. It does have a
number of annoying but minor problems which result from
the 1-1 mapping from, and close adherence to HTML con-
ventions, such as the lack of exchangeability between static
and dynamic pages (as demonstrated in the dandelion exam-
ple), and the lack of uniformity between the syntax for tables
and for frames. Also, the convention for coding parameter-
ized HTML commands using double left parentheses, as in
the :A example above, leads to code that is quite difficult
to read, for example when a FORM expression immediately
contains a TABLE expression.

Our system provides solutions for these problems, in ways
that will be described below. However, let us focus first on
a more important aspect of the system, namely the methods
for referring from one dynamic webpage to another one.

3. THE MAIN PROBLEM: RESTRICTIVE
INVOCATION SYNTAX IN HTML

Suppose I have at one time defined a botany section of my
website, using a dynamic web address that takes the Latin
names for the gender and species of a plant as arguments,
along the lines of the previous examples. Later on I wish to
refer to this resource from a new web application, or even

from a computational process via a wrapper. This is works
well in simple cases, but not in more complex ones.

Consider the simple case first, by way of introduction.
Suppose I define a new webpage containing a form where the
user enters the two descriptors for a plant, maybe together
with other information. With the existing ACL web server
it is easy to define the new page so that it results in an
invocation of the existing resource.

Similarly, suppose one argument for the existing resource
is known in the computational environment of the new ap-
plication, and another argument is entered by the user. In
a somewhat contrived extension of the current example, for
the purpose of illustration, we can suppose that the gender
name is known whereas the species name is entered by the
user in a form field. The known argument is coded using an
HTML ’hidden’ entity, and in fact LHTML allows it to be
computed using an arbitrary Lisp form.

We proceed now to a case where the difficulties appear.
Suppose we again change the example so that some process-
ing of input data is needed in the new application in order
to prepare for the invocation of the existing resource. This
preparatory operation may be, for example, the use of a
spelling corrector, or the use of a translator allowing input
of plant names in English rather than in Latin, or making a
selection from a menu. At this point the ACL webserver de-
sign becomes inconvenient. Following HTML conventions,
it assumes that data that are entered into the fields of a
form shall be sent ’as is’ to the processor for that form. In
our case it would mean that the botany resource is to re-
ceive the raw data that were input by the user, without the
modifications (spelling correction, translation) that are part
of our application.

There are two ways of handling such a situation in the
ACL server. One possibility is to modify the receiving end,
which in our example is the existing dynamic botany re-
source, and to add the application-specific services there.
However, this violates important software structuring prin-
ciples and leads to a messy overall software structure.

The other possibility is to insert an additional software
layer. The webpage for the application, containing the form,
invokes an auxiliary dynamic webpage with the form fields
as the arguments. The auxiliary page checks the arguments,
modifying them if necessary, and again invokes the existing
(botany) resource. This method is globally well structured,
but leads to code that is inconvenient and hard to read on
the local scale.

The WRDL package provides a third solution, namely, a
high-level representation that is natural and easy to read,
and that will be described next. It is implemented by trans-
lating the WRDL expression to ordinary LHTML code along
the lines of the second of the two possibilities described here,
but the programmer does not need to be concerned about
that translation.

4. HIGH-LEVEL WEB QUERIES IN WRDL
We use the term ’resource’ for an abstraction that sub-

sumes both dynamic web pages and families of similar, static
web pages. Instances of a resource are specified in func-
tional style using a resource designator followed by a list of
arguments. The static file page for dandelion in the botany
example could be represented using the resource expression

(plant "taraxacum" "vulgare")

and the reference to a dynamic page for the same plant could
be represented using the expression

(dynplant "taraxacum" "vulgare")

The resource designators plant and dynplant are defined
using declarations specifying whether the resource is imple-
mented statically or dynamically, what is the root directory
in the case of a static implementation, and so forth.

The arguments in resource expressions can be arbitrary
Lisp forms that are evaluated when needed, and that are
not restricted to atomic values as were used in the example.

Resource expressions can be used in several ways. The
basic usage is in webpage links, as in

(:link "Dandelion"

resource (dynplant "taraxacum" v)

target "window2")

This WRDL expression translates to the following LHTML
expression

((:a href (concatenate ’string "/btn/plantsbase"

"?gnd=" "taraxacum" "&spc=" v)

target "window2")

"Dandelion")

The string for the gender argument has been kept separate
to make the treatment of the two arguments easier to fol-
low. The LHTML expression is in turn translated to the
following, if the value of v is vulgare:

<a href="/btn/plantsbase?gnd=taraxacum&spc=vulgare"

target="window2">Dandelion

The other main usage is for specifying the processing of
data that have been entered into a web form. The following
is a simple example in WRDL notation:

(:form

(:formparams target "window2")

"Gender: " (field g text "") "
"

"Species: " (field v text "") "
"

(:invoke "Enter"

(dynplant (check (gpv g)) (gpv v))))

This WRDL expression produces the HTML for a webpage
containing data input fields for two parameters g and v,
preceded by the leading texts Gender: and Species:, re-
spectively, as well as an invocation button labelled Enter.
The second argument of the operation :invoke generates
an action expression in the resulting HTML form which
sends the input data, indirectly, to the dynamic webpage
that the second argument represents. Notice that here the
arguments for the resource designator dynplant can be arbi-
trary forms, which are are evaluated when the Enter button
is clicked and in order to compute the arguments that are
sent to the resource.

Implementationwise, such a form is realized using an aux-
iliary dynamic webpage that implements the (composite) ar-
gument expressions for the resource. The auxiliary webpage
receives, as arguments, the data that are actually entered
into the form, and invokes the existing resource (dynplant)
with the computed values of the arguments.

5. USING WRDL TO CHARACTERIZE RE-
MOTE RESOURCES

WRDL was designed for use in defining our own websites,
which we wished to structure in terms of a number of generic
resources that could then be used as building-blocks for sev-
eral albeit related applications. In these cases, each WRDL
’resource’ was to be implemented on our own server, either
using mapped file directories, or using dynamic web pages
in LHTML.

We soon realized, however, that the same design was also
very suitable for interfacing to web resources at other sites.
In this case, WRDL is only used for declaring how a partic-
ular resource name is to be mapped to a URL that is foreign
to our own system. This provides additional convenience for
those cases where webpages in our application are to contain
links to foreign webpages.

There is an obvious further next step, not yet imple-
mented, where the data that is returned from the foreign
sites is considered as input to computations in our own
server, rather than being directed to the user. This requires
the use of wrappers that parse the HTML data provided by
the foreign site, or whatever other format provided by it.

6. RELATED WORK, EXPERIENCE SO FAR,
AND FUTURE PLANS

The initial idea for the WRDL system described here came
from the work by McIlraith and Son (2002) using A.I. plan-
ning and plan execution techniques for building systems that
solve problems by accessing multiple foreign web resources
and combining the results. Several other systems of this
kind are also being developed in the context of the semantic
web; see e.g. Knoblock (2003).

In the WRDL package we have excluded such longer-range
research aspects, at least for the present time, and focussed
on building a system that meets practical needs in the de-
velopment of the websites that we have in operation today.
These are small-scale websites that serve a research group or
a committee. Rapid adaptation of the system to the evolv-
ing needs of a small user community is the most important
consideration in such cases. Good performance is a require-
ment but never becomes an issue.

It has been our goal, therefore, to develop a concise system
that implements a few basic ideas: abstract resources, some
legibility-motivated macro expansion on top of LHTML, and
a few support packages, in particular for access control and
password management. The databases in these applications
have usually been represented as plain list structures that
are kept on property-lists at runtime and as S-expressions on
text files between runs. In one case we have used a MySQL
database via the ACL-to-MySQL interface. In summary, we
have tried to keep the system simple and coherent, so that
it can easily be put to use for additional applications.

Copies of the system are freely available, together with
a moderately detailed documentation. Please email the au-
thor for additional details.

Our experience with the ACL webserver has been very
positive. It is robust and flexible, and we have not had
any problems with it at all during one year of operation.
We use it both for sites that provide regular service over
the Internet, and as an off-line tool while travelling: the
author can access and edit data on his laptop using a copy
of the software and the database that we have on the general

server.
Our future plans do not necessarily exclude going in the

direction of the ’semantic web’. However, our highest prior-
ity at this time is to use WRDL for web-enabling the ’soft-
ware individuals’ that are the topic of another but related
recent research article (Sandewall, sfp).

6.1 References
McIlraith, S. and Son, T. “Adapting Golog for Composi-

tion of Semantic Web Services”. Proceedings of the Eighth
International Conference on Knowledge Representation and
Reasoning (KR2002), pages 482-493, April, 2002.

Knoblock, C. “Deploying Information Agents on the Web”.
Invited paper, International Joint Conference on Artificial
Intelligence, 2003.

Sandewall, E “A Software Architecture for A.I. Systems
Based on Self-Modifying Software Individuals”. Submitted
for publication.

