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Abstract

When unmanned aerial vehicles (UAVs) are used for surveillance, infor-
mation must often be transmitted to a base station in real time. However,
limited communication ranges and the common requirement of free line
of sight may make direct transmissions from distant targets impossible.

This problem can be solved using relay chains consisting of one or more
intermediate relay UAVs. This leads to the problem of positioning such
relays given known obstacles, while taking into account a possibly mission-
specific quality measure. The maximum quality of a chain may depend
strongly on the number of UAVs allocated. Therefore, it is desirable to
either generate a chain of maximum quality given the available UAVs or
allow a choice from a spectrum of Pareto-optimal chains corresponding to
different trade-offs between the number of UAVs used and the resulting
quality.

In this article, we define several problem variations in a continuous 3D
setting. We show how sets of Pareto-optimal chains can be generated using
graph search and present a new label-correcting algorithm generating such
chains significantly more efficiently than the best known algorithms in the
literature. Finally, we present a new dual ascent algorithm with better
performance for certain tasks and situations.

1 Introduction

A wide variety of applications of unmanned aerial vehicles (UAVs) include the
need for surveillance of distant targets, including search and rescue operations,
traffic surveillance and forest fire monitoring as well as law enforcement and
military applications. In many cases, the information gathered by a surveil-
lance UAV must be transmitted in real time to a base station where the current
operation is being coordinated. This information often includes live video feeds,

∗This is an extended version of Burdakov et al. (2009a).
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Figure 1: UAVs at x1, x2 and x3 are acting as relays in a city, connecting the
base station at x0 with the surveillance UAV at x4, surveilling the target at xt.
This is a relay chain of length 5.

where it is essential to achieve uninterrupted communication with high band-
width. UAV applications may therefore require line-of-sight communications to
minimize quality degradation, which is problematic in urban or mountainous
areas. Even given free line of sight, bandwidth requirements will also place
strict restrictions on the maximum achievable communication range. These
limitations are particularly important when smaller UAVs are used, such as
the 500-gram battery-powered LinkMAV Micro Aerial Vehicle (Duranti et al.,
2007). In these situations, transmitting information directly to the base station
can be difficult or impossible.

Free line of sight to the base station could in some situations be achieved
through increased altitude. However, surveillance typically also requires free
line of sight to the target. Keeping both locations in view simultaneously may
require flying at very high altitudes, especially in urban areas with closely spaced
buildings. Such altitudes are not always feasible, due to limitations of the UAV
or due to aviation regulations. Smaller UAVs may also be unable to fly at
sufficient altitude to avoid detection in the case of military or police surveillance,
preferring instead to fly at lower altitudes in order to hide behind obstacles.
Furthermore, increasing the altitude of the UAV also increases the distance to
the base station, which may lead to exceeding the maximum communication
range, and increases the distance to the target, thereby decreasing the quality
of the information the UAV is able to gather.

As an alternative solution, both intervening obstacles and limited range can
be handled using a chain of intermediate relay UAVs passing on information
from the surveillance UAV to the base station (Figure 1). A surveillance UAV
can then be placed freely in a location that yields information of high quality.

We are therefore interested in positioning relay UAVs to maximize the qual-
ity of the resulting chain, given a known target position. However, we are also
interested in minimizing resource usage in terms of the number of relay UAVs
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required. Given these two objectives, a variety of trade-offs are possible. For
example, decreasing the distance between adjacent relay UAVs may improve
transmission quality but instead requires additional relays.

Unless there is an unlimited number of UAVs, we need the ability to generate
the highest quality relay chain possible for a given upper limit on the permitted
number of relays. A surveillance mission may also be part of a wider operation,
where missions are defined incrementally by ground operators over a period of
time and take place concurrently. In this case some relay UAVs may have to be
held back for future missions. Thus, it is often important to generate a spectrum
of chains with different quality and UAV usage, allowing the ground operator to
make a trade-off with full knowledge of the available options. Each such chain
should then be Pareto-optimal (Miettinen, 1999). A solution is Pareto-optimal
if it cannot be improved in any respect without a decrease in quality in another
respect. For the problem at hand, this means that the quality of the chain
cannot be improved without also increasing the number of relays.

This leads to a continuous bi-objective optimization problem, where algo-
rithms must be sufficiently scalable to enable the use of a large number of
comparatively inexpensive miniature UAVs with limited communication range.

The main contribution of this article consists of two new graph search al-
gorithms applicable to relay positioning in discrete space. The first is a label-
correcting algorithm applicable to the most complex of the problem variations,
that of generating a spectrum of chains that are Pareto-optimal relative to a
given discretization and near Pareto-optimal in continuous space. The second
algorithm instead uses dual ascent techniques to generate relay chains with an
upper bound on the number of relay UAVs. Both algorithms are considerably
more efficient than the best known algorithm for these problems in the litera-
ture, allowing problems to be solved in less time for any given discretization, or
with a denser discretization given a fixed amount of time.

Section 2 introduces several variations of the bi-objective optimization prob-
lem in continuous space. Since these variations are intractable in the continu-
ous setting, we discretize the problem in Section 3, generating a corresponding
graph where nodes correspond to potential relay positions and edge costs are
used to model quality measures. We proceed to present the two new graph
search algorithms in Sections 4 and 5. Section 6 contains the result of empir-
ical performance tests in varying environments. Related work is discussed in
Section 7, after which we present our conclusions and discuss future work in
Section 8.

Though examples in this article focus on the use of UAVs, this method for
relay positioning can equally well be used for relay placement for unmanned
ground vehicles (UGVs), given a suitable discretization procedure that places
nodes on the ground.

2 Relay Positioning Problems

Formally, we define a general relay positioning problem instance as follows.
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We assume relays are placed in three dimensions. Let F ⊆ R3 be the region
that is free from obstacles, defining the space through which free line of sight
can be achieved. Let U ⊆ F be the region where each individual UAV may
safely be placed. This region must only include points sufficiently far away from
obstacles for the required safety clearances to be satisfied. No-fly-zones where
UAVs are not permitted may also be excluded from U. Let x0, xt ∈ R3 \ U be
the position of a base station and a surveillance target, respectively.

Assume as given two boolean reachability functions. The communication
reachability function fcomm(x, x′) specifies whether communication between two
entities at points x, x′ ∈ U should be considered feasible. It can be defined by
a limited communication radius and a requirement of free line of sight (where
all points between x and x′ must be in F), by explicit models of 3D wave
propagation, or by any other definition appropriate for the problem at hand.
The surveillance reachability function fsurv(x, x

′) specifies whether a surveil-
lance UAV at x ∈ U would be able to surveil a target at x′ ∈ R3 \ U. This
function must take into account suitable minimum and maximum ranges for
surveillance as well as sensor-specific limitations such as cameras that cannot
surveil targets in arbitrary directions, for example above the surveillance UAV.

A relay chain between x0 and xt is defined as a sequence of positions
[x0, x1, . . . , xk], where {x1, . . . , xk} ⊆ U, such that fcomm(xi, xi+1) for all i ∈
[0 . . . k− 1], and fsurv(xk, xt). The length of a chain is defined as the number of
agents required, including the base station: len([x0, x1, . . . , xk]) = k + 1.

A wide variety of problem-specific quality measures can be modeled using
the general notion of cost and cost minimization. We therefore assume as given
a non-negative communication cost function ccomm(x, x′) specifying the cost of
relaying information between UAVs located at points x, x′ ∈ R3. This cost may
for example be related to transmission power requirements, risk of interrupted
communication or intermittent dropouts, risk of detection by adversaries, the
need to enter soft no-fly zones (locations that should preferably be avoided), or
weighted combinations of such factors.

Similarly, we assume a non-negative surveillance cost function csurv(x, x
′)

specifying the cost of a UAV at x ∈ U surveilling a target at x′ ∈ R3 \ U.
This cost would be inversely related to the quality of the information that can
be sensed given specific positions for the surveillance UAV and the target. If a
camera is used, for example, higher quality may be achieved at shorter distances
and at appropriate camera angles.

The cost of a relay chain [x0, x1, . . . , xk], denoted by cost([x0, x1, . . . , xk]), is

then defined as (
∑k−1
i=0 ccomm(xi, xi+1)) + csurv(xk, xt).

Given a problem instance as defined above, including the position of the
base station and the target, we can now identify a number of interesting single
target relay positioning (STR) problems. Some of these problems assume an
upper limit on the number of UAVs available, denoted by nuavs.

STR-MinLengthMinCost: Find a relay chain of minimum length among the
chains of minimum cost. A solution is a chain s such that for all other chains c,
cost(s) ≤ cost(c) and cost(s) = cost(c) → len(s) ≤ len(c). This corresponds to
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using the highest quality chain achievable with access to an unlimited number of
UAVs, while preferring to use fewer UAVs if this does not compromise quality.

STR-MinCostMinLength: Find a relay chain of minimum cost among the
chains of minimum length. A solution is a chain s such that for all other
chains c, len(s) ≤ len(c) and len(s) = len(c)→ cost(s) ≤ cost(c). This is useful
if minimizing the number of UAVs is strictly more important than maximizing
quality.

STR-MinCostLimited: Find a relay chain of minimal cost among the chains
that use at most nuavs UAVs. A solution is a chain s satisfying len(s) ≤ nuavs+1,
such that for all other chains c, len(c) ≤ nuavs + 1 → cost(s) ≤ cost(c). This
corresponds to a desire to find the highest quality relay chain that can be realized
within the given limit on the number of UAVs.

STR-ParetoLimited: Find a complete set of (strongly) Pareto-optimal relay
chains using at most nuavs UAVs. A relay chain s is Pareto-optimal if for all
other chains c, len(c) < len(s) → cost(c) > cost(s) and cost(c) < cost(s) →
len(c) > len(s): Any chain that is strictly better than s in one respect must be
strictly worse in the other respect. A solution set is complete for up to nuavs
UAVs if a Pareto-optimal chain is included for every length len ≤ nuavs + 1
where such chains exist. This corresponds to finding a set of potential tradeoffs
between the quality of the relay chain and the required number of UAVs. Using
nuavs =∞ yields a complete set of Pareto-optimal chains of unbounded length.

3 Discretization

For the problems defined above, the number of local optima is typically large.
Due to obstacles there are also often a large number of disjoint feasible subsets,
which makes the continuous problem intractable (Burdakov et al., 2009b). We
therefore suggest to discretize the environment and turn to a graph formulation.

Discretization requires selecting a finite set of positions U′ ⊆ U to be con-
sidered for UAV placement and generating corresponding graph nodes. Nodes
must be sufficiently dense that U′ remains connected, given limited communi-
cation ranges and possibly a line-of-sight restriction. Making good use of the
maximum range in all directions, given possible obstacles, also requires high
node density. Generating high-quality relay chains in discretized space there-
fore requires a sufficient node density, even in large obstacle-free areas. This is
very different from node placement algorithms for graph-based path planners,
where edges can be arbitrarily long and only the total length of a path matters.
Thus, using such algorithms unmodified is inappropriate.

For the type of urban and mountainous terrain we are interested in, a simple
regular three-dimensional grid has proven quite suitable. As an extension, grid
cells could vary in size depending on the local obstacle density. Similarly, to
improve connectivity in certain situations, a grid may be augmented with nodes
placed randomly with a bias towards generating nodes near obstacles, nodes
near the center of the local free space, or nodes in narrow passages (Boor et al.,
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1999; Amato et al., 1998; Hsu et al., 2003; Wilmarth et al., 1999).
Each potential UAV position x ∈ U′ is associated with a unique node n.

Similarly, the base station at x0 and the target at xt are associated with the
distinct nodes n0 and nt, respectively. The set of all nodes is denoted by N .

Each x, x′ ∈ U′ ∪ {x0} corresponding to n, n′ ∈ N and satisfying fcomm

(x, x′) is associated with a directed edge e = (n, n′) of cost cn,n′ = ccomm(x, x′)
representing the possibility and quality of communication between positions x
and x′. Similarly, each x ∈ U′ corresponding to n ∈ N and satisfying fsurv(x, xt)
is associated with a directed edge e = (n, nt) of cost cn,nt

= csurv(x, xt) repre-
senting the possibility and quality of surveilling a target at xt from a UAV at x.
The set of all edges is denoted by E.

For any node n ∈ N , let n− = {n′ : (n′, n) ∈ E} refer to its set of predecessor
nodes and n+ = {n′ : (n, n′) ∈ E} refer to its set of successor nodes. By the
length of a path, we will refer to the number of edges in the path. This is also
referred to as the hop count, where each edge corresponds to one hop. The cost
of a path is then defined as the sum of the edge costs along the path. Thus, a
shorter path has fewer edges, while a cheaper path has lower cost. As for relay
chains, cost(π) denotes the cost of the path π and len(π) denotes its length.

Any path from n0 to nt in the graph G(N,E) corresponds directly to a
relay chain of identical length and cost from x0 to xt. We will sometimes
use these terms interchangeably. The graph is directed due to the possibility
of asymmetric cost functions. By the construction, there cannot be an edge
between n0 and nt: The base station itself cannot surveil a target.

The discrete STR-MinLengthMinCost and STR-MinCostMinLength
problems can be solved efficiently by for example Dijkstra’s algorithm, using
compound path costs (see also Section 4.2). The remaining problems will be
considered in more detail below.

4 Generating Pareto-Optimal Relay Chains

To solve the discrete STR-ParetoLimited problem, we first consider its rela-
tion to the all hops optimal path (AHOP) problem (Guérin and Orda, 2002):
For each k = 1, 2, . . . , L, find a cheapest path from n0 to nt among the paths of
length at most k. We call such paths k-restricted cheapest paths.

A path of length k is Pareto-optimal if it is a k-restricted cheapest path
and there exists no strictly shorter path of equal cost. Thus, the problems
are not identical. However, given a complete set of k-restricted cheapest paths
for all 1 ≤ k ≤ L, a complete set of Pareto-optimal solutions of length at
most L can be found by grouping the AHOP paths by cost and selecting a
path of minimum length in each group. The discretized STR-ParetoLimited
problem can therefore be solved using an AHOP algorithm.

Conversely, any STR-ParetoLimited algorithm can also be used to solve
the AHOP problem. If there exists a Pareto-optimal solution of length k, then
this path must also be a k-restricted cheapest path. If all Pareto-optimal solu-
tions are longer than k, then all paths from n0 to nt are longer than k, and no
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Figure 2: Example graph labeled with edge costs.

k-restricted cheapest path exists. If there are Pareto-optimal solutions strictly
shorter than k, any Pareto-optimal path of the greatest length k′ < k is a
k-restricted cheapest path.

We illustrate these relations in Figure 2. For nt = n4, there is only one
path of length 2, namely π1 = n0 → n3 → n4 with cost(π1) = 5. This path
is a 2-restricted cheapest path: There is no cheaper path of length at most 2.
Since there is also no equally cheap path of length strictly less than 2, it is also
Pareto-optimal. There is one path of length 3, π2 = n0 → n1 → n2 → n4 with
cost(π2) = 4, which is both a 3-restricted cheapest path and a Pareto-optimal
solution. However, consider the path π3 = n0 → n1 → n2 → n3 → n4, also
of cost 4. Both π2 and π3 are 4-restricted cheapest paths, since they have the
same minimal cost, but only π2 is Pareto-optimal.

4.1 Existing Solutions to the AHOP Problem

At its k:th iteration, the standard Bellman-Ford algorithm generates all cheapest
paths that originate in the designated start node and make use of at most k
edges. These paths are replaced in later iterations, if paths of lower cost are
found using additional edges.

Lawler (1976) presented a modified algorithm, originally called the method
of successive approximations. In contrast with the Bellman-Ford algorithm, it
retains old paths when cheaper but longer paths are found, generating in its
k:th iteration a set of k-restricted cheapest paths of minimal length.

Balakrishnan and Altinkemer (1992) introduced a length bound L, trun-
cating the calculation so that only paths of length k ≤ L are considered. This
results in the best currently known algorithm for the AHOP problem (Figure 3),
with a time complexity of O(L |E|). It is natural to require that L ≤ |N | − 1,
since no cheapest path can be longer than |N | − 1. Therefore, the time com-
plexity of the algorithm can also be expressed as O(|N ||E|) ⊆ O(|N |3).

Though this algorithm is applicable to the discretized STR-ParetoLimited
problem, it uses a considerable amount of time and is not practically useful for
larger problem instances involving large maps, fine-grained discretizations, or
long communication ranges. This is especially true in mixed-initiative settings
where an operator initiating a surveillance mission expects a prompt result.
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1 for each n ∈ N do g0(n)← +∞, p0(n)← nil
2 g0(n0)← 0
3 for k = 1, . . . , L do
4 for each n ∈ N do
5 gk(n)← gk−1(n), pk(n)← pk−1(n)
6 for each n ∈ N do
7 for each n′ ∈ n+ do
8 c← gk−1(n) + cn,n′

9 if c < gk(n′) then
10 gk(n′)← c, pk(n′)← n

Figure 3: Algorithm 1 – Truncated successive approximation algorithm.

k (path length) gk (cost) pk (predecessor)

1 4 n0
3 3 n2

Table 1: Reachability record for n3 after execution of the new algorithm.

4.2 A New Label-Correcting Algorithm

We will now present a new algorithm that solves the STR-ParetoLimited
problem, generating for each node a complete set of Pareto-optimal solutions of
length at most nuavs+1. Like Algorithm 1, it can be viewed as a label-correcting
Bellman-Ford-type algorithm. However, through efficient use of preprocessing,
a large percentage of the calculations performed by Algorithm 1 can be avoided.

The new algorithm incrementally generates and updates a set of reachability
records for each node. Each record 〈k, gk, pk〉 indicates that the node can be
reached from the base station in k hops at a cost of gk using the predecessor pk.

Table 1 shows two reachability records for the node n3 in Figure 2, sorted
by increasing path length. The first record corresponds to using a minimal
number of UAVs: The shortest path to n3 regardless of cost is of length 1.
Subsequent records correspond to using increasingly greater numbers of UAVs,
yielding paths with progressively lower cost, until we reach the least-cost path
using the largest number of UAVs. Any missing intermediate values of k indicate
that even if chains of length k exist, they are not Pareto-optimal. For example,
Table 1 lacks a record for k = 2 because a chain of length 2 would be at least as
expensive as one of length 1, the nearest smaller value of k present in the table,
so using such a chain would be pointless. A chain of length 3 could be a useful
alternative, though, as this would increase quality and reduce the cost to 3.

We will show that after termination, the fact that a target node nt is asso-
ciated with a reachability record 〈k, gk, pk〉 corresponds exactly to the existence
of a Pareto-optimal relay chain between n0 and nt of length k ≤ nuavs + 1 and
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cost gk, allowing nt to be reached from the base station node using k− 1 inter-
mediate UAVs, one of which is the surveillance UAV. A complete relay chain
from n0 to n can always be reconstructed (in reverse order) by considering the
reachability record of the predecessor pk for k − 1 hops, continuing recursively
until n0 is reached.

Preliminaries. To present our algorithm and justify its correctness, we need
the following definitions, illustrated by Table 2.

Node n is called a k-hop Pareto node if there exists a Pareto-optimal path
of length k from n0 to n. We call this path k-hop Pareto-optimal. For any k,
the set of all k-hop Pareto nodes is denoted by Nk. For example, n4 is a 2-hop
Pareto node as well as a 3-hop Pareto node. Thus, a node may be present in
multiple Nk sets. However, n4 is not a 4-hop Pareto node: Though it can be
reached in 4 steps, the resulting path is not Pareto-optimal. We have N0 = {n0,
as the initial node is the only node reachable in zero steps.}

Our algorithm exploits the following property of Pareto-optimal paths: Any
Pareto-optimal path of length k must consist of a sequence of nodes occurring
in N0, N1, . . . , up to Nk. In other words, any non-empty Pareto-optimal path
to a node n′ must be an immediate extension of a shorter Pareto-optimal path
to a predecessor node n.

Theorem 1. Let n′ ∈ Nk. Suppose that

π′ = n0 → · · · → n→ n′

is a corresponding k-hop Pareto path. Then n ∈ Nk−1, and the path π composed
by the first k − 1 hops of this path is a (k − 1)-hop Pareto path from n0 to n.

Proof. The proof of these statements follows trivially from the k-hop Pareto-
optimality of π′, which implies that there is no path π′′ from n0 to n such
that:

len(π′′) < len(π) and cost(π′′) ≤ cost(π)

or such that:
len(π′′) = len(π) and cost(π′′) < cost(π).

Theorem 1 implies that lines 7–10 in Algorithm 1 only have to be executed for
nodes n ∈ Nk−1: Outgoing edges from other nodes cannot yield Pareto-optimal
paths and therefore cannot result in updated node costs or new reachability
records. As will be shown below, Nk−1 can be generated incrementally during
iteration k − 1, after which it can be used in the following iteration.

Our algorithm makes use of the following identification of k-hop Pareto
nodes: We can find a cheaper path to a node n using k hops than we could
using k − 1 hops if and only if n ∈ Nk, that is, if and only if there is a Pareto-
optimal path to n using k hops:

n ∈ Nk ⇐⇒ gk(n) < gk−1(n). (1)

Preprocessing. In addition to using the sets Nk, many calculations performed
by Algorithm 1 can be avoided if we know the length of the longest (and therefore
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k n0 n1 n2 n3 n4 Nk N∗k

0 0∗ - - - - {n0} {n0}
1 - 1∗ - 4 - {n1, n3} {n1}
2 - - 2∗ - 5 {n2, n4} {n2}
3 - - - 3∗ 4∗ {n3, n4} {n3, n4}

Table 2: Costs of k-hop Pareto paths, and the sets Nk and N∗k , for the graph
in Figure 2. Asterisks indicate costs corresponding to cheapest paths.

cheapest) Pareto-optimal path from n0 to each node, disregarding any length
bounds. It follows from the definition that such paths must have minimal length
among the paths of minimum cost. They will be called minimum length mini-
mum cost paths, abbreviated MLMC-paths. For node n4 in Figure 2, there are
two paths of minimal cost: n0 → n1 → n2 → n4 and n0 → n1 → n2 → n3 → n4.
Only the first path is an MLMC-path, as it is of minimal length within the set.

To generate MLMC-paths, we can use compound path costs of the form
〈len(π), cost(π)〉. We can then apply a slight modification of Dijkstra’s algorithm
with a path preference relation where 〈len1, cost1〉 < 〈len2, cost2〉 if (cost1 <
cost2) or (cost1 = cost2 and len1 < len2). This results in a tree of MLMC-paths
from n0 to all other nodes in N , called an MLMC-tree.

Let N∗k denote the set of all nodes n for which the longest Pareto-optimal
path from n0 to n is of length exactly k. We see that the sets N∗k partition N
and that N∗k ⊆ Nk. We also see that the nodes in N∗k are exactly the nodes of
depth k in an MLMC-tree. In the new algorithm (Figure 4), we therefore begin
by creating an MLMC-tree and extracting all N∗k sets. Table 2 shows these sets
for the graph in Figure 2, together with other properties to be explained below.

Let k∗max denote the height of the MLMC-tree. It is clear that no relay chain
of more than k∗max nodes can be Pareto-optimal, since all longer paths must
also be at least as expensive. This will limit the number of relays required for
any optimal relay chain for this graph, as well as the depth to which the graph
needs to be searched. We therefore extract k∗max from the MLMC-tree as well.

As a final part of preprocessing, we use the MLMC-tree to create an initial set
of reachability records corresponding to the longest Pareto-optimal relay chain
for each node. We can then skip the execution of lines 7–10 in Algorithm 1 for
the nodes n′ ∈ N∗k in iteration k, because their reachability records and the costs
gk(n′) of the corresponding k-hop Pareto-optimal paths were already extracted
from the MLMC-tree. Thus, lines 7–10 need only be executed for edges (n, n′)
where n ∈ Nk−1 and n′ 6∈ N∗k .

Initialization. In addition to the reachability records, our new algorithm (Fig-
ure 4) uses g(n) to denote the cost of the cheapest path found so far from n0
to n. Initially, g(n) =∞ for all nodes except n0 (line 1).

Lines 2–4 provide initial values for the initial node n0. Since N∗0 = {n0}, a
reachability record with g0(n0) = 0 must have been created during preprocess-
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0 Calculate MLMC-tree, extract k∗max and all N∗k , generate initial records
1 for each n ∈ N \ {n0} do g(n)← +∞
2 for each n ∈ n0− do // Incoming edges. . .

3 E ← E \ {(n, n0)} // . . . are removed

4 N0 ← {n0}
5 for k = 1, . . . ,min{nuavs + 1, k∗max − 1} do
6 for each n′ ∈ N∗k do
7 for each n ∈ n′− do // Incoming edges. . .

8 E ← E \ {(n, n′)} // . . . are removed

9 Nk ← N∗k
10 for each n ∈ Nk−1 do
11 for each n′ ∈ n+ do
12 c← gk−1(n) + cn,n′ // To n′ through n in k hops

13 if c < g(n′) then
14 g(n′)← c // Lowest cost so far

15 gk(n′)← c // Lowest cost in k hops

16 pk(n′)← n // Predecessor for k hops

17 Nk ← Nk ∪ {n′}

Figure 4: Algorithm 2 – MLMC-tree-based label-correcting algorithm.

ing, which indicates that n0 can be reached with cost 0 in 0 hops. Furthermore,
since the value g(n) where n ∈ N∗k is not used in iteration k or any subsequent
iteration, no value of g(n0) needs to be assigned. Clearly, no chain ending in n0
can improve the value g0(n0) = 0, so all incoming edges to n0 can be removed
(lines 2–3). Finally, line 4 prepares for the first iteration by setting N0 = {n0},
indicating that any 1-hop Pareto-optimal path must consist of a path to n0 in
0 hops (the empty path) followed by a single outgoing edge. This line handles
all paths of length 0.

Main Algorithm. The longest (and therefore cheapest) Pareto-optimal path
to each node was generated during preprocessing. The main part of the al-
gorithm then finds the shortest (and therefore most expensive) Pareto-optimal
path, and continues in order of increasing length and decreasing cost.

Each iteration of lines 5–17 considers paths of a particular length k ≥ 1. The
upper bound, min{nuavs+1, k∗max−1}, reflects the fact that (i) we allow at most
nuavs UAVs, yielding a total path length of up to nuavs + 1 when edges to the
base station and target are included, (ii) no paths of length greater than k∗max

can be Pareto-optimal, due to the meaning of k∗max, and (iii) any Pareto-optimal
path of length exactly k∗max was already generated during the preprocessing.

When iteration k begins, all reachability records for any node n′ ∈ N∗k must
already have been created: By the definition of N∗k , no Pareto-optimal path from
n0 to n′ can be strictly longer than k hops, and a record for the given value of
k was already created during preprocessing. Thus, no new paths ending in any
n′ ∈ N∗k can be Pareto-optimal, and we can remove all incoming edges to n′
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without affecting correctness or optimality (lines 6–8). However, we do need to
consider longer paths going through these nodes (line 9, explained below).

In lines 10–17, we consider all potentially Pareto-optimal relay chains of
length k. Recall that any such chain must consist of a path to a node n ∈ Nk
followed by a single outgoing edge from n. We consider each such path in
turn, determining its destination n′ and calculating its cost c (lines 10–12). If
the path has lower cost than the cheapest path found previously (with a cost
of g(n′)) we create a new reachability record with gk(n′) set to the new path
cost and pk(n′) set to the new predecessor n (lines 13–16). Note that though
reachability records are sparse, we know that any node in the set Nk−1 does
have a reachability record for k − 1 due to the construction of such sets.

What remains is to prepare for the next iteration by constructing Nk ac-
cording to its definition and characterization (relation 1). That is, we should
construct Nk in such a way that any (k + 1)-hop Pareto-optimal relay chain
necessarily consists of a path of length k to a node n ∈ Nk followed by a single
outgoing edge from n. It is clear that no Pareto-optimal chain would use k hops
to reach a node n if it could be reached in k − 1 hops without incurring addi-
tional costs. This is stated in relation (1) which also covers the cases when n
cannot be reached at all with paths of length k−1. Thus, it is only necessary to
consider nodes whose costs were decreased by allowing paths of length k. This
is achieved in line 9, for nodes in N∗k where we found a cheapest path of length k
during the preprocessing, and in line 17, for nodes where we found a path of
length k and of lower cost in this iteration.

Algorithm Properties. The following result summarizes the main properties
of the new label-correcting algorithm (Algorithm 2).

Theorem 2. After iteration k of the algorithm in Figure 4, Nk correctly defines
the set of all k-hop Pareto nodes, gk(n) defines, for each n ∈ Nk, the cost of a
corresponding k-hop Pareto-optimal path, and pk(n) defines the predecessor of n
in this path. Moreover, g(n) defines the cost of a cheapest path using at most k
hops from n0 to n for each n ∈ N such that n ∈ N∗k′ with k′ > k.

Proof. The claims of this theorem are easily proved by induction in k = 0, 1, . . . ,
min{nuavs + 1, k∗max − 1} with the use of relation (1) and Theorem 1.

The difference between the two algorithms is illustrated in Table 2, which
shows all the values of gk(n) produced by Algorithm 2. In contrast, Algorithm 1
produces the values of gk(n) for every node n and for each k = 1, . . . , 4. Further-
more, it makes the same calculations for producing identical values, for instance,
g1(n3) = g2(n3) = 4 and g3(n3) = g4(n3) = 3. For the same node, our algorithm
calculates g1(n3) only, while g3(n3) is provided by the MLMC-tree.

Note that for Lawler’s method as well as for the new algorithm, much of the
solution is independent of the target location and could be pre-calculated before
the target is known. However, the methods do depend on the location of the
base station. This is not always known in advance, since base stations can be
mobile. Ground operators may then experiment with a variety of hypothetical
base station locations before making a decision, after which both the UAVs
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and the base station move to their intended positions. For every hypothetical
location, a new set of Pareto-optimal chains must be calculated. Similarly, the
solution must depend on the graph itself, which may change if new obstacles
or no-fly-zones are detected. Even localized changes in the graph can yield
major changes in the Pareto-optimal relay chains, again forcing a complete
recalculation.

See Burdakov et al. (2009b) for additional details and proofs.

Time Complexity. The preprocessing phase in line 0 is dominated by a single
call to Dijkstra’s algorithm, which can be performed in O(|E| + |N | log |N |)
time. Line 1 can be performed in O(|N |) time, while lines 2–4 require at most
O(|E|) time. Thus, the time complexity of the pre-processing and initialization
phase is in O(|E|+ |N | log |N |) ⊆ O(|N |2).

The main loop is performed at most k∗max−1 times. Lines 6–8 and lines 10–17
iterate over a subset of the edges in the graph, covering each edge at most once.
They consequently require at most O(|E|) time, which is also an upper bound for
line 9. The complexity of the loop is therefore in O((k∗max−1)|E|) ⊆ O((k∗max−
1)|N |2). The overall time complexity of Algorithm 2 is then in O(k∗max|N |2).
It could also be stated that the complexity is in O(|N |3). However, it should
be noted that k∗max corresponds to the maximum number of UAVs required
to reach any target, which is typically far smaller than the number of nodes
(k∗max << |N |). Thus, O(|N |3) is a significant overestimate for our applications.

Algorithm 1 has a time complexity of O(|N |3). By applying the widely
used improvement of terminating at the earliest iteration where no node cost
has been decreased, this bound can be tightened to O(k∗max|N |2). Thus, the
time complexity of the algorithms would seem to be similar. However, whereas
Algorithm 1 always considers every edge in E in every iteration, our estimate
that lines 6–17 would cover each edge at most once is truly an overestimate, due
to the use of preprocessing and node partitioning. As indicated by the empirical
testing, far fewer edges are considered in each iteration in practice.

4.3 Generalizations

Algorithm 2 can be modified to work with multiple base stations or pre-placed
relays, and can in a single execution generate relay chains to an arbitrary number
of potential target locations.

Multiple Base Stations. Suppose that our goal is to transmit information to
any of a set of b fixed-location base stations, which are in turn connected to each
other and thereby to the ground operator by high bandwidth communication
links. We then want to choose the best station to communicate with for each
chain length. For example, the highest quality chain of length 5 may lead back
to base station 1, while the best chain of length 6 leads to base station 4.

This problem can obviously be solved by running Algorithm 2 for each base
station in turn, together with post-processing to determine which base station
to use for each chain length. However, this requires time linear in the number
of base stations. Instead, we can solve the problem for multiple base stations in
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0 Calculate MLMC-graph, extract k∗max and all N∗k , generate initial records
1 for each n ∈ N do g(n)← +∞
2 for each n ∈ {n10, . . . , nb0} and each n′ ∈ n− do
3 E ← E \ {(n′, n)} // Remove incoming edges

4 N0 ← {n10, . . . , nb0}
5 Continue as in Algorithm 2

Figure 5: Algorithm 3 – Label-correcting algorithm, multiple base stations.

a single call by making use of multiple start nodes.
We define a relay chain between a set of b base station locations B =

{x10, . . . , xb0} ⊆ R3 \ U and a single target location xt ∈ R3 \ U as a sequence
[xj0, x1, . . . , xk], where xj0 ∈ B is the position of the base station to which infor-

mation is transmitted and {x1, . . . , xk} ⊆ U, such that fcomm(xj0, x1) and for all
i ∈ [1 . . . k − 1], fcomm(xi, xi+1) and fsurv(xk, xt).

The graph representation is extended analogously, with n10 through nb0 denot-
ing nodes corresponding to the given base station positions. Graph generation
must also create communication links for all base stations: For each base sta-
tion position xj0 ∈ B and each x ∈ U′ corresponding to n ∈ N and satisfying

fcomm(xj0, x), an edge e = (nj0, n) of cost cnj
0,n

= ccomm(xj0, x) is created.

In the preprocessing step of Algorithm 2, the priority queue of Dijkstra’s
algorithm must be initialized not with a single node but with the set of all
base station nodes {n10, . . . , nb0}, each having zero cost. The main algorithm
must also be altered according to Figure 5, ensuring that incoming edges to all
base stations are removed, and that the base stations are part of N0 as starting
nodes for edges resulting in paths of length 1. The resulting time complexity
is in O((b + |N |)3), significantly better than running an O(|N |3) algorithm b
times.

Multiple Potential Target Locations. In certain situations, we may want
to pre-calculate sets of Pareto-optimal relay chains to a set of potential target
locations. For example, this could allow the use of a denser discretization than
could be used in a real-time setting. Depending on the degree of uncertainty as
to where a target will turn up as well as the degree of precision desired when a
surveillance UAV is placed, such locations could easily number in the hundreds
or even in the thousands. Though the problem can again be solved by repeatedly
applying Algorithm 2 for each individual target location, the time requirements
of doing so may be prohibitive.

A more efficient approach would make use of the fact that in order to find a
Pareto-optimal set of paths to the designated target node, Algorithm 2 in fact
generates a Pareto-optimal set of paths from the current start node to all other
nodes reachable within the optional limit on the permitted number of hops.
Thus, we merely require two changes to the graph creation procedure. First,
instead of generating a single target node, generate one target node nit for every
position xit in a set T = {x1t , . . . , xtt} ⊆ R3 of potential target positions. Second,
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instead of creating incoming edges to a single target node, create edges to all
target nodes: For each target position xjt ∈ T and each x ∈ U′ corresponding
to n ∈ N and satisfying fsurv(x, x

j
t ), create an edge e = (n, njt ) of cost cn,nj

t
=

csurv(x, x
j
t ) representing the fact that a surveillance UAV at x would be able to

surveil the target at xjt .
As in the case of multiple base stations, executing Algorithm 2 for this

extended problem will only take marginally more time than generating relay
chains to a single target position, given that the number of potential targets is
not too large compared to the number of nodes in U′. Whenever a path to any
of the given potential target locations is desired, a set of Pareto-optimal relay
chains can efficiently be extracted from the reachability records of the given
target node in the usual way.

This is not an optimal solution to the problem of surveilling multiple targets
simultaneously. However, it can be highly useful in the case where a number of
potential target positions are known in advance.

5 Generating Chains of Bounded Length

We now turn our attention to the STR-MinCostLimited problem, where
the objective is to find the cheapest relay chain possible under a given length
bound. The discretized version of this problem corresponds directly to the hop-
constrained shortest path problem (see for example Dahl and Gouveia (2004)),
where “shortest” in this case means “lowest cost”.

Though only one path is required, the best known algorithm for hop-constrain-
ed shortest paths remains the truncated version of Lawler’s method of successive
approximations (Algorithm 1), which is executed up to the given bound. Con-
sequently, the new label-correcting algorithm presented in the previous section
(Algorithm 2) can be used for this problem as well.

However, both of these approaches entail generating a number of relay chains
that are eventually discarded, indicating that more efficient algorithms may be
found. Additionally, though the path generated in pre-processing has maximum
length among all Pareto-optimal paths, the algorithm then generates additional
paths in order of increasing number of hops. For a particular problem, the
algorithm may first generate a path using 17 hops, followed by paths using
8, 9, 10, 12, 14 and 15 hops. Thus, even if the initial path has only slightly
too many hops, one must continue until the set of Pareto-optimal solutions is
almost complete. There is no advantage to the fact that the first path was
“almost” feasible. We therefore present another method explicitly designed to
take advantage of this fact.

A Dual Ascent Method. The new method is based on the dual ascent ap-
proach. In optimization terms, the main idea is to maximize the piece-wise affine
Lagrangian dual function by traversing one affine segment at a time. Dual as-
cent methods have been shown to be very efficient for certain types of problems,
especially uncapacitated facility location problems (Erlenkotter, 1978), unca-
pacitated network design problems (Balakrishnan et al., 1989) multicommodity
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1 α← α0

2 loop
3 Calculate MLMC-tree from n0 using costs c′n,n′ = cn,n′ + α

4 From the tree, obtain yn, qn for all n, and a path π from n0 to nt
5 if len(π) ≤ nuavs + 1 then return π
6 S← {(n, n′) ∈ E : qn′ > qn + 1}
7 if S = ∅ then fail // No path can be shortened

8 Calculate εn,n′ ← (yn+c
′
n,n′ )−yn′

qn′−(qn+1) ∀(n, n′) ∈ S

9 ε← min εn,n′

10 α← α+ ε

Figure 6: Algorithm 4 – Dual ascent algorithm.

network flow problems (Barnhart, 1993), and other types of location problems
(Holmberg and Jörnsten, 1996).

Intuitively, the dual ascent algorithm (Algorithm 4 in Figure 6) begins by
creating an MLMC-tree using Dijkstra’s algorithm. If the resulting relay chain
uses too many hops, the algorithm gradually increases a value α ≥ 0 that is
added to all edge costs, thereby favoring paths that use fewer edges. Each
increase ε added to α is calculated systematically as the smallest value that
causes at least one path to be shortened. Eventually, α reaches a level where
the path from n0 to nt extracted from the MLMC-tree uses sufficiently few hops,
or where the path cannot be shortened, in which case no solution exists.

The algorithm thus makes use of two distinct path cost measures. The true
cost of a path π is defined only in terms of the communication and surveillance
edge costs specified for a particular problem instance and is denoted by cost(π).
When an MLMC-tree is generated, however, the original edge costs have been
incremented by α. We define the modified cost of a path π for a given α,
denoted by modc(π, α), as the cost of π given such modified edge costs. It is
clear that modc(π, α) = cost(π, α) + len(π) · α: Increasing α penalizes paths in
strict proportion to their hop counts.

In line 1, α is given the initial value α0. In most cases we use α0 = 0, causing
the algorithm to begin by generating the cheapest paths possible using original
edge costs. Higher values of α0 decrease the time requirements of the algorithm
but also increase the risk of generating paths that are shorter, and therefore
more expensive, than strictly necessary.

In line 3, an MLMC-tree is calculated using the current modified edge costs
c′n,n′ = cn,n′ +α. This yields, for each node n, its current depth qn (the number
of hops along the MLMC-path from the root to n) and the modified cost yn of
the path from n0 to n given the current value of α (line 4). If the resulting path
π from n0 to nt has at most nuavs + 1 edges (one to each UAV and one from the
surveillance UAV to the target), it is a feasible solution to the hop-constrained
problem and can be returned (line 5).

In lines 6–9, the algorithm calculates a suitable ε to be added to the α used
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3, yielding a new MLMC-
path to n4.

Figure 7: A small example with start node n0 and goal node n4.

in the next iteration. The intention is for ε to be large enough that at least
one path will be shortened, but also small enough that no solution is skipped.
The calculation considers all possibilities of shortening the path to any node
n′ ∈ N using an edge (n, n′) ∈ E that is not present in the current MLMC-tree.
Making no other changes than using (n, n′) to reach n′ would place n′ at depth
qn + 1. For this to be a strict improvement, we must have qn′ > qn + 1 (line 6).

If no such edges exist, no path in the current tree can be shortened, no
solution exists, and the algorithm terminates with failure (line 7). Otherwise,
for any edge (n, n′) ∈ S, the current path to n′ could be shortened by replacing
it with the current path to n together with the edge between n and n′. Since
this has not already been done, we know that yn + c′n,n′ > yn′ , that is, going
through n is currently more expensive. Making the path through n equally
expensive1 entails increasing the cost of the longer path more than we increase
the cost of the shorter path, by the amount of (yn+c′n,n′)−yn′ . This additional
cost has to be split by qn′ − (qn + 1) edges (the number of edges by which the
path can be shortened), yielding the expression for εn,n′ found in line 8. Finally,
we increase α by the minimum of all such εn,n′ . This is the smallest increment
that guarantees that the tree will change in the next iteration. Using a greater
increment would also be possible, but may cause the algorithm to skip solutions.

Example. Consider the objective of finding a relay chain of length at most 2.
The algorithm starts with α0 = 0. In Figure 7a, edges included in the MLMC-
tree calculated in iteration 1 are solid while other edges are dashed. The MLMC-
path from n0 to n4 visits the nodes [n0, n1, n2, n4], with length 3 and cost 4.
Note in particular that the edge (n3, n4) is not included in the MLMC-tree, as

1Recall that the cost function for the MLMC-tree will prefer the shorter of two equally
expensive paths. Thus, making the path through n strictly less expensive is not necessary.
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reaching n4 through (n2, n4) yields the same cost but requires one edge less. In

iteration 1, S = {(n0, n3)}, yielding ε = ε(n0,n3) = (0+4)−3
3−(0+1) = 0.5. We then get

α = 0 + ε = 0.5.
In iteration 2 (Figure 7b), the new value of α increases modified edge costs,

causing the edge (n0, n3) to be included in the tree instead of (n2, n3). Though
this modifies the path to n3, the path to the target node n4 remains the same,
now with a modified cost of 1.5 + 1.5 + 2.5 = 5.5 versus 4.5 + 1.5 = 6 for
[n0, n3, n4]. We find S = {(n3, n4)}, and therefore ε = ε(n3,n4) = (4.5+1.5)−5.5

3−(1+1) =

0.5. This yields α = 0.5 + ε = 1, which is applied to all edge costs.
In iteration 3 (Figure 7c), the edge (n3, n4) becomes part of the new MLMC-

tree, which yields an MLMC-chain to n4 of length 2 and modified cost 7 visiting
the nodes [n0, n3, n4]. The true cost of this chain is 5. Thus, the chain is shorter
but more expensive than the first relay chain that was found, which had a length
of 3 and a true cost of 4. As we have found a relay chain of the desired length,
the algorithm terminates.

Formal properties. The two following monotonicity results with respect to α
can be shown to hold (Burdakov et al., 2008): Increasing α cannot increase
the length of an optimal path, and increasing α cannot decrease the cost of an
optimal path. Therefore, the node prices yi are nondecreasing and the depths qi
are non-increasing as functions of α.

In each iteration, the algorithm creates an MLMC-tree. We then increase α
by the minimum of all εn,n′ , which guarantees that the depth of at least one end
node n′ will decrease (a shorter path will be found). Since node depths cannot
increase, the total depth TD of the tree, defined as the sum of the depths of all
nodes (

∑
n∈N qn), must decrease by at least one.

The minimum total depth of a tree is |N | − 1, which occurs if the tree is a
star. The maximum possible depth of |N |(|N | − 1)/2 occurs when the entire
tree is a simple path (i.e. when only two nodes have degree one). Thus, TD can
be decreased at most |N |(|N | − 1)/2− (|N | − 1) = (|N | − 2)(|N | − 1)/2 times,
and the number of iterations of Algorithm 4 is bounded by O(|N |2).

An MLMC-tree can be generated in O(|E|+ |N | log |N |), and the edges in S
can be found and tested in O(|E|). We conclude that Algorithm 4 is finite, and
that its computational complexity is in O(|N |2(|E|+|N | log |N |)) ⊆ O(|N |4). In
practice, however, most relay positioning problems require far fewer than |N |2
iterations.

We refer the reader to Burdakov et al. (2008) for further details.

Optimized generation of MLMC-trees. For all iterations except the first,
the generation of an MLMC-tree can be optimized by making use of the fact
that an MLMC-tree has already been calculated, albeit with different modified
edge costs.

We increase the cost of each edge in the previously created tree by the
recently calculated ε, and increase the cost of each node n by qnα (that is, in
proportion to its depth). This ensures that the cost yn of any node n correctly
reflects the new modified cost of the path from n0 to n.

However, the result is not an MLMC-tree: For some nodes, we can find
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cheaper paths in the graph than those that are currently included in the tree.
Any such paths must include at least one of the edges that yielded the current
value of ε. We can therefore begin “repairing” the tree starting at the source
nodes of those edges, rather than from the root, by initializing Dijkstra’s al-
gorithm with a priority queue containing exactly those source nodes. As the
tree is traversed in the standard manner, only those nodes to which we find a
cheaper path than in the initial solution are added to the priority queue. Thus,
parts of the tree where the solution is already optimal will not be visited.

Single target. As specified above, Algorithm 4 calculates paths from the
base station to all nodes in the graph. However, if we are only interested in a
single target at a time, many nodes can be filtered out as irrelevant using two
optimizations, both of which are used in our empirical testing.

After the first iteration, only nodes reachable within nuavs + 1 hops are
relevant to the search. These nodes can be calculated using a single call to
Dijkstra’s algorithm with edge cost 1, terminating the search after all nodes
within the hop limit are visited.

Also, with any given value of α, we do not necessarily reach a node in as few
hops as possible. We can determine whether there is still a chance of reaching
the target node within the hop limit in the following manner. Calculate a
“reverse” shortest path tree using edge cost 1, starting at the goal node and
following edges backwards, again only considering nodes that are within the
hop limit. This yields the minimum target distance tn for each node n, the
minimum number of hops required to reach the target from that node. Then,
when creating an MLMC-tree and expanding a node n whose depth for the
current α is qn, avoid adding to the priority queue any children n′ for which
qn + 1 + tn′ is greater than the hop limit. This technique can be also be applied
to the optimized generation of the MLMC-tree discussed above.

Generalization to Two Arbitrary Quality Measures. In our problem,
there are two conflicting criteria: The quality of a relay chain, modelled by
surveillance and communication cost functions, and the number of UAVs re-
quired. Thus, we have a bi-objective optimization problem where one objective
function can be specified freely while the other is fixed. Let us here mention
the possibility of generalizing this problem to allow both objective functions to
be specified freely, where we for example wish to explore the trade-off between
transmission quality and tolerance to drift.

Algorithm 4 is amenable to being adapted to the generalized problem. For
this purpose we introduce an additional edge cost dn,n′ corresponding to the
second objective being constrained, analogous to the previously defined edge
cost cn,n′ . An upper limit K for the corresponding path cost replaces the hop
limit nuavs+1. The original STR-MinCostLimited problem then corresponds
directly to the special case where dn,n′ = 1 for all edges (n, n′), and the remain-
ing steps of the generalization consist mainly of replacing the implicit use of
this value in various parts of the algorithm with the explicit use of a cost that
varies for each edge.

First, MLMC-trees and MLMC-paths are modified to use the additional edge
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costs instead of hop counts as the secondary objective. In other words, each edge
is given the cost 〈c, d〉 rather than 〈c, 1〉, and generating an MLMC-tree results
in paths having the lowest “d-cost” among those that have the lowest “c-cost”.

Given an MLMC-tree, each node n has a unique path π(n) to the root. The
node can then be associated with an additional path cost zn =

∑
(n,n′)∈π(n) dn,n′

required for reaching the node, replacing the node depth qn and analogous to
the previously defined path cost yn =

∑
(n,n′)∈π(n) cn,n′ .

The MLMC-tree is calculated using the modified edge costs c′n,n′ = cn,n′ +
α · dn,n′ instead of c′n,n′ = cn,n′ + α · 1, and the edges that may be used to
make paths less expensive in terms of the second objective are calculated as

S = {(n, n′) ∈ E : zn′ > zn + dn,n′}. Finally, εn,n′ =
(yn+c

′
n,n′ )−yn′

zn′−(zn+dn,n′ )
.

The problem now considered is in its general form the Constrained Short-
est Path problem (see for example Beasley and Christofides (1989); Dumitrescu
and Boland (2003); Carlyle et al. (2008); Muhandiramge and Boland (2009)).
This problem is often attacked by Lagrangean relaxation, based on the same
Lagrangean dual as the dual ascent method, but with other dual search tech-
niques.

6 Empirical Testing

We will now present the results of empirical testing.

Implementation and Test Systems. All algorithms have been implemented
in C++ as part of a modular relay placement service in the UASTech distributed
UAV architecture developed at Linköping University (Doherty et al., 2004).
This architecture is used in our groundstations as well as on board our larger
UAVs, including two slightly modified Yamaha RMAX helicopters. All relay
placement algorithms can be executed on board these UAVs. However, our main
focus is on the case where a ground operator requests relay chains and approves
one of the presented alternatives. This part of the mission setup is better
performed on a ground station, which is likely to be more powerful. The ground
station then uses the UASTech delegation framework to delegate individual
relay or surveillance tasks to available UAVs, which use on-board path planners
and related services to execute their part of the mission. As the placement
algorithms are more likely to run on a ground station, timings presented below
have been generated on a standard PC with a 2.4 GHz Core 2 Duo processor
and 2 GB of memory, corresponding to a ground station computer.

Reachability and Cost Functions. A surveillance UAV sending a video feed
in real time cannot necessarily re-transmit corrupted or lost packets. Instead,
one is likely to use error-correcting codes to correct some but not all errors.
The risk of uncorrectable errors increases as the signal-to-noise ratio decreases,
leading to a quality loss that can be modeled as a communication cost. Given
detailed knowledge about the environment, a cost function can be derived us-
ing explicit models of signal propagation, taking into account effects such as
reflection and signal absorption. More commonly, costs are calculated in terms
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x i

Figure 8: A node and the associated communication radius, visualized in 2D
for simplicity. The obstructed volume consists of the black obstacles inside the
circle and the shaded volume hidden behind obstacles.

of distance raised to some suitable power (Rappaport, 2002), possibly setting
the cost to a constant below a certain distance threshold where transmission
errors are more likely to occur for other reasons than distance-related loss of
signal strength. This is quite suitable for the purpose of testing the performance
of our algorithms. Our first cost function is therefore based on distance, with
a constant cost of 300 up to 60 meters, corresponding to the assumption that
communication within this distance will be of comparatively constant, but not
perfect, quality. After 60 meters, the cost increases with the square of the dis-
tance. This tests the case where a wide variety of Pareto-optimal relay chains
is generated for any target.

UAVs may be able to relay multiple streams of information, particularly
when some streams have lower bandwidth requirements than high-resolution
video. We can then benefit from placing relays where they are more likely
to be useful for missions initiated in the future. For example, a UAV can
communicate with other UAVs located in a sphere whose radius is the maximum
communication distance rcomm. Given line-of-sight requirements, parts of this
volume may be obstructed by obstacles (Figure 8). The greater the obstructed
volume is, the smaller the chance that future chains can connect through this
relay position. Our second communication cost function ccomm(x, x′) is therefore
proportional to the obstructed volume within a sphere of radius rcomm centered
at x′. This generally results in considerably fewer Pareto-optimal chains, testing
the performance of the algorithms for this end of the spectrum as well.

Finally, our reachability functions were based on free line of sight, with a
communication and surveillance radius of 100 meters.

6.1 Generating Pareto-optimal Paths

Empirical performance testing for Pareto-optimal path generation has taken
place in three environments, all with a size of 1000 times 1000 meters and a
height of 80 meters. The environment graph was constructed using a three-
dimensional grid and the grid cell size was varied between 10 and 40 meters.
The largest cell sizes corresponds to 33% and 40% of the communication range,
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Figure 9: Randomized urban environment.

which we would not necessarily expect to use in practice. We include the results
for these discretizations mainly to provide an extended baseline against which
the performance of the algorithms can be compared.

The first environment used in testing is an urban environment with semi-
random placement of 100 tall buildings, as shown in Figure 9. To reduce clutter,
the figure is based on a sparse discretization and shows only the “lowest” level
of grid cells. In this figure, we also visualize one specific relay chain generated
by Algorithm 2. The base station is in the upper left corner and is connected by
dark lines representing communication links to dark spheres denoting intended
positions for relay and surveillance UAVs. The target is in the lower right corner
and is visible from the last UAV in the chain. Subtasks have been delegated to
several other UAVs, which are simulated in anticipation of a sufficient number
of hardware platforms being made ready. In the figure, the simulated UAVs
have used their path planners to generate individual flight paths (indicated by
lines originating at the edges of the map) and are in the process of flying to
their intended positions.

The second environment places buildings more randomly, but also reserves
space for two wide boulevards where UAVs can fly more freely, intersecting in
the center of the environment. Finally, the third environment consists of a 3D
model of an emergency services training ground in Revinge in southern Sweden
(Figure 10), one of the areas where we regularly perform test flights.

For each of the environments and for each discretization used, we have ran-
domly generated 100 test cases differing in the position of the base station and
the target. Table 3 shows the cell size used for each discretization. For the
current environments, decreasing cell sizes in the two horizontal directions has
a greater impact on the possibility of finding good paths, which is reflected in
the selected cell sizes.

The table also shows the average number of nodes and edges for each case,
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Figure 10: The Revinge emergency services training ground.

together with the minimum, average and maximum node degree (the number
of edges connected to each node). As can be seen, introducing boulevards does
not significantly change the number of nodes. However, the somewhat larger
open areas do result in a greater number of nodes of high degree, noticeably
increasing the total number of edges. The Revinge environment is even more
open, with a corresponding increase in both nodes and edges.

The final two columns of the table show the value of k∗max for each of the
two cost functions, also averaged over the 100 random test cases. Recall that
k∗max corresponds to the maximum length of any Pareto-optimal path from the
selected base station position. This value is generally greater for the distance-
based cost function, where there are greater opportunities to decrease costs by
using paths consisting of shorter edges, which requires a larger number of UAVs.
It is also clear that using the most coarse-grained discretizations yields notice-
ably larger values of k∗max for the distance-based cost function. This function
encourages edges of length close to 60 meters, as longer edges may be con-
siderably more expensive. With longer distances between two nodes, finding
such edges becomes more difficult, and shorter edges tend to be preferred when
generating the least expensive path.

In Figure 11, we compare the time requirements of Algorithm 1 against
Algorithm 2 using the distance-based cost measure. To ensure that all Pareto-
optimal chains were found, we used nuavs > k∗max − 1. As above, each result
is averaged over the 100 randomized instances, and standard deviations are
indicated using error bars. For each of the three environments and for each
discretization, the new algorithm outperforms Algorithm 1 by a factor of 7–10
for the two coarsest discretizations (33 and 40 meters), and a factor of 12–16
for the remaining discretizations.

Figure 12 shows the corresponding results for the cost function based on
obstructed volume. Due to the nature of this function, there tend to be fewer
opportunities to improve existing paths in each iteration. The new algorithm
is able to take advantage of this fact to a greater degree than Algorithm 1,
resulting in a speedup by approximately a factor of 45 to 75.
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Cell size Node degree k∗max

World (meters) |N | |E| Min/avg/max Vol. Dist.

Randomized
urban

40x40x40 1,022 21,815 5/21/35 14.1 23.6
33x33x40 1,791 53,767 6/30 /47 14.9 24.1
25x25x25 3,796 257,711 11/67/113 13.9 20.1
20x20x20 7,846 1,102,063 21/140/221 13.5 19.0
15x15x20 13,852 3,741,793 30/270/434 12.4 17.7
12x12x20 22,008 9,286,019 40/421/680 12.5 18.1
10x10x20 31,807 18,753,049 61/589/948 12.3 17.8

Urban with
boulevards

40x40x40 989 27,455 1/27/42 12.7 22.1
33x33x40 1,781 62,547 1/35/50 12.6 23.2
25x25x25 3,775 339,148 2/89/135 12.0 18.4
20x20x20 7,941 1,456,997 7/183/278 13.3 17.6
15x15x20 13,813 4,850,503 11/351/531 12.8 16.9
12x12x20 21,885 11,970,877 11/546/831 14.4 18.1
10x10x20 31,965 24,452,326 15/764/1154 12.7 17.4

Revinge

40x40x40 1,170 38,903 1/33/42 13.9 23.0
33x33x40 2,049 86,351 1/42/51 13.9 24.0
25x25x25 4,480 479,167 2/106/137 13.7 20.0
20x20x20 9,341 2,047,203 7/219/280 13.4 18.5
15x15x20 16,273 6,784,873 11/416/532 12.3 17.3
12x12x20 25,663 16,762,197 1/653/832 12.4 18.0
10x10x20 37,307 33,976,220 1/910/1157 12.3 17.5

Table 3: Information about worlds and discretizations in empirical testing.

6.2 Generating Cheapest Paths with Length Bounds

Though the label-correcting algorithm is very efficient, the dual ascent algo-
rithm provides better performance for STR-MinCostLimited in environments
where obstacles are dense. We have therefore compared the two algorithms for
a randomized urban environment that is very similar to the one used previ-
ously, but with a larger number of smaller buildings. To test the more difficult
cases where many different Pareto-optimal relay chains exist, we used only a
distance-based cost function.

We randomly generated 100 test cases with different base station and target
positions. Since the length of the cheapest and longest Pareto-optimal relay
chain varied, we use relative hop limits to ensure that results are comparable
across all test cases. For example, given that the cheapest relay chain has a
length of 14, the time reported for the relative hop limit of −3 for this chain
corresponds to the time required to find a hop-constrained relay chain of length
at most 14− 3 = 11.

Figure 13 shows the result for a grid cell size of 20 meters. Let us note that
the irregular shape of the curves is due to the the fact that not all test cases are
solvable for all possible relative hop limits: The results for relative length −10
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Figure 11: STR-ParetoLimited timing results using distance-based costs.

are averaged over considerably fewer (and on average more difficult) test cases
than the results for relative length 0.

At the rightmost part of the curves, we can see a general pattern caused
by the structure of the algorithms: After generating the cheapest and longest
path, Algorithm 2 generates all paths in order of increasing length. Therefore,
for any given test case, the maximum of the curve is at relative length −1. For
the dual ascent algorithm, the longest paths can generally be created quickly, as
they require few iterations. The shortest paths can also often be created more
quickly, as the associated hop limits are quite strict and allow us to constrain the
search space more effectively. This leads to a comparatively greater performance
advantage at the ends of the spectrum.

7 Related Work

A variety of problems related to the multiple relay placement problem defined
above have been discussed in the literature.

The problem of controlling teams of communicating unmanned ground vehi-
cles has been investigated by several researchers (Sweeney et al., 2002; Nguyen
et al., 2003). The goal is to position UGVs to create a relay chain between a
base station and a known target, commonly with the requirement of line of sight
between robots to assure sufficient signal strength. Various strategies for UGV
movement and placement are evaluated, where a lead UGV advances from the
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Figure 12: STR-ParetoLimited timing results using costs based on obstructed
volume.

base station towards the goal position and incrementally determines where to
place relay UGVs along the way. Arkin and Diaz (2002) use similar algorithms
to find a relay chain between a base station and a target located at an unknown
position. However, these algorithms solve a different problem than the one we
are interested in: As no a priori calculation or evaluation of paths is performed,
it is not certain that a relay chain is found if one exists, or that a chain has
maximum quality for the number of relays used.

Centralized optimization of an explicit objective function has been applied
to exploration of an indoor area (Rooker and Birk, 2007). The search space is
discretized both spatially and temporally, and each discrete location is assigned
a utility based e.g. on whether it is previously unexplored and whether it is
possible to communicate with team members and with the base station. In
each time step, an optimization is performed to determine which actions yield
the highest total utility for the team. If the number of targets is greater than the
number of robots available, the robots must move between targets while at the
same time maintaining communication with a base station (Mosteo et al., 2008).
One possibility to create a patrol route is to calculate a tree rooted in the base
station, spanning all targets. Several different tree types are possible, such as
depth-limited or minimal spanning trees, or trees based on a travelling salesman
tour. The trees are evaluated with respect to different criteria, e.g. average travel
distance. As we are interested in finding multiple relay chains to a single target
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Figure 13: STR-MinCostLimited timing results for dense urban environ-
ments.

at a known location, and guaranteeing that a solution is found if one exists,
there is a significant difference in the problems we aim to solve.

Beard and McLain (2003) instead plan paths for one team member at a time,
in a sequential decentralized manner. Any previous plans are taken as input
when the next team member plans its trajectory. This is applied in the context of
motion planning for several UAVs which must sense as many targets as possible
while at the same time avoiding threats and communicating with team members.
A dynamic programming approach is used, which is polynomial in the number
of nodes in the network but exponential in the number of lookahead steps.
Spanos and Murray (2005) investigate how robots can maintain communication
while moving from one configuration to another. A distributed algorithm is
presented. It is shown that while certain reconfigurations are possible using the
presented algorithm, other require global decision making. While Spanos and
Murray view maintaining connectivity as a constraint, others see it as a utility
that can be optimized in the case of sparse connectivity (Fridman et al., 2007).
When a group of agents must move between two positions and the current
motion plan does not take communication constraints into consideration, small
changes can be made to the trajectory, thereby improving the connectivity of
the network. Both cooperative and non-cooperative algorithms are presented
and evaluated. As would be expected, the cooperative algorithm gives a slightly
greater improvement in network connectivity. These motion planning problems
are of limited relevance to the placement problems that we are interested in.

The concept of using a UAV as a communication relay, including intended
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platforms and communications equipment, is discussed in Pinkney et al. (1996),
but no algorithms are presented. In limited cases, where a single relay UAV
is sufficient, the surveillance UAV could plan and fly a trajectory to the goal
while the relay UAV continuously attempts to maintain line of sight to both
the surveillance UAV and the base station (Schouwenaars, 2006). The benefit
of using a single relay UAV in an urban environment has also been simulated
(Cerasoli, 2007). Here the UAV works as a relay between two entities on the
ground. The focus is to determine the percentage of an urban area with accept-
able coverage for UAVs positioned at different heights. Only a single relay is
used and no algorithm for positioning the UAV is provided.

Palat et al. (2005) have investigated using a swarm of UAVs to improve
the range and reliability of an ad-hoc network. A significant increase in range
is achieved compared to using a direct ground link with the same transmission
power. Message routing in ad-hoc networks may superficially seem similar to the
multiple relay positioning problem. However, in ad-hoc networks there is little
or no control of the network topology, and it is essential for routing algorithms
to handle addition and removal of nodes at runtime (Johnson and Maltz, 1996;
Li and Rus, 2000; Mauve et al., 2001), which is not the case for us. Additionally,
we are only interested in transmitting information between the surveillance UAV
and the base station, as opposed to between arbitrary nodes in a large network.

Wireless sensor networks (WSNs) consist of a large number of small sensors
that are placed to cover an area (Akyildiz et al., 2002). Routing in WSNs
has attracted quite a bit of research recently, due to e.g. power constraints
(Al-Karaki and Kamal, 2004). Although there are some similarities with our
problem, there are also considerable differences: WSNs must be able to handle
frequent sensor failures, and relays are often also sensors and should be placed
accordingly. Simonetto et al. (2008) investigate another case, where a set of
mobile sensors explore a variety of indoor environments and a set of mobile
robots provide assistance in maintaining communication with a stationary base
station. Several reactive and pro-active algorithms based on the use of dynamic
potential fields are evaluated. This differs from our problem in that our target
is stationary and in that we prefer to pre-calculate a set of alternative solutions
that guarantee connectivity.

8 Conclusions and Future Work

The use of relay chains is essential to a large variety of UAV and UGV ap-
plications where communication range is limited, including but not limited to
surveillance tasks. We have presented two new algorithms for two variations
of the static target relay positioning problem. Both algorithms build on a dis-
cretization of the continuous problem, and produce relay chains representing
distinct trade-offs between the number of UAVs used and the quality of the
chain in terms of a user-specified quality measure.

The first algorithm uses label-correcting graph search, building on a pre-
processing phase to efficiently generate a complete set of Pareto-optimal relay
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chains, allowing the ground operator to select a chain representing a suitable
trade-off. The algorithm is demonstrated to be significantly faster than standard
algorithms on a variety of problems, which can also enable the use of finer-
grained discretizations.

The second algorithm uses a dual ascent technique to efficiently generate a
high-quality relay chain given an upper limit on the number of UAVs available,
and tends to provide even higher performance in obstacle-dense environments.

We have also presented extensions to these algorithms, allowing relay chains
to be generated from multiple base stations, from pre-placed relay UAVs, and
to multiple potential targets. Finally, we have discussed a means of extending
the second algorithm to produce chains representing trade-offs between two
arbitrary quality measures.

In our current work, we make use of regular grids for node placement in the
discretized environment. In the future, we intend to investigate the impact of
using a variety of other strategies, replacing or augmenting the grid approach.
We are also working on generation of relay trees for surveillance of multiple
static targets, as well as on methods for surveilling moving targets.

Funding

This work has been supported by LinkLab (www.linklab.se); the ELLIIT net-
work organization for Information and Communication Technology; the Swedish
Foundation for Strategic Research (SSF) Strategic Research Center MOVIII; the
Center for Industrial Information Technology CENIIT [grant number 06.09];
and the Linnaeus Center for Control, Autonomy, Decision-making in Complex
Systems (CADICS), funded by the Swedish Research Council (VR).

References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). Wire-
less sensor networks: a survey. Computer Networks, 38(4):393–422.

Al-Karaki, J. N. and Kamal, A. E. (2004). Routing techniques in wireless sensor
networks: a survey. IEEE Wireless Communications, 11(6):6–28.

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998).
OBPRM: An obstacle-based PRM for 3D workspaces. In Agarwal, P. K.,
Kavraki, L. E., and Mason, M. T., editors, Robotics: The Algorithmic Per-
spective: 1998 Workshop on the Algorithmic Foundations of Robotics, pages
155–168. A.K. Peters.

Arkin, R. C. and Diaz, J. (2002). Line-of-sight constrained exploration for
reactive multiagent robotic teams. In AMC 7th International Workshop on
Advanced Motion Control, pages 455–461.

29



Balakrishnan, A. and Altinkemer, K. (1992). Using a hop-constrained model
to generate alternative communication network design. ORSA Journal on
Computing, 4(2):192–205.

Balakrishnan, A., Magnanti, T. L., and Wong, R. T. (1989). A dual-ascent
procedure for large-scale uncapacitated network design. Operations Research,
37(5):716–740.

Barnhart, C. (1993). Dual-ascent methods for large-scale multicommodity flow
problems. Naval Research Logistics, 40(3):305–324.

Beard, R. W. and McLain, T. W. (2003). Multiple UAV cooperative search
under collision avoidance and limited range communication constraints. In
Proceedings of the 42nd IEEE Conference on Decision and Control, volume 1,
pages 25–30. IEEE.

Beasley, J. and Christofides, N. (1989). An algorithm for the resource con-
strained shortest path problem. Networks, 19(4):379–394.

Boor, V., Overmars, M. H., and van der Stappen, A. F. (1999). Gaussian sam-
pling for probabilistic roadmap planners. In Proceedings of the International
Conference on Robotics and Automation (ICRA), volume 2, pages 1018–1023.
IEEE.

Burdakov, O., Doherty, P., Holmberg, K., Kvarnström, J., and Olsson, P.-M.
(2009a). Positioning unmanned aerial vehicles as communication relays for
surveillance tasks. In Proceedings of the 5th Robotics: Science and Systems
Conference (RSS), Seattle, Washington.

Burdakov, O., Doherty, P., Holmberg, K., and Olsson, P.-M. (2009b). Op-
timal placement of UV-based communications relay nodes. Technical Re-
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