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Abstract

A technique is proposed for computing the weakest
sufficient (wsc) and strongest necessary (snc) con-
ditions for formulas in an expressive fragment of
first-order logic using quantifier elimination tech-
niques. The efficacy of the approach is demon-
strated by using the techniques to compute snc’s
and wsc'’s for use in agent communication applica-
tions, theory approximation and generation of ab-
ductive hypotheses. Additionally, we generalize re-
cent results involving the generation of successor
state axioms in the propositional situation calculus
via snc’s to the first-order case. Subsumption re-
sults for existing approaches to this problem and a
re-interpretation of the concept édrgettingas a
process of quantifier elimination are also provided.
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Introduction

and strongest necessary conditions for a propositionder

a propositional theory', where the techniques for generating
the resulting formulas may be parameterized to contain only

a restricted subset of the propositional variable®irin ad-

dition, he investigates a number of methods for automatically
generating snc’s and wsc's, several based on the generation of
prime implicates and a preferred method for computing snc’s

and wsc’s based on the notion fofgetting[Lin and Reiter,

1994. Snc's and wsc’s have many potential uses and appli-

Witold tukaszewicz'
Andrzej Szatas
Dept. of Computer Science, Lioking University
and College of Economics and Computer Science
TWP, Olsztyn, Poland
email: witlu,andsz@ida.liu.se

wscC's, strongest postconditions and weakest preconditions,
have had widespread usage as a basis for programming lan-
guage semantid®ijkstra, 1978.

Weakest sufficient and strongest necessary conditions for
propositional formulas are related to prime implicants and
implicates, respectively. Classically, a prime implicant of a
formulaca is a minimal satisfiable term logically implying
and a prime implicate is a minimal satisfiable clause which
is logically implied bya. The relation between prime impli-
cants/implicates and wsc’s/snc’s is used by Lin in his inves-
tigation of methods for automatically generating wsc’s and
snc’s. Generating prime implicants and implicates for propo-
sitional formulas is intractable and in the general case, the
same applies for wsc’s and snc's.

Lin’s results apply to the propositional case and his algo-
rithms for automatically generating snc’s and wsc'’s are em-
pirically tested. For the propositional case, we propose a dif-
ferent method for computing snc’s and wsc’s that is based
on second-order quantifier elimination techniques and has the
following advantages:

e The general method applies to the full propositional lan-
guage and snc’s and wsc's are generated directly for ar-
bitrary formulas rather than propositional atoms.

e When applying second-order quantifier elimination, one
substantially simplifies the propositional case consid-
ered by Lin and often gets a more efficient computation
method.

¢ A non-trivial fragment of the propositional language is
isolated where snc’s and wsc's for formulas in this frag-
ment can be generated efficiently and are guaranteed to
be so.

e The quantifier elimination algorithms which provide the
basis for automatically generating snc’'s and wsc’s for
arbitrary propositional formulas are implemented.

cations ranging from generation of abductive hypotheses to One of the most interesting and potentially fruitful open
approximation of theories. In fact, special cases of snc's an@roblems regarding snc’s and wsc'’s is generalization to the
Tportedin part by the WITAS project grant under the Wal-{'rSt_otrdel{ case arlq devel,opln% aSS(?CIa[tE_d n;gg‘é)di.for Gl
lenberg Foundation, Sweden. omatically computing snc’s and wsc's. [hin, , Lin
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There are several directions for future work. One of
them is to extend the results here to the first-order case.
This can be a difficult task. For instance, a resulfLim



The setP in Definitions 1.1 and 1.2 is referred to as the
target language

To provide some intuition as to how these definitions can
be used, consider the theory

T = {Vz.[HasW heels(z) — CanMove(z)],

and Reiter, 1997shows that forgetting in the first-order
case cannot in general be expressible in first-order logic.
As a consequence, we expect that strongest necessary
conditions of a proposition under a first-order theory can-
not in general be expressible in first-order logic either. It
seems that the best hope for dealing with the first -order
case is tofirst (educe itto the pro_posmonal case, and then Vm.[Car(:c) N HasWheels(x)]},
try to learn a first-order description from a set of propo-
sitional ones. and the formulaa = Vz.CanMove(z). ClearlyT - a.
With Lin, we agree that the task is difficult. We also agreeQuite often, it is useful to hypothesize a preferred explana-
that in the general case snc’s and wsc’s for a proposition ofion ¢ for o under a theory” whereT'A ¢ |= a, ¢ is minimal
first-order formula under a first-order theory is not always exdn the sense of not being overly specific and where the ex-
pressible in first-order logic. In fact, the techniques we pro-lanation is constrained to a particular subBesf symbols
pose provide a great deal of insight into why this is the casén the vocabulary. Clearly, the weakest sufficient condition
and in addition define a non-trivial fragment of first-order ¢ for the formulac: on P underT" provides the basis for a
logic where snc’s and wsc's are guaranteed to be expressibfginimal preferred explanation af whereT' = ¢ — a.
in first-order logic. In the case ofP = {HasW heels}, the weakest sufficient
Rather than using indirect techniques to reduce a first-ordegondition would be¢ = Vz.HasWheels(z), and in the
case to the propositional case and then try to learn a first-ord€ase ofP = {HasW heels, Car} the wsc would bep =
description from a set of propositional ones as Lin suggests/z-HasW heels(z). Generating abductive hypotheses is just
we propose a more direct method and provide techniques fdine application of wsc’s. There are many other applications
the automatic generation of snc’s and wsc's for a first-ordetvhich require generation of wsc’s or snc’s, several of which
fragment. Given a theor and a formulax in this fragment, ~ are described in section 5.
we simply append appropriate quantifiers over relational vari-
ables inT A a (or T — «) and use second-order quantifier 1.2 F.’aper Structu.re ] o
elimination techniques to reduce the second-order formula t§1 section 2, we begin with preliminaries and state the the-
a logically equivalent first-order formula representing the sn@@rem which provides the basis for second-order quantifier
or the wsc forx underT’. Complexity results are provided for elimination techniques. In section 3, we define snc's and
this fragment, but the method works for full first-order logic. Wsc's for propositional formulas under propositional theo-
In this case, depending on the naturelbanda, the tech-  fies as second-order formulas with quantification over propo-
nique may return a logically equivalent first-orderfixpoint  Sitional symbols, show how the elimination techniques are
formula, or terminate with failure, not always because there igpplied and provide complexity results for the technique. In
not a reduction, but simply because the elimination algorithndection 4, we generalize to the first-order case using primarily
can not find a reduction. the same techniques, but with quantification over relational
We compute these conditions using extensions of result8ymbols. In section 5, we demonstrate both the use of snc's
described in the work ofDohertyet al, 1997; 1998; Non- and wsc’s in addition to the reduction techniques by provid-
nengart and Szalas, 1998For a survey of these and other ing examples from a number of potentially interesting appli-
quantifier elimination techniques, see disilmnnengaretal,  cation areas such as agent communication languages, theory
1999. approximation, generation of abductive hypotheses and gen-
eration of successor state axioms in the situation calculus. In
1.1 Weakest Sufficient and Strongest Necessary section 6, we relate the proposed techniques to the notion of
Conditions forgettingwhich serves as a basis for Lin's techniques and in
In the following, we will be dealing with the predicate cal- SO doing, prove subsumption results. In section 7, we con-
culus with equality, i.e. we assume that the equatity,is  clude with a discussion about these results.
always a logical symbol. The following definitions describe

the necessary and sufficient conditions of a formuleela-
tivized to a subseP of relation symbols under a theo¥y,

Definition 1.1 By a necessary condition of a formutaon

the set of relation symbolB under theoryl" we shall under-
stand any formul@ containing only symbols i® such that
T = a — ¢. Itis astrongest necessary conditiatenoted by
SNC(«; T'; P) if, additionally, for any necessary conditign
of a on P underT’, we have thal’ |= ¢ — . ®

Definition 1.2 By a sufficient condition of a formula on
the set of relation symbolB under theoryl" we shall under-
stand any formul@ containing only symbols i® such that
T |= ¢ — a. Itis aweakest sufficient conditipdenoted by
WSC(e; T; P) if, additionally, for any sufficient conditioth
of a on P underT', we have thal’ = ¢ — ¢. ®

2 Preliminaries

The following Theorem 2.2 has been provedonnengart
and Szalas, 1998 It allows us to eliminate second-order
guantifiers from formulas which are in the form appearing
on the left-hand side of the equivalences (1), (2). Such for-
mulas are calledemi-Horn formulasv.r.t. the relational vari-
able ® - see alsdDohertyet al, 1994. Observe, that in the
context of databases one remains in the tractable framework,
since fixpoint formulas over finite domains are computable in
polynomial time (and space) - see dAbiteboulet al., 1996;
Ebbinghaus and Flum, 19R5Of course, the approach is ap-
plicable to areas other than databases, t00).

Notation 2.1 Let e, t be any expressions andany subex-
pression ofe. By e(s := t) we shall mean the expression



obtained frome by substituting each occurrence oty t¢. Proof The proof of the lemma for both the strongest nec-
u®.A(®) is the least fixpoint operator andp.A(®) is de-  essary and weakest sufficient conditions are similar, but we

fined as—u—®.-A(®). provide both for clarity.

Let A(z) be a formula with free variableg. Then by By definition, any necessary conditiah for o satisfies
A(z)[a] we shall mean the application df(z) to arguments Th = a — ¢, i.e. by the deduction theorem for propositional
an calculus, als¢= Th — (a — ¢),i.e. = (ThAa) — ¢. Thus

. alsol= Vq.[(Th A . Sinceg is required not to contain
Theorem 2.2 Assume that all occurrences of the predicate = va.( @) > 9] e 9

variable® in the formulaB bind only variables and that for- symbols fromg, we have
mula A is positive w.r.t.®. E [33.(Th A a)] — ¢. (5)

¢ if B is negative w.r.t® then

vy [A(®) = 2(9)] A [B(~®)]

On the other hand, the minimal satisfying (5) is given by
equivalence

[3G.(Th A @) = 6.

Bl&() := p(7).A(®)[f] @
This proves Lemma 3.1.1.
e if Bis positive w.r.t.® then By definition, any sufficient conditiop for a satisfies
o Th |= ¢ = a, i.e. by the deduction theorem for propositional
Jevy[e(y) — A(®)A[B(R)] = calculus, alsg= Th — (¢ — a), i.e. = (Th A ¢) — a.
B[®(t) := v®(y).A(D)[t]]. (2) Thus also= V@.[(Th A ¢) — «] which is equivalent to
EVa[(Th A -a) = —¢).
u Sinceg is required not to contain symbols fragnwe have
Example 2.3 Consider the following second-order formula: E [33.(Th A —a)] — —¢. (6)
AeVzvy[(S(z,y) V 8(y, 7)) = ®(z,y)] Maximizing ¢ is the same as minimizingé. On the other
A[—~®(a,b) V Vz(=~®(a, 2))]] (3)  hand, the maximap satisfying (6) is given by equivalence
According to Theorem 2.2(1), formula (3) is equivalent to: [3¢.(Th A —a)] = —¢.
~u®(z,y).(S(@,y) v &(y,2))[a, b] v which is equivalent to
Vz(-ud(z,y)-(S(z,y) V 2(y,z))[a, 2]). (4) ~[3G.(Th A —a)] = ¢.

which is equivalent to

Observe that, whenever formufain Theorem 2.2 does not V@.(Th — a)] = ¢.
contain®, the resulting formula is easily reducible to a first- -
order formula, as in this case bqif®(7).A andv®(y).A are  This proves Lemma 3.1.3.
equivalent toA. In fact, this case is equivalent to the lemma  The quantifiers over propositions can be automatically
of Ackermann (see e.gDohertyet al, 1997). Semi-Horn  eliminated using the DLS algorithm (séBoherty et al,
formulas of the form (1) and (2), wheté does not contain  1997). For instance, all eliminations in Example 3.3 can be

®, are callechon-recursive semi-Horn formulas done using the algorithm. Theorem 2.2 reduces in the propo-
sitional case to Proposition 3.2. It is worth emphasizing here
3 The Propositional Case that propositional fixpoint formulas are equivalent to propo-

sitional formulas?
In this section, we define snc’s and wsc’s for propositional N N ]
formulas under propositional theories as second-order fofProposition 3.2 Assume that the propositional formutais
mulas with quantification over propositional symbols, showPOsItive w.r.t. propositiop.

how'the elimination techniq'ues are applied and provide COM- 4 if the propositional formuldB is negative w.r.tp then
plexity results for the technique. We start with the following

lemma. Jp. [A(p) = p] A [B(=p)] = Blp:=pup.A(p)] (7)
Lemma 3.1 For any formulax, any set of propositional sym- e if Bis positive w.r.tp then
bols P and theoryl'h:

1. the strongest necessary condit®NC(a; Th; P) is de- I.lp = ARIA[BP)] = Blp:=vp.A@p)l.  (8)

fined by3g.[Th A a],

2. the weakest sufficient conditiodNSC(a; Th; P) is de- ————
fined byVg.[Th — o], %In the first iteration towards the fixpoint, one replagem A

) . . with false. In the next disjuncg in A is replaced by this result. The
whereg consists of all propositions appearingdih ando.  fixpoint, a propositional formula, is then always reached in at most
but not inP. two iterations.



Observe that in the case when an input formula is a con- 2. the weakest sufficient conditiadNSC(«; Th; P) is de-

junction of propositional semi-Horn formulas of the form in
thelhs of (7) or a conjunction of formulas of the form in the
Ihs of (8), the length of the resulting formula is, in the worst
case0(n?), wheren is the size of the input formula. Other-

fined byvV®.[Th — a,

where® consists of all relation symbols appearindglih and
abutnotinP.=

wise the result might be of exponential length, as in the case Observe that a second-order quantifier over the relational

of the algorithm given iriLin, 2004.

Example 3.3 Consider the following examples diLin,
200d.

1. Ty = {q — (p1 A p2)}. Now, according to Lemma 3.1,
SNC(q; Ty; {p1, p2}) is defined by formulaq.[(g —

(p1 A p2)) A g], which, according to Proposition 3.2, is

logically equivalent tqp; A ps).

Condition SNC(q; T1;{p1}) is defined by formula
d¢3p2.[(¢ — (p1 Ap2)) Agq], which, according to Propo-
sition 3.2, is logically equivalent tp, (observe thap,
is equivalent to the semi-Horn formula— p-).

22T, = {q¢ — (¢ V p2)}. We have that
SNC(g; T»; {p1,p2}) is defined by the formula
dg.[(g — (p1 V p2)) A q], which, according to
Proposition 3.2, is logically equivalent {p; V p»).

variable ® can be eliminated from any semi-Horn formula
w.r.t. . In such a case the resulting formula is a fixpoint for-
mula. If the formula is non-recursive, then the resulting for-
mula is a first-order formula. The input formula can also be a
conjunction of semi-Horn formulas of the form (1) or a con-
junction of semi-Horn formulas of the form (2). On the other
hand, one should be aware that in other cases the reduction is
not guaranteed. Thus the elimination of second-order quanti-
fiers is guaranteed for any formula of the foi®.[Th A a],
whereTh A o is a conjunction of semi-Horn formulas w.r.t.
all relational variables ifp.* Observe also, that in the case
when an input formula is a conjunction of semi-Horn formu-
las of the form (1) or a conjunction of formulas of the form
(2), the length of the resulting formula is, in the worst case,
O(n?), wheren is the size of the input formula.

Example 4.2 Consider the following examples

Condition SNC(q; T»; {p1}) is defined by the formula
Jg3p2.[(g — (p1 V p2)) A g], which is logically equiva-
lenttoT.

3. Ts = {(pAq) — s}. The formulaSNC(p A ¢; T3; {s})
is equivalent tadp, ¢.[((p A @) — s) A (p A g)], which,
according to Proposition 3.2, is logically equivalensto

Observe that we work with formulas more directly than pro-
posed in Lin's approach, where a new proposition has to be
introduced together with an additional condition that the new

proposition is equivalent to the formula in question.
u

In summary, propositional snc’s or wsc’s can be generated
for any propositional formula and theory. In the case that the
conjunction of both is in semi-Horn form, this can be done
more efficiently. These results subsume those of [ILim,
2004 in the sense that the full propositional language is cov-
ered and we work directly with propositional formulas rather
than propositional atoms.

4 The First-Order Case

In this section, we generalize the results in section 3 to the
first-order case using primarily the same techniques, but with
guantification over relational symbols. The following lemma
can be proved similarly to Lemma 3.1. The deduction theo-
rem for first-order logic is applicable, since the theories are
assumed to be closed.

Lemma 4.1 For any formulaa, any set of relation symbols
P and a closetitheoryTh:

1.7,

2. Ty =

= {Vz.[Ab(z) — (Bird(z) A —Flies(z))]}.
Consider the strongest necessary condition
SNC(Ab(z); T4; {Bird, Flies}). According to
Lemma4.1, it is equivalent to

JAb.[Vz.(Ab(z) —
(Bird(z) A ~Flies(z))) A Ab(z)]. 9

By Lemma 2.2, formula (9) is equivalent (Bird(z) A
—Flies(z)).

{Vz.[Parent(z) — 3Jz.(Father(z,z) V
Mother(z, z))]}. Consider the strongest necessary con-
dition SNC(Parent(y); Ts; { Mother}). According to
Lemma4.1, it is equivalent to

dParent, Father.[Vz.(Parent(z) —
Jz.(Father(z,z) V Mother(z,z)) A Parent(y)]. (10)

In this case, formula (10) is not in the form re-
quired in Lemma 2.2, but the DLS algorithm eliminates
the second-order quantifiers and results in the equiva-
lent formula T, which is the required strongest nec-
essary condition. Consider no®NC(Parent(y) A
Yu,v.(~Father(u,v)); Ts; {Mother}). It is equiva-
lent to

dParent, Father.[Vz.(Parent(z) —
3z.(Father(z, z) V Mother(z,z)) A

Parent(y) AVu,v.(—~Father(u,v))], (11)

i.e. after eliminating second-order quantifiers, to
3z.Mother(y, z).

1. the strongest necessary condit®NC(«; T'h; P) is de-
fined by3®.[Th A a],

3In fact, it suffices to assume that the set of free variabléEof
is disjoint from the set of free variables af

*For universal quantificatiory®. A, one simply negates the for-
mula @®.—A), and assumingrA can be put in to semi-Horn form,
one eliminates the existential quantifiers and negates the result.



In summary, for the non-recursive semi-Horn fragment ofof theories expressed in a richer language by theories ex-
first-order logic, the snc or wsc for a formuaand theoryl’ pressed in a simpler language.
is guaranteed to be reducible to compact first-order formulas. The approach by Lin ifiLin, 2000 allows one only to ap-
For the recursive case, the snc’s and wsc’s are guaranteedpooximate simple concepts on the propositional level. The
be reducible to fixpoint formulas. In the context of databasesgeneralization we introduce allows us to approximate any fi-
this case is still tractable. The techniques may still be used fonite propositional and first-order theory which is semi-Horn
the full first-order case, but neither reduction nor complexityw.r.t. the eliminated propositions or relational symbols.
results are guaranteed, although the algorithm will always ter- In the following example, considered [iKautz and Sel-

minate. man, 199§ approximating general clauses by Horn clauses
results in the exponential blow up of the number of clauses.
5 Applications We shall show, that the use of the notion of strongest nec-
. . . essary condition can substantially reduce the complexity of

In this section, we demonstrate the use of the techniques ¥asoning.

applying them to a number of potentially useful application
afga)é. 9 P Y PP Example 5.2 In [Kautz and Selman, 199@he following

clauses, denoted [, are considered:

5.1 Communicating Agents (CompSci A Phil A Psych) — CogSci (12)

Agents communicating, e.g. via the Internet, have to use the ReadsMcCarthy — (CompSci v CogSci) (13)

same language to understand each other. This is similar or ] )

related to computing interpolants. ReadsDennett — (Phil V CogSci) (14)
Assume an agend wants to ask a querg) to agentB. ReadsKosslyn — (Psych V CogSci) (15)

Suppose the query can be asked using teRpS such that
the terms fron5 are unknown for ager. LetT' (R, S) be a
theory describing some relationships betwéeandS. It is
then natural for agem to first compute the strongest neces-

and reasoning with this theory was found to be quite compli-
cated. On the other hand, one would like to check, for in-
stance, whether a computer scientist who reads Dennett and

- 5 G\, DY Kosslyn is also a cognitive scientist. Reasoning by cases,
sary conditiorSNC(Q; T'(R, S); R) with the target language ; L
restricted tok and then to replace the original query by the Suggested iriKautz and Selman, 1996shows that this is
computed condition. The new query might not be as gooéhe case. One can, however, substantially reduce the theory

as the previous one, but is the best that can be asked. Tﬁ@d ma_ke the reas.oning more efficient. In thg first step one
following example iIIl’Jstrates the idea can notice that notion®hil and Psych are not in the con-

sidered claim, thus might appear redundant in the reasoning
Example 5.1 Assume an agen wants to select from a process. On the other hand, these notions appear in disjunc-
database all personssuch thatHigh(z) A Silny(z) holds.  tions in clauses (14) and (15). We then consider

Assume further, that both agents know the tedhgh and .

Sound. Unfortunately, the database agent does not know th&NC(CompSci A ReadsDennett A ReadsKosslyn;
termSilny.> Suppose, further that lives in a world in which T; —{Phil, Psych}), (16)

the conditionVy.[Silny(y) — Sound(y)] holds. It is then

natural for4 to consider where—{Phil, Psych} denotes all symbols in the language,

other thanPhil and Psych. After some simple calculations

SNC(High(z) A Silny(z); Vy.[Silny(y) — Sound(y)]; one obtains the following formula equivalent to (16):
{High, Sound}) (13) A [CompSci A ReadsDennett A ReadsK osslyn)|

to be the best query that can be asked. According to Lemma A [(CompSci A (ReadsDennett A =CogSci)

4.1 this condition is equivalent to: A (ReadsKosslyn A =~CogSci)) — CogSci] (17)

3Silny.[Vy.[Silny(y) — Sound(y)| A High(z) ASilny(z),  which easily reduces to

which, by a simple application of Theorem 2.2, is equivalent (13) A CompSci A ReadsDennett A

to High(z) A Sound(z). = ReadsKosslyn A (=CogSci — CogSci). (18)

5.2 Theory Approximation Thus the strongest necessary condition for the formula

The concept of approximating more complex theories by sim-
pler theories has been studied[Kautz and Selman, 1996;
Cadoli, 199%, mainly in the context of approximating ar- implies CogSci and, consequently, the formula also implies
bitrary propositional theories by propositional Horn clausesCogSci.

The concept of approximate theories is also discussiddn Assume that one wants to calculate the weakest suf-
Carthy, 20000 Now, observe that strongest necessary andicient condition of being a computer scientist in terms
weakest sufficient conditions provide us with approximationsof ~ { Reads Dennett, ReadsK osslyn, Reads M cCarthy,

B T—— CogSci}. We then consider
®In Polish “Silny” means “Strong”, but the database agent does

not know the Polish language. WSC(CompSci; T; —{Phil, Psych, CompSci}). (19)

CompSci A ReadsDennett A ReadsK osslyn



After eliminating quantifiers ovePhil, Psych, CompSci

5.4 Generating Successor State Axioms

from the second-order formulation of the wsc, one obtaingxample 5.4 Consider the problem of generating successor

the following formula equivalent to (19):
ReadsM cCarthy A ~CogSci.
Thus the weakest condition that, together with thefrguar-

state axioms in a robot domain. This problem, in the proposi-
tional framework, is considered [hin, 200d. On the other

hand, a first-order formulation is much more natural and com-
pact. We thus apply first-order logic rather than the proposi-

antees that a person is a computer scientist is that the perstianal calculus and introduce the following relations, instead

reads McCarthy and is not a cognitive scien#ist.

5.3 Abduction

The weakest sufficient condition corresponds to a weakest ab-

duction, as noticed ifLin, 2004.
Example 5.3 Consider theory

T = {Vz.[HasWheels(z) - CanMove(z)],
Vz.[Car(z) — HasW heels(z)]}.

Assume one wants to check whether an object can move.

There are three interesting cases:

1. to assume that the target languaggisisW heels} and
consider

WSC(CanMove(z);T; { HasW heels}),

which is equivalent to

VCanM ove, Car.[/\ T — CanMove(z)]

2. to assume that the target languaggiar} and consider
WSC(CanMove(z); T; {Car}),
which is equivalent to

VHasW heels, Car.[/\ T — CanMove(z)]

3. to assume that the target
{HasW heels,Car} and consider

WSC(CanMove(z); T; { HasW heels, Car}),

which is equivalent to

language

‘v’CanMove.[/\ T — CanMove(z)].

of propositions as considered]inin, 2000° :
e Move(o,1,7) - the robot is performing the action of
moving the objecb from location: to locationj

e At(o,1) - initially, the objecto is in the location
e Atl(o, j) - after the actionove(o, i, j), the objecb is
in locationj
e AtR(i) - initially, the robot is at location
e AtR1(j) - after the actiomove(o, i, 5), the robot is at
locationj
e H (o) - initially, the robot is holding the objeet
e H1(o) - after the action ove(o, i, ), the robot is hold-
ing the objecb.
Assume that the background theory contains the following
axioms, abbreviated by:
Yo.(At(o,1)) A Vo.(=At(o,2)),
Vo.[H (o) = H1(o)],
Yo, i, j.[(AtR(i) A At(o,7) A H(o) A Move(o,i,5)) —
(AtR1(j) A Atl(o,9))]-
The goal is to find the weakest sufficient condition on the

initial situation ensuring that the formuldt1(package, 2)
holds. Thus we consider

WSC(Atl(package,2); T; {H, At, AtR, Move}).
The approach we propose is based on the observation that
is  WSC(Atl(package,2);T;{H, At, AtR}) =

VH1VAt1VAtR1.(/\ T — Atl(package,2))

After some simple calculations which can be performed
automatically using the DLS algorithm we ascertain that
WSC(Atl(package,2); T; {H, At, AtR, Move}) is equiva-
lent to:

[Vo.At(o, 1) A Yo.mAt(o,2)] — [H (package) A

After eliminating second-order quantifiers we obtain the fol-3;.(AtR(i) A At(package,i) A Move(package, i, 2))],

lowing results:

1. WSC(CanMove(z); T; {HasW heels}) =
HasW heels(z)

2. WSC(CanMove(z);T;{Car}) = Car(z)

3. WSC(CanMove(z); T;{HasW heels,Car}) =
Vz.[Car(z) — HasW heels(z)] —» HasW heels(z).

which, in the presence of axioms of thedfyeduces to:

[H (package) A
Ji.(AtR(i) A At(package,i) A Move(package,i,2))] (20)
and, sinceAt(package,i) holds in the theony only for :
equal tol, formula (20) reduces to:

H (package) A AtR(1) A Move(package, 1,2).

The first two conditions are rather obvious. The third oneThus, the weakest condition on the initial state, making sure

might seem a bit strange, but observe that[Car(z) —
HasW heels(z)] is an axiom of theory". Thus, in the third
case, we have that
WSC(CanMove(z); T; { HasW heels, Car}) =
HasW heels(z).

that after the execution of an action the package is in location
2, expresses the requirement that the robot is in locatjon
holds the package and that it executes the action of moving
the package from locatiohto location2. =

®Note that even this formalization can be generalized further for
more than one action and transition, but we retain the correspon-
dence to the original example for clarity.
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