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Abstract
A technique is proposed for computing the weakest
sufficient (wsc) and strongest necessary (snc) con-
ditions for formulas in an expressive fragment of
first-order logic using quantifier elimination tech-
niques. The efficacy of the approach is demon-
strated by using the techniques to compute snc’s
and wsc’s for use in agent communication applica-
tions, theory approximation and generation of ab-
ductive hypotheses. Additionally, we generalize re-
cent results involving the generation of successor
state axioms in the propositional situation calculus
via snc’s to the first-order case. Subsumption re-
sults for existing approaches to this problem and a
re-interpretation of the concept offorgetting as a
process of quantifier elimination are also provided.

In Proceedings of the 17th Int’l Joint Con-
ference on Artificial Intelligence, August 4th-
10th, 2001, Seattle, Washington, USA (IJCAI-
2001).

1 Introduction
In [Lin, 2000]1, Lin proposes the notion of weakest sufficient
and strongest necessary conditions for a propositionq under
a propositional theoryT , where the techniques for generating
the resulting formulas may be parameterized to contain only
a restricted subset of the propositional variables inT . In ad-
dition, he investigates a number of methods for automatically
generating snc’s and wsc’s, several based on the generation of
prime implicates and a preferred method for computing snc’s
and wsc’s based on the notion offorgetting[Lin and Reiter,
1994]. Snc’s and wsc’s have many potential uses and appli-
cations ranging from generation of abductive hypotheses to
approximation of theories. In fact, special cases of snc’s and
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wsc’s, strongest postconditions and weakest preconditions,
have had widespread usage as a basis for programming lan-
guage semantics[Dijkstra, 1976].

Weakest sufficient and strongest necessary conditions for
propositional formulas are related to prime implicants and
implicates, respectively. Classically, a prime implicant of a
formula� is a minimal satisfiable term logically implying�
and a prime implicate is a minimal satisfiable clause which
is logically implied by�. The relation between prime impli-
cants/implicates and wsc’s/snc’s is used by Lin in his inves-
tigation of methods for automatically generating wsc’s and
snc’s. Generating prime implicants and implicates for propo-
sitional formulas is intractable and in the general case, the
same applies for wsc’s and snc’s.

Lin’s results apply to the propositional case and his algo-
rithms for automatically generating snc’s and wsc’s are em-
pirically tested. For the propositional case, we propose a dif-
ferent method for computing snc’s and wsc’s that is based
on second-order quantifier elimination techniques and has the
following advantages:

� The general method applies to the full propositional lan-
guage and snc’s and wsc’s are generated directly for ar-
bitrary formulas rather than propositional atoms.

� When applying second-order quantifier elimination, one
substantially simplifies the propositional case consid-
ered by Lin and often gets a more efficient computation
method.

� A non-trivial fragment of the propositional language is
isolated where snc’s and wsc’s for formulas in this frag-
ment can be generated efficiently and are guaranteed to
be so.

� The quantifier elimination algorithms which provide the
basis for automatically generating snc’s and wsc’s for
arbitrary propositional formulas are implemented.

One of the most interesting and potentially fruitful open
problems regarding snc’s and wsc’s is generalization to the
first-order case and developing associated methods for au-
tomatically computing snc’s and wsc’s. In[Lin, 2000], Lin
states,

There are several directions for future work. One of
them is to extend the results here to the first-order case.
This can be a difficult task. For instance, a result in[Lin



and Reiter, 1997] shows that forgetting in the first-order
case cannot in general be expressible in first-order logic.
As a consequence, we expect that strongest necessary
conditions of a proposition under a first-order theory can-
not in general be expressible in first-order logic either. It
seems that the best hope for dealing with the first -order
case is to first reduce it to the propositional case, and then
try to learn a first-order description from a set of propo-
sitional ones.

With Lin, we agree that the task is difficult. We also agree
that in the general case snc’s and wsc’s for a proposition or
first-order formula under a first-order theory is not always ex-
pressible in first-order logic. In fact, the techniques we pro-
pose provide a great deal of insight into why this is the case
and in addition define a non-trivial fragment of first-order
logic where snc’s and wsc’s are guaranteed to be expressible
in first-order logic.

Rather than using indirect techniques to reduce a first-order
case to the propositional case and then try to learn a first-order
description from a set of propositional ones as Lin suggests,
we propose a more direct method and provide techniques for
the automatic generation of snc’s and wsc’s for a first-order
fragment. Given a theoryT and a formula� in this fragment,
we simply append appropriate quantifiers over relational vari-
ables inT ^ � (or T ! �) and use second-order quantifier
elimination techniques to reduce the second-order formula to
a logically equivalent first-order formula representing the snc
or the wsc for� underT . Complexity results are provided for
this fragment, but the method works for full first-order logic.
In this case, depending on the nature ofT and�, the tech-
nique may return a logically equivalent first-orderor fixpoint
formula, or terminate with failure, not always because there is
not a reduction, but simply because the elimination algorithm
can not find a reduction.

We compute these conditions using extensions of results
described in the work of[Dohertyet al., 1997; 1998; Non-
nengart and Szalas, 1998]. For a survey of these and other
quantifier elimination techniques, see also[Nonnengartet al.,
1999].

1.1 Weakest Sufficient and Strongest Necessary
Conditions

In the following, we will be dealing with the predicate cal-
culus with equality, i.e. we assume that the equality,=, is
always a logical symbol. The following definitions describe
the necessary and sufficient conditions of a formula� rela-
tivized to a subsetP of relation symbols under a theoryT .

Definition 1.1 By a necessary condition of a formula� on
the set of relation symbolsP under theoryT we shall under-
stand any formula� containing only symbols inP such that
T j= �! �. It is astrongest necessary condition, denoted by
SNC(�;T ;P ) if, additionally, for any necessary condition 
of � onP underT , we have thatT j= �!  .

Definition 1.2 By a sufficient condition of a formula� on
the set of relation symbolsP under theoryT we shall under-
stand any formula� containing only symbols inP such that
T j= � ! �. It is aweakest sufficient condition, denoted by
WSC(�;T ;P ) if, additionally, for any sufficient condition 
of � onP underT , we have thatT j=  ! �.

The setP in Definitions 1.1 and 1.2 is referred to as the
target language.

To provide some intuition as to how these definitions can
be used, consider the theory

T = f8x:[HasWheels(x)! CanMove(x)];

8x:[Car(x) ! HasWheels(x)]g;

and the formula� = 8x:CanMove(x). ClearlyT 6j= �.
Quite often, it is useful to hypothesize a preferred explana-
tion� for � under a theoryT whereT ^� j= �, � is minimal
in the sense of not being overly specific and where the ex-
planation is constrained to a particular subsetP of symbols
in the vocabulary. Clearly, the weakest sufficient condition
� for the formula� on P underT provides the basis for a
minimal preferred explanation of� whereT j= � ! �.
In the case ofP = fHasWheelsg, the weakest sufficient
condition would be� = 8x:HasWheels(x), and in the
case ofP = fHasWheels; Carg the wsc would be� =
8x:HasWheels(x). Generating abductive hypotheses is just
one application of wsc’s. There are many other applications
which require generation of wsc’s or snc’s, several of which
are described in section 5.

1.2 Paper Structure
In section 2, we begin with preliminaries and state the the-
orem which provides the basis for second-order quantifier
elimination techniques. In section 3, we define snc’s and
wsc’s for propositional formulas under propositional theo-
ries as second-order formulas with quantification over propo-
sitional symbols, show how the elimination techniques are
applied and provide complexity results for the technique. In
section 4, we generalize to the first-order case using primarily
the same techniques, but with quantification over relational
symbols. In section 5, we demonstrate both the use of snc’s
and wsc’s in addition to the reduction techniques by provid-
ing examples from a number of potentially interesting appli-
cation areas such as agent communication languages, theory
approximation, generation of abductive hypotheses and gen-
eration of successor state axioms in the situation calculus. In
section 6, we relate the proposed techniques to the notion of
forgettingwhich serves as a basis for Lin’s techniques and in
so doing, prove subsumption results. In section 7, we con-
clude with a discussion about these results.

2 Preliminaries
The following Theorem 2.2 has been proved in[Nonnengart
and Szalas, 1998]. It allows us to eliminate second-order
quantifiers from formulas which are in the form appearing
on the left-hand side of the equivalences (1), (2). Such for-
mulas are calledsemi-Horn formulasw.r.t. the relational vari-
able� - see also[Dohertyet al., 1996]. Observe, that in the
context of databases one remains in the tractable framework,
since fixpoint formulas over finite domains are computable in
polynomial time (and space) - see e.g.[Abiteboulet al., 1996;
Ebbinghaus and Flum, 1995]. (Of course, the approach is ap-
plicable to areas other than databases, too).

Notation 2.1 Let e; t be any expressions ands any subex-
pression ofe. By e(s := t) we shall mean the expression



obtained frome by substituting each occurrence ofs by t.
��:A(�) is the least fixpoint operator and��:A(�) is de-
fined as:�:�::A(�).

Let A(�x) be a formula with free variables�x. Then by
A(�x)[�a] we shall mean the application ofA(�x) to arguments
�a.

Theorem 2.2 Assume that all occurrences of the predicate
variable� in the formulaB bind only variables and that for-
mulaA is positive w.r.t.�.

� if B is negative w.r.t.� then

9�8�y [A(�) ! �(�y)] ^ [B(:�)] �

B[�(�t) := ��(�y):A(�)[�t]] (1)

� if B is positive w.r.t.� then

9�8�y[�(�y) ! A(�)] ^ [B(�)] �

B[�(�t) := ��(�y):A(�)[�t]]: (2)

Example 2.3 Consider the following second-order formula:

9�8x8y[(S(x; y) _�(y; x)) ! �(x; y)]

^[:�(a; b) _ 8z(:�(a; z))]] (3)

According to Theorem 2.2(1), formula (3) is equivalent to:

:��(x; y):(S(x; y) _ �(y; x))[a; b] _

8z(:��(x; y):(S(x; y) _ �(y; x))[a; z]): (4)

Observe that, whenever formulaA in Theorem 2.2 does not
contain�, the resulting formula is easily reducible to a first-
order formula, as in this case both��(�y):A and��(�y):A are
equivalent toA. In fact, this case is equivalent to the lemma
of Ackermann (see e.g.[Dohertyet al., 1997]). Semi-Horn
formulas of the form (1) and (2), whereA does not contain
�, are callednon-recursive semi-Horn formulas.

3 The Propositional Case
In this section, we define snc’s and wsc’s for propositional
formulas under propositional theories as second-order for-
mulas with quantification over propositional symbols, show
how the elimination techniques are applied and provide com-
plexity results for the technique. We start with the following
lemma.

Lemma 3.1 For any formula�, any set of propositional sym-
bolsP and theoryTh:

1. the strongest necessary conditionSNC(�;Th;P ) is de-
fined by9�q:[Th ^ �],

2. the weakest sufficient conditionWSC(�;Th;P ) is de-
fined by8�q:[Th! �],

where�q consists of all propositions appearing inTh and�
but not inP .

Proof The proof of the lemma for both the strongest nec-
essary and weakest sufficient conditions are similar, but we
provide both for clarity.

By definition, any necessary condition� for � satisfies
Th j= �! �, i.e. by the deduction theorem for propositional
calculus, alsoj= Th! (�! �), i.e. j= (Th^�)! �. Thus
alsoj= 8�q:[(Th^�) ! �]. Since� is required not to contain
symbols from�q, we have

j= [9�q:(Th ^ �)] ! �: (5)

On the other hand, the minimal� satisfying (5) is given by
equivalence

[9�q:(Th ^ �)] � �:

This proves Lemma 3.1.1.
By definition, any sufficient condition� for � satisfies

Th j= �! �, i.e. by the deduction theorem for propositional
calculus, alsoj= Th ! (� ! �), i.e. j= (Th ^ �) ! �.
Thus alsoj= 8�q:[(Th ^ �) ! �] which is equivalent to
j= 8�q:[(Th ^ :�) ! :�].

Since� is required not to contain symbols from�q, we have

j= [9�q:(Th ^ :�)] ! :�: (6)

Maximizing � is the same as minimizing:�. On the other
hand, the maximal� satisfying (6) is given by equivalence

[9�q:(Th ^ :�)] � :�:

which is equivalent to

:[9�q:(Th ^ :�)] � �:

which is equivalent to

[8�q:(Th! �)] � �:

This proves Lemma 3.1.2.
The quantifiers over propositions can be automatically

eliminated using the DLS algorithm (see[Doherty et al.,
1997]). For instance, all eliminations in Example 3.3 can be
done using the algorithm. Theorem 2.2 reduces in the propo-
sitional case to Proposition 3.2. It is worth emphasizing here
that propositional fixpoint formulas are equivalent to propo-
sitional formulas.2

Proposition 3.2 Assume that the propositional formulaA is
positive w.r.t. propositionp.

� if the propositional formulaB is negative w.r.t.p then

9p: [A(p) ! p] ^ [B(:p)] � B[p := �p:A(p)] (7)

� if B is positive w.r.t.p then

9p:[p! A(p)] ^ [B(p)] � B[p := �p:A(p)]: (8)

2In the first iteration towards the fixpoint, one replacesp in A
with false. In the next disjunct,p in A is replaced by this result. The
fixpoint, a propositional formula, is then always reached in at most
two iterations.



Observe that in the case when an input formula is a con-
junction of propositional semi-Horn formulas of the form in
the lhs of (7) or a conjunction of formulas of the form in the
lhs of (8), the length of the resulting formula is, in the worst
case,O(n2), wheren is the size of the input formula. Other-
wise the result might be of exponential length, as in the case
of the algorithm given in[Lin, 2000].

Example 3.3 Consider the following examples of[Lin,
2000].

1. T1 = fq ! (p1 ^ p2)g. Now, according to Lemma 3.1,
SNC(q;T1; fp1; p2g) is defined by formula9q:[(q !
(p1 ^ p2)) ^ q], which, according to Proposition 3.2, is
logically equivalent to(p1 ^ p2).
Condition SNC(q;T1; fp1g) is defined by formula
9q9p2:[(q ! (p1^p2))^q], which, according to Propo-
sition 3.2, is logically equivalent top1 (observe thatp2
is equivalent to the semi-Horn formula>! p2).

2. T2 = fq ! (p1 _ p2)g. We have that
SNC(q;T2; fp1; p2g) is defined by the formula
9q:[(q ! (p1 _ p2)) ^ q], which, according to
Proposition 3.2, is logically equivalent to(p1 _ p2).
ConditionSNC(q;T2; fp1g) is defined by the formula
9q9p2:[(q ! (p1 _ p2)) ^ q], which is logically equiva-
lent to>.

3. T3 = f(p ^ q) ! sg. The formulaSNC(p ^ q;T3; fsg)
is equivalent to9p; q:[((p ^ q) ! s) ^ (p ^ q)], which,
according to Proposition 3.2, is logically equivalent tos.

Observe that we work with formulas more directly than pro-
posed in Lin’s approach, where a new proposition has to be
introduced together with an additional condition that the new
proposition is equivalent to the formula in question.

In summary, propositional snc’s or wsc’s can be generated
for any propositional formula and theory. In the case that the
conjunction of both is in semi-Horn form, this can be done
more efficiently. These results subsume those of Lin[Lin,
2000] in the sense that the full propositional language is cov-
ered and we work directly with propositional formulas rather
than propositional atoms.

4 The First-Order Case
In this section, we generalize the results in section 3 to the
first-order case using primarily the same techniques, but with
quantification over relational symbols. The following lemma
can be proved similarly to Lemma 3.1. The deduction theo-
rem for first-order logic is applicable, since the theories are
assumed to be closed.

Lemma 4.1 For any formula�, any set of relation symbols
P and a closed3 theoryTh:

1. the strongest necessary conditionSNC(�;Th;P ) is de-
fined by9��:[Th ^ �],

3In fact, it suffices to assume that the set of free variables ofTh
is disjoint from the set of free variables of�.

2. the weakest sufficient conditionWSC(�;Th;P ) is de-
fined by8��:[Th! �],

where�� consists of all relation symbols appearing inTh and
� but not inP .

Observe that a second-order quantifier over the relational
variable� can be eliminated from any semi-Horn formula
w.r.t. �. In such a case the resulting formula is a fixpoint for-
mula. If the formula is non-recursive, then the resulting for-
mula is a first-order formula. The input formula can also be a
conjunction of semi-Horn formulas of the form (1) or a con-
junction of semi-Horn formulas of the form (2). On the other
hand, one should be aware that in other cases the reduction is
not guaranteed. Thus the elimination of second-order quanti-
fiers is guaranteed for any formula of the form9��:[Th ^ �],
whereTh ^ � is a conjunction of semi-Horn formulas w.r.t.
all relational variables in��.4 Observe also, that in the case
when an input formula is a conjunction of semi-Horn formu-
las of the form (1) or a conjunction of formulas of the form
(2), the length of the resulting formula is, in the worst case,
O(n2), wheren is the size of the input formula.

Example 4.2 Consider the following examples

1. T4 = f8x:[Ab(x) ! (Bird(x) ^ :F lies(x))]g.
Consider the strongest necessary condition
SNC(Ab(z);T4; fBird; F liesg). According to
Lemma 4.1, it is equivalent to

9Ab:[8x:(Ab(x) !

(Bird(x) ^ :F lies(x))) ^ Ab(z)]: (9)

By Lemma 2.2, formula (9) is equivalent to(Bird(z) ^
:F lies(z)).

2. T5 = f8x:[Parent(x) ! 9z:(Father(x; z) _
Mother(x; z))]g. Consider the strongest necessary con-
dition SNC(Parent(y);T5; fMotherg). According to
Lemma 4.1, it is equivalent to

9Parent; Father:[8x:(Parent(x) !

9z:(Father(x; z) _Mother(x; z)) ^ Parent(y)]: (10)

In this case, formula (10) is not in the form re-
quired in Lemma 2.2, but the DLS algorithm eliminates
the second-order quantifiers and results in the equiva-
lent formula>, which is the required strongest nec-
essary condition. Consider nowSNC(Parent(y) ^
8u; v:(:Father(u; v));T5; fMotherg). It is equiva-
lent to

9Parent; Father:[8x:(Parent(x) !

9z:(Father(x; z) _Mother(x; z)) ^

Parent(y) ^ 8u; v:(:Father(u; v))]; (11)

i.e. after eliminating second-order quantifiers, to
9z:Mother(y; z).

4For universal quantification,8��:A, one simply negates the for-
mula (9��::A), and assuming:A can be put in to semi-Horn form,
one eliminates the existential quantifiers and negates the result.



In summary, for the non-recursive semi-Horn fragment of
first-order logic, the snc or wsc for a formula� and theoryT
is guaranteed to be reducible to compact first-order formulas.
For the recursive case, the snc’s and wsc’s are guaranteed to
be reducible to fixpoint formulas. In the context of databases,
this case is still tractable. The techniques may still be used for
the full first-order case, but neither reduction nor complexity
results are guaranteed, although the algorithm will always ter-
minate.

5 Applications
In this section, we demonstrate the use of the techniques by
applying them to a number of potentially useful application
areas.

5.1 Communicating Agents
Agents communicating, e.g. via the Internet, have to use the
same language to understand each other. This is similar or
related to computing interpolants.

Assume an agentA wants to ask a queryQ to agentB.
Suppose the query can be asked using terms�R; �S such that
the terms from�S are unknown for agentB. LetT ( �R; �S) be a
theory describing some relationships between�R and �S. It is
then natural for agentA to first compute the strongest neces-
sary conditionSNC(Q;T ( �R; �S); �R) with the target language
restricted to�R and then to replace the original query by the
computed condition. The new query might not be as good
as the previous one, but is the best that can be asked. The
following example illustrates the idea.

Example 5.1 Assume an agentA wants to select from a
database all personsx such thatHigh(x) ^ Silny(x) holds.
Assume further, that both agents know the termsHigh and
Sound. Unfortunately, the database agent does not know the
termSilny.5 Suppose, further thatA lives in a world in which
the condition8y:[Silny(y) ! Sound(y)] holds. It is then
natural forA to consider

SNC(High(x) ^ Silny(x);8y:[Silny(y)! Sound(y)];

fHigh; Soundg)

to be the best query that can be asked. According to Lemma
4.1 this condition is equivalent to:

9Silny:[8y:[Silny(y)! Sound(y)]^High(x)^Silny(x);

which, by a simple application of Theorem 2.2, is equivalent
toHigh(x) ^ Sound(x).

5.2 Theory Approximation
The concept of approximating more complex theories by sim-
pler theories has been studied in[Kautz and Selman, 1996;
Cadoli, 1995], mainly in the context of approximating ar-
bitrary propositional theories by propositional Horn clauses.
The concept of approximate theories is also discussed in[Mc-
Carthy, 2000]. Now, observe that strongest necessary and
weakest sufficient conditions provide us with approximations

5In Polish “Silny” means “Strong”, but the database agent does
not know the Polish language.

of theories expressed in a richer language by theories ex-
pressed in a simpler language.

The approach by Lin in[Lin, 2000] allows one only to ap-
proximate simple concepts on the propositional level. The
generalization we introduce allows us to approximate any fi-
nite propositional and first-order theory which is semi-Horn
w.r.t. the eliminated propositions or relational symbols.

In the following example, considered in[Kautz and Sel-
man, 1996] approximating general clauses by Horn clauses
results in the exponential blow up of the number of clauses.
We shall show, that the use of the notion of strongest nec-
essary condition can substantially reduce the complexity of
reasoning.

Example 5.2 In [Kautz and Selman, 1996] the following
clauses, denoted byT , are considered:

(CompSci ^ Phil ^ Psych) ! CogSci (12)
ReadsMcCarthy ! (CompSci _ CogSci) (13)

ReadsDennett! (Phil _ CogSci) (14)
ReadsKosslyn! (Psych _ CogSci) (15)

and reasoning with this theory was found to be quite compli-
cated. On the other hand, one would like to check, for in-
stance, whether a computer scientist who reads Dennett and
Kosslyn is also a cognitive scientist. Reasoning by cases,
suggested in[Kautz and Selman, 1996], shows that this is
the case. One can, however, substantially reduce the theory
and make the reasoning more efficient. In the first step one
can notice that notionsPhil andPsych are not in the con-
sidered claim, thus might appear redundant in the reasoning
process. On the other hand, these notions appear in disjunc-
tions in clauses (14) and (15). We then consider

SNC(CompSci ^ReadsDennett ^ ReadsKosslyn;

T ;�fPhil; P sychg); (16)

where�fPhil; P sychg denotes all symbols in the language,
other thanPhil andPsych. After some simple calculations
one obtains the following formula equivalent to (16):

(13) ^ [CompSci ^ ReadsDennett^ ReadsKosslyn]

^ [(CompSci ^ (ReadsDennett ^ :CogSci)

^ (ReadsKosslyn^ :CogSci)) ! CogSci] (17)

which easily reduces to

(13) ^ CompSci ^ ReadsDennett ^

ReadsKosslyn^ (:CogSci! CogSci): (18)

Thus the strongest necessary condition for the formula

CompSci ^ ReadsDennett ^ ReadsKosslyn

impliesCogSci and, consequently, the formula also implies
CogSci.

Assume that one wants to calculate the weakest suf-
ficient condition of being a computer scientist in terms
of fReadsDennett; ReadsKosslyn;ReadsMcCarthy;
CogScig. We then consider

WSC(CompSci;T ;�fPhil; P sych; CompScig): (19)



After eliminating quantifiers overPhil; P sych; CompSci
from the second-order formulation of the wsc, one obtains
the following formula equivalent to (19):

ReadsMcCarthy ^ :CogSci:

Thus the weakest condition that, together with theoryT , guar-
antees that a person is a computer scientist is that the person
reads McCarthy and is not a cognitive scientist.

5.3 Abduction
The weakest sufficient condition corresponds to a weakest ab-
duction, as noticed in[Lin, 2000].

Example 5.3 Consider theory

T = f8x:[HasWheels(x)! CanMove(x)];

8x:[Car(x) ! HasWheels(x)]g:

Assume one wants to check whether an object can move.
There are three interesting cases:

1. to assume that the target language isfHasWheelsg and
consider

WSC(CanMove(x);T ; fHasWheelsg);

which is equivalent to

8CanMove; Car:[
^
T ! CanMove(x)]

2. to assume that the target language isfCarg and consider

WSC(CanMove(x);T ; fCarg);

which is equivalent to

8HasWheels; Car:[
^
T ! CanMove(x)]

3. to assume that the target language is
fHasWheels; Carg and consider

WSC(CanMove(x);T ; fHasWheels; Carg);

which is equivalent to

8CanMove:[
^
T ! CanMove(x)]:

After eliminating second-order quantifiers we obtain the fol-
lowing results:

1. WSC(CanMove(x);T ; fHasWheelsg) �
HasWheels(x)

2. WSC(CanMove(x);T ; fCarg) � Car(x)

3. WSC(CanMove(x);T ; fHasWheels; Carg) �
8x:[Car(x) ! HasWheels(x)]! HasWheels(x).

The first two conditions are rather obvious. The third one
might seem a bit strange, but observe that8x:[Car(x) !
HasWheels(x)] is an axiom of theoryT . Thus, in the third
case, we have that

WSC(CanMove(x);T ; fHasWheels; Carg) �

HasWheels(x):

5.4 Generating Successor State Axioms
Example 5.4 Consider the problem of generating successor
state axioms in a robot domain. This problem, in the proposi-
tional framework, is considered in[Lin, 2000]. On the other
hand, a first-order formulation is much more natural and com-
pact. We thus apply first-order logic rather than the proposi-
tional calculus and introduce the following relations, instead
of propositions as considered in[Lin, 2000]6 :
� Move(o; i; j) - the robot is performing the action of

moving the objecto from locationi to locationj
� At(o; i) - initially, the objecto is in the locationi

� At1(o; j) - after the actionMove(o; i; j), the objecto is
in locationj

� AtR(i) - initially, the robot is at locationi

� AtR1(j) - after the actionMove(o; i; j), the robot is at
locationj

� H(o) - initially, the robot is holding the objecto
� H1(o) - after the actionMove(o; i; j), the robot is hold-

ing the objecto.
Assume that the background theory contains the following
axioms, abbreviated byT :

8o:(At(o; 1)) ^ 8o:(:At(o; 2));

8o:[H(o) � H1(o)];

8o; i; j:[(AtR(i) ^ At(o; i) ^H(o) ^Move(o; i; j)) !

(AtR1(j) ^ At1(o; j))]:

The goal is to find the weakest sufficient condition on the
initial situation ensuring that the formulaAt1(package; 2)
holds. Thus we consider

WSC(At1(package; 2);T ; fH;At;AtR;Moveg):

The approach we propose is based on the observation that
WSC(At1(package; 2);T ; fH;At;AtRg) �

8H18At18AtR1:(
^
T ! At1(package; 2))

After some simple calculations which can be performed
automatically using the DLS algorithm we ascertain that
WSC(At1(package; 2);T ; fH;At;AtR;Moveg) is equiva-
lent to:

[8o:At(o; 1) ^ 8o::At(o; 2)] ! [H(package) ^

9i:(AtR(i) ^At(package; i) ^Move(package; i; 2))];

which, in the presence of axioms of theoryT reduces to:
[H(package) ^

9i:(AtR(i) ^ At(package; i) ^Move(package; i; 2))] (20)
and, sinceAt(package; i) holds in the theoryT only for i
equal to1, formula (20) reduces to:

H(package) ^ AtR(1) ^Move(package; 1; 2):

Thus, the weakest condition on the initial state, making sure
that after the execution of an action the package is in location
2, expresses the requirement that the robot is in location1,
holds the package and that it executes the action of moving
the package from location1 to location2.

6Note that even this formalization can be generalized further for
more than one action and transition, but we retain the correspon-
dence to the original example for clarity.



6 Forgetting and Quantifier Elimination
Forgetting is considered in[Lin and Reiter, 1994; Lin, 2000]
as an important technique for database progression and com-
puting wsc’s and snc’s.7 Given a theoryT and a relation
symbolP , forgetting aboutP in T results in a theory with
a vocabulary not containingP , but entailing the same set of
sentences that are irrelevant toP . Observe that forgetting is
simply a second-order quantification, as shown in[Lin and
Reiter, 1994]. Namely,

forget(�;P ) = 9P:�(P ):

It is no surprise then that forgetting is not always reducible
to first-order logic. On the other hand, due to Theorem 2.2,
second-order quantifiers can often be eliminated resulting in
a fixpoint or first-order formula.

Consider the following example.

Example 6.1 Let T consist of the following two axioms:

8x; y:[Mother(x; y) ! 9z:Father(z; y)];

8x; y:[Father(x; y) ! Parent(x; y)]:

Forgetting aboutFather results in the second-order formula
9Father:

V
T which, according to Theorem 2.2, is equiva-

lent to:

8x; y:[Mother(x; y) ! 9z:Parent(z; y)]:

7 Conclusions
Using Lin’s work as a starting point, we have provided new
definitions for weakest sufficient and strongest necessary con-
ditions in terms of 2nd-order formulas and provided the basis
for algorithms which are guaranteed to automatically gener-
ate wsc’s and snc’s for both the propositional case and a non-
trivial fragment of the first-order case. For the general propo-
sitional case, propositional snc’s and wsc’s are always gener-
ated using the techniques and for the semi-Horn fragment are
always generated efficiently. For the first-order case restricted
to the non-recursive semi-Horn fragment, reduction of wsc’s
and snc’s to first-order formulas is always guaranteed and can
be done efficiently. For the first-order case restricted to the re-
cursive semi-Horn fragment, reduction to fixpoint formulas is
always guaranteed and can be done efficiently. For the gen-
eral first-order case, the techniques can also be applied, but
reductions are not always guaranteed, even though the algo-
rithm will always terminate.

This work generalizes that of Lin which only deals with
the propositional case and it provides more direct methods
for generating snc’s and wsc’s via syntactic manipulation. We
have also demonstrated the potential use of this idea and these
techniques by applying them to a number of interesting appli-
cations. Finally, we have re-interpreted the notion of forget-
ting in terms of quantifier elimination, shown how our tech-
niques can be applied to a first-order version of forgetting and
applied the technique to generation of successor-state axioms

7The forgetting operator for propositional logic is well-known in
the literature aseliminant(see[Brown, 1990]).

in restricted first-order situation calculus based action theo-
ries.

As a final observation, the quantifier elimination algorithm
considered here has been implemented as an extension to the
original DLS algorithm described in[Dohertyet al., 1997],
for both the propositional and 1st-order cases.
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