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Abstract

We provide a general method which can be
used in an algorithmicmanner to reduce certain
classes of �nd�order circumscription axioms to
logically equivalent �st�order formulas� The al�
gorithm takes as input an arbitrary �nd�order
formula and either returns as output an equiv�
alent �st�order formula� or terminates with fail�
ure� In addition to demonstrating the algo�
rithm by applying it to various circumscriptive
theories� we analyze its strength and provide
formal subsumption results based on compari�
son with existing approaches�

� Introduction and Preliminaries

In recent years� a great deal of attention has been devot�
ed to logics of �commonsense� reasoning� Among the
candidates proposed� circumscription 	Lifschitz� �

���
has been perceived as an elegant mathematical tech�
nique for modeling nonmonotonic reasoning� but di
�
cult to apply in practice� Practical application of cir�
cumscription is made di
cult due to two problems� The
�rst concerns the di
culty in �nding the proper circum�
scriptive policy for particular domains of interest� The
second concerns the �nd�order nature of circumscription
axioms and the di
culty in �nding proper substitutions
of predicate expressions for predicate variables so the
axioms can be used for making inferences� There have
been a number of proposals for dealing with the second
problem ranging from compiling circumscriptive theories
into logic programs 	Gelfond and Lifschitz� �
�
�� to de�
veloping specialized inference methods for such theories
	Ginsberg� �
�
� Przymusinski� �

���
A third alternative is to focus on the more general

problem of �nding methods for reducing �nd�order for�
mulas to logically equivalent �st�order formulas� where
possible� Although some progress has been made using
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this approach� the class of �nd�order circumscription for�
mulas shown to be reducible is not as large as one might
desire� the reduction methods proposed are somewhat
isolated relative to each other and� most importantly�
the existing reduction theorems generally lack algorith�
mic procedures for doing the reductions�

In this article� we provide a general method which
can be used in an algorithmic manner to reduce certain
classes of �nd�order circumscription axioms to logically
equivalent �st�order formulas� The algorithm takes as
input an arbitrary �nd�order formula and either returns
as output an equivalent �st�order formula� or terminates
with failure� Of course� failure does not imply that there
is no �st�order equivalent for the input� only that the
algorithm can not �nd one� The class of �nd�order for�
mulas� and analogously the class of circumscriptive theo�
ries which can be reduced� provably subsumes those cov�
ered by existing results� The algorithm can be applied
successfully to circumscriptive theories which may in�
clude mixed quanti�ers �some involving Skolemization��
variable constants� n�ary tuples of minimized and varied
predicates� separable� separated and in some cases� non�
separated formulas� and formulas with n�ary predicate
variables� among others� In addition to demonstrating
the algorithm by applying it to some of these theories�
we analyze its strength and provide formal subsumption
results based on comparison with existing approaches�

Due to page limitations and the technical complexity
of both circumscription and the algorithmwe propose�we
will be forced to remain brief with preliminaries� Conse�
quently� we assume familiarity with the various types of
circumscription and existing reduction results� In gen�
eral� we will refer to the original articles for the relevant
theorems and results� In addition� we provide only an
informal description of the algorithm� but one that is
adequate and su
ciently detailed for following the ex�
amples provided� For a detailed description of the al�
gorithm and proofs of the subsumption results� we refer
the reader to the technical report 	Doherty et al�� �

���



��� Notation

An n�ary predicate expression is any expression of the
form �x� A�x�� where x is a tuple of n individual vari�
ables and A�x� is any formula of �rst� or second�order
classical logic� If U is an n�ary predicate expression of
the form �x� A�x� and � is a tuple of n terms� then
U ��� stands for A���� As usual� a predicate constant
P is identi�ed with the predicate expression �x� P �x��
Similarly� a predicate variable � is identi�ed with the
predicate expression �x� ��x��

Truth values true and false are denoted by � and ��
respectively�

If U and V are predicate expressions of the same
arity� then U � V stands for �x� U �x� � V �x�� If
U � �U�� � � � � Un� and V � �V�� � � � � Vn� are similar tu�
ples of predicate expressions� i�e� Ui and Vi are of the
same arity� � � i � n� then U � V is an abbreviation forVn

i��	Ui � Vi�� We write U � V for �U � V �� �V � U ��
and U � V for �U � V � � ��V � U ��

If A is a formula� �� � ���� � � � � �n� and �� � ���� � � � � �n�
are tuples of any expressions� then A��� � ��� stands for
the formula obtained fromA by simultaneously replacing
each occurrence of �i by �i �� � i � n�� For any tuple
�x � �x�� � � �xn� of individual variables and any tuple
�t � �t�� � � � tn� of terms� we write �x � �t to denote the
formula x� � t�� 	 	 	�xn � tn� We write �x 
� �t as an
abbreviation for ���x � �t��

��� De�nitions

De�nition ��� �Second�Order Circumscription�
Let P be a tuple of distinct predicate constants� S be
a tuple of distinct function and�or predicate constants
disjoint from P � and let T �P� S� be a sentence� The
second�order circumscription of P in T �P � S� with vari�
able S� written CircSO�T �P �S�� is the sentence

T �P� S� � �� ��� 	T ����� � � � P � ���

where � and � are tuples of variables similar to P and
S� respectively�

��� Useful Tautologies

Below we provide a list of some useful tautologies that
are used throughout the paper�

Proposition ��� The following pairs of formulas are
equivalent� �Here Q stands for any quanti�er and A�
B� C are formulas such that C does not contain free
occurrences of the variable x� In clauses ���� �
� and
����� �t� �t�� � � � � �tn are n�tuples of terms and it is assumed
that neither C nor any term from �t� �t�� � � � � �tn contains
variables from �x� In clause ����� f is a function variable

which does not occur in A��

��� Qx�A�x���C and Qx�A�x��C�
��� C�Qx�A�x�� and Qx�C�A�x��
��� Qx�A�x���C and Qx�A�x��C�
��� C�Qx�A�x�� and Qx�C�A�x��
��� QxQyA and QyQxA

��� A��B�C� and �A�B���A�C�
��� �A�B��C and �A�C���B�C�
��� A��t� and ��x�A��t� �x���x 
� �t�
�
� A��t��� 	 	 	�A��tn� and ��x���x � �t��	 	 	��x � �tn�

�A��t� � �x��
���� ��x�yA��x � � �� and �f��xA��x� y � f��x�� � � ��
���� A��t��� 	 	 	�A��tn� and ��x���x 
� �t��	 	 	��x 
� �tn�

�A��t� � �x���

The equivalence ��� was found particularly useful by
Ackermann 	�
��� �
���� We extend the method by
adding the equivalence �
�� It makes the technique work
in the case of clauses containing more than one posi�
tive �or negative� occurrence of the eliminated predicate�
This substantially generalizes the Ackermann technique�
The equivalence ���� is a second�order formulation of
the Skolem reduction �see 	Benthem� �
����� It allows
us to perform Skolemization �i�e� elimination of existen�
tial quanti�ers� and unskolemization �i�e� elimination
of Skolem functions� in such a way that equivalence is
preserved� We call this equivalence second�order Skolem�

ization�

� The Elimination Algorithm

In this section we discuss the elimination algorithm� Its
complete formulation can be found in 	Doherty et al��
�

��� The algorithm was originally formulated� in a
weaker form� in 	Sza�las� �

�� in the context of modal
logics� It is based on Ackermann�s techniques developed
in connection with the elimination problem� The elimi�
nation algorithm is based on the following lemma� proved
by Ackermann in �
�� 	Ackermann� �
���� The proof can
also be found in 	Sza�las� �

���

Lemma ��� �Ackermann Lemma� Let � be a pred�
icate variable and A��x�� B��� be formulas without
second�order quanti�cation� Let B��� be positive w�r�t�
� and let A contain no occurrences of � at all� Then the
following equivalences hold�

����x	���x��A��x� �z���B��� ��� 
 B��� A��x� �z��
���

����x	����x��A��x� �z���B��� 
 B�� � A��x� �z�� ���

where in the righthand formulas the arguments �x ofA are
each time substituted by the respective actual arguments
of � �renaming the bound variables whenever necessary��

The following proposition together with the equiva�
lences given in Proposition ����� is also used in the algo�
rithm�



Proposition ��� Let A be a formula of the form
pref�A�� 	 	 	�Aq�� where pref is a pre�x of �rst�order
quanti�ers and A�� � � � � Aq are disjunctions of literals� In
addition� let � be a predicate variable occurring inA and
Conj�A� those conjuncts in A where � occurs� Assume
that for any conjunct in Conj�A�� � occurs either posi�
tively� or both positively and negatively �or analogously�
negatively� or both negatively and positively�� Then

��A 
 pref�Ai�� 	 	 	�Air� ���

where i�� � � � � ir � f�� � � � � qg and Ai� � � � � � Air are all the
conjuncts that do not contain occurrences of � �the emp�
ty conjunction is regarded as being equivalent to ���

Proof See 	Sza�las� �

���

��� Outline of the Elimination Algorithm

We are now ready to outline the elimination algorithm�
The algorithm takes a formula of the form ���A� where
A is a �rst�order formula� as an input and returns its
�rst�order equivalent or reports failure�� Of course� the
algorithm can also be used for formulas of the form ��A�
since the latter formula is equivalent to ����A� Thus�
by repeating the algorithm one can deal with formulas
containing many arbitrary second�order quanti�ers�
The elimination algorithm consists of four phases� ���

preprocessing� ��� preparation for the Ackermann lem�
ma� ��� application of the Ackermann lemma� and ���
simpli�cation� These phases are described below� It is
always assumed that ��� whenever the goal speci�c for a
current phase is reached� then the remaining steps of the
phase are skipped� ��� every time the equivalence ��� of
Proposition ��� is applicable� it should be applied�

��� Preprocessing� The purpose of this phase is to
transform the formula ���A into a form that sepa�
rates positive and negative occurrences of the quan�
ti�ed predicate variable �� The form we want to
obtain is�

��x��	�A�����B������ 	 	 	��An����Bn������ ���

where� for each � � i � n� Ai��� is positive w�r�t�
� and Bi��� is negative w�r�t� ��� The steps of this
phase are the following� �i� Eliminate the connec�
tives � and 
 using the usual de�nitions� Remove
redundant quanti�ers� Rename individual variables

�The failure of the algorithm does not mean that the
second�order formula at hand cannot be reduced to its 
rst�
order equivalent� The problem we are dealing with is not even
partially decidable� for 
rst�order de
nability of the formulas
we consider is not an arithmetical notion �see� for instance�
�Benthem� ���	���

�It should be emphasized that not every formula is re�
ducible into this form�

�To increase the strength of the algorithm� it is essential
to move as many existentially quanti
ed variables as possible
into the pre
x of ����

until all quanti�ed variables are di erent and no
variable is both bound and free� Using the usual
equivalences� move the negation connective to the
right until all its occurrences immediately precede
atomic formulas� �ii� Move universal quanti�ers to
the right and existential quanti�ers to the left� ap�
plying as long as possible the equivalences ��� ! ���
from Proposition ���� �iii� In the matrix of the for�
mula obtained so far� distribute all top�level con�
junctions over the disjunctions that occur among
their conjuncts� applying the equivalences ��� ! ���
from Proposition ���� �iv� If the resulting formula
is not in the form ���� then report the failure of the
algorithm� Otherwise replace ��� by its equivalent
given by

��x����A�����B������ 	 	 	�����An����Bn������
���

Try to �nd Equation ����s �rst�order equivalent by
applying the next phases in the algorithm to each
disjunct in ��� separately� If the �rst�order equiva�
lents of each disjunct are successfully obtained then
return their disjunction� preceded by the pre�x ��x�
as the output of the algorithm�

��� Preparation for the Ackermann lemma� The
goal of this phase is to transform a formula of the
form ���A����B����� where A��� �resp� B����
is positive �resp� negative� w�r�t� �� into one of
the forms ��� or ��� given in Lemma ���� Both
forms can always be obtained and both transfor�
mations should be performed because none� one or
both forms may require Skolemization� Unskolem�
ization� which occurs in the next phase� could fail in
one form� but not the other� In addition� one form
may be substantially smaller than the other� The
steps of this phase are based on equivalences ��� !
���� from Proposition ����

��� Application of the Ackermann Lemma� The
goal of this phase is to eliminate the second�order
quanti�cation over �� by applying the Ackermann
lemma� and then to unskolemize the function vari�
ables possibly introduced� This latter step employs
the equivalence ���� from Proposition ����

��� Simpli�cation� Generally� application of Acker�
mann�s Lemma in step ��� often involves the use
of equivalence ��� in Proposition ��� in the left to
right direction� If so� the same equivalence� or its
generalization ����� may often be used after appli�
cation of the Lemma in the right to left direction�
substantially shortening the resulting formula�

��� Discussion of the Algorithm

Assume we have a second�order formula A of the form

���	�prefB���pref �C��� ���



where� pref and pref � are sequences of �rst�order quan�
ti�ers� B and C are quanti�er�free formulas in conjunc�
tive normal forms� B is positive w�r�t� �� and C is neg�
ative w�r�t� �� Then� the following proposition holds�

Proposition ��� Let A be an input formula of the form
���� Then� as a result� the algorithm returns a �rst�
order formula provided that unskolemization �if neces�
sary� succeeds�

Observe that Skolem functions are introduced in the
second step of the algorithm whenever existential quan�
ti�ers are to be eliminated� These can appear in the
input formula or may be introduced via application of
the equivalence �
� of Proposition ���� In the follow�
ing proposition� we formulate conditions under which no
Skolem functions are introduced and the algorithm ter�
minates successfully�

Proposition ��	 If one of the following conditions
holds ��� B is universal and each conjunct of B con�
tains at most one occurrence of �� or ��� C is universal
and each conjunct of C contains at most one occurrence
of ��� then the algorithm always returns a �rst�order
formula as output�

If the input formula cannot be transformed into the
form ��� then the algorithm fails�

� On the Strength of the Algorithm

In this section we consider existing reduction results
and their subsumption by our algorithm� A compila�
tion of many of the existing reduction results can be
found in 	Lifschitz� �

��� in addition to other relevant re�
sults in earlier papers 	Kolaitis and Papadimitriou� �
���
Lifschitz� �
��� �
��� Rabinov� �
�
�� In 	Doherty
et al�� �

��� we prove that the algorithm subsumes�
and is even stronger than the results given in 	Ko�
laitis and Papadimitriou� �
��� Lifschitz� �
��� �
���
Rabinov� �
�
�� We start with Rabinov�s 	�
�
� result
which subsumes earlier results by Lifschitz regarding sep�
arability� In fact� the following theorem is stronger than
the result of Rabinov�
Let Di�P � denote Ni�P ��Mi�P � such that the pred�

icate constant P is positive in Mi and negative in Ni�
Di�P � is said to be p�simple if Mi�P � has the form
Ui � P � where Ui is a predicate expression not con�
taining P � Di�P � is said to be n�simple if Ni�P � has
the form P � Ui� where Ui is a predicate expression not
containing P �

Theorem 	�� If T �P � is of the form

N��P � �
�

i

Di�P �

where each Di�P � is either p�simple or contains no pos�
itive occurrences of P � and N��P � is negative w�r�t� P �

�Rabinov requires n�simplicity here�

then the algorithm eliminates the second�order quanti�
�ers from CircSO�T �P � ����

The following theorem shows that the algorithm elim�
inates second�order quanti�cation in the case of existen�
tial theories considered in 	Kolaitis and Papadimitriou�
�
����

Theorem 	�� If T is a �rst�order existential sentence�
then the algorithm eliminates second�order quanti�ca�
tion from CircSO�T �P � ����

Theorem 	�	 If T is a �rst�order monadic sentence�
then the algorithm eliminates second�order quanti�ca�
tion from CircSO�T �P �S��

The SCAN algorithm was introduced by Gabbay and
Ohlbach 	�

��� It is di
cult to compare SCAN with our
algorithm since no syntactic characterization of formulas
accepted by SCAN is known� We conjecture that both
approaches are successful for the same class of formulas�
However� the additional advantage of our algorithm is
that it always terminates� while SCAN may loop� For
example� the formula

��	��x��x���y��y��Q�x����x���x��

when given as input to our algorithm does terminate�
while for SCAN it does not�

Additional strengths and weaknesses are considered in
the next section�

��� Comparison of Approaches

In comparing the di erent approaches and results con�
cerning the reduction of circumscriptive theories� we will
refer to Figure � below� which provides a pictorial view of
the subsumption relation between the various theorems
and types of theories reduced� DLS refers to our algo�
rithm� MIXED refers to theories with mixed quanti�ers�
VC refers to theories which allow variable constants� and
MONAD refers to theories with only monadic sentences�
In addition� � and � refer to purely universal and ex�
istential theories� respectively� while �� refers to those
theories where Skolemization is necessary� and �� refers
to mixed theories not requiring Skolemization� The solid
arrows denote subsumption� In addition there are two
broken solid arrows� The arrow pointing towards �Cor
������ is broken to signify that although the DLS algo�
rithm in its general form does not fully subsume Corol�
lary ������ when specialized appropriately� it does� We
discuss this in a later section� The arrow pointing to�
wards SKOLEM is broken to signify that the DLS algo�
rithm works for those theories involving Skolemization
when the unskolemization step is successful and the al�
gorithm returns a �rst�order formula as output� Since�
it may not be possible to unskolemize certain theories
successfully� there is no complete subsumption of this
class�



�����
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Th ����Rab
����	
Th ��KolPap
����	

Th �
Prop ���Lif
����	

Th ��Lif
����	 Cor ������Lif
����	

Figure �� Subsumption Results�

Positive Results

In addition to the results described in the previous sec�
tion� observe that the method we propose is also stronger
in regard to the following features�

� DLS provides us with a more general approach to
existential quanti�cation due to the possibility of
allowing Skolemization� Thus it works for combi�
nations of existential and universal quanti�ers� On
the other hand� Kolaitis and Papadimitriou consider
pure existential formulas� while Lifschitz and Rabi�
nov consider pure universal theories�

� DLS does not distinguish between theories with
variable constants and those without� On the oth�
er hand both Rabinov� Kolaitis and Papadimitriou�
�and Lifschitz to some extent�� restrict their theo�
ries to those without variable constants� In some
cases� Lifschitz�s results can reduce theories with
variable constants if the theories are separable and
no Skolemization is involved� �See the next section
for problems DLS has with separated theories��

� DLS permits as input circumscriptive theories with
arbitrary numbers of minimized and varied predi�
cates� This is not the case for Rabinov�s result nor
for Lifschitz�s result pertaining to separated formu�
las�

� DLS describes how to constructively transform for�
mulas into the required form�

Negative Results

Note that in the end of Section ��� we characterized the
class of formulas for which the algorithm fails� Let us
now discuss an additional source of weaknesses of the
algorithm and a possible way of overcoming those weak�
nesses�
Observe that the elimination algorithm we deal with

is independent of any particular theory� On the other

hand� it is well known that second�order quanti�ers can
sometimes be eliminated when additional information is
given�

One good illustrative example originates from the area
of modal logics� Namely� McKinsey�s axiom is not equiv�
alent to any �rst�order formula� Accordingly� our al�
gorithm fails �see 	Sza�las� �

���� However� when one
assumes that the accessibility relation is transitive� the
elimination is possible� since McKinsey together with
transitivity is �rst�order de�nable �see 	Benthem� �
�����

The same situation may occur when one computes cir�
cumscription� Consider the following theorem from 	Lif�
schitz� �

�� �labeled �Cor ������ in Fig� ���

Theorem 	�
 If T �P � is a �rst�order sentence separat�
ed w�r�t� P then
CircSO�T �P ��P � ��� is equivalent to a �rst�order sen�
tence�

It permits one to deal with any sequences of �rst�
order quanti�ers provided that the formula is separat�
ed� The proof given by Lifschitz is based on a clever
move which applies knowledge about the �rst�order the�
ory one works with� Observe that in Theorem ��� the
sentence T �P � is assumed to be separated� i�e� it is of the
form T��P ��T��P �� where T��P � is positive w�r�t� P and
T��P � is negative w�r�t� P � Thus CircSO�T��T��P � ���
is equivalent to

T��P ��T��P ������ 	T�����T������ � P ��

Since T��P � is negative w�r�t� P � T��P � together with
� � P imply T����� Thus when T��P � is taken into con�
sideration� one substantially simpli�es the second order
circumscription into the following second�order formula

T��P ��T��P ������ 	T������ � P ��

The last formula is reducible to a �rst�order sentence
�and is� in fact� in the scope of our algorithm��

The above examples show that the general algorithm
we presented can �and should be� tuned to the particular
situation it is applied to� Since circumscription is always
de�ned over some �rst�order theory� moves similar to the
method used by Lifschitz above� should be incorporated
into the algorithm� If this is done for the case of sep�
arated theories by slightly modifying the preprocessing
phase� then the specialized version of our algorithm sub�
sumes all previous results concerning the reduction of
circumscriptive theories�

� Complexity of Reduction

Observe that the elimination algorithm we consider� ter�
minates and is easily mechanizable� Let us now estimate
its complexity�

First observe that during phase ��� of the algorithm�



the form of the formula to be transformed is�

����x	���x��A��x� �z���B��� ��� ���

and then its form is

B��� A��x� �z�� �
�

after application of the Ackermann lemma�
Thus� if the length of ��� is n� then the length of �
�

is less than n�� Observe� however� that this worst case
occurs when � has O�n� occurrences in ���� In practical
examples� however� the length of �
� is usuallyO�n� �and
often less than the length of �����
The worst case analysis of steps ��� and ��� shows

that the size of the transformed formula can increase
exponentially �due to possible transformations between
disjunctive and conjunctive normal forms�� This� how�
ever� is again a rare phenomenon ! see examples below�
in particular Section ��� concerning a Kolaitis and Pa�
padimitriou example�

� Applying the Algorithm to some
Examples

The best way to understand how the algorithm works
is to apply it to examples� Due to space limitations�
we only apply the algorithm to two examples� A full
catalogue of worked examples may be found in 	Doherty
et al�� �

��� We take a number of liberties in applying
the algorithm so as not to drown in details� For example�
step ��� in the previous section states that both forms
of Ackermann�s Lemma should be considered� In the
examples� we choose one form and apply the algorithm�
This saves considerable space� Also� the simpli�cation
phase is omitted unless it can be applied�

��� The Birthday Example

Example ��� �Birthday Example�
This example contains both existentially quanti�ed and
universal formulas� In addition� it contains both unary
and binary predicates� Let "�Ab�G� be the theory

	�x�y�B�y��F �x� y���G�x� y����

	�x�y�B�y��F �x� y���Ab�x� y� � G�x� y���� ����

where B� F and G are abbreviations for Birthday�
Friend and GivesGift� respectively� Here Ab�x� y� has
the following intuitive interpretation� �x behaves abnor�
mally w�r�t� y in the situation when y has a birthday
and x is a friend of y�� The circumscription of "�Ab�G�
with Ab minimized and G varied is

CircSO�"�Ab�G��Ab�G�


"�Ab�G������	"������	� � Ab� � 	Ab � ��������

�The second form considered in lemma ��� is symmetric
to the 
rst one�

where

"����� 
 	�x�y�B�y��F �x� y�����x� y���

�	�x�y�B�y��F �x� y�����x� y� � ��x� y��� ����

� � Ab 
 �x�y	��x� y� � Ab�x� y�� ����

Ab � � 
 �x�y	Ab�x� y� � ��x� y��� ����

In the following� we will reduce

����	"������	� � Ab� � 	Ab � ��� ����

in ����� Negating ����� we obtain

����	"������	� � Ab���	Ab � ���� ����

We remove � �rst�

Preprocessing� Replacing "������ � � Ab and Ab �
� by their equivalents given by ����!����� eliminating
�� renaming individual variables and moving existential
quanti�ers over individual variables to the left� we obtain

�x�y�q�r����	B�y��F �x� y�����x� y�

��u�z��B�z���F �u� z����u� z����u� z��

��s�t����s� t��Ab�s� t���Ab�q� r�����q� r��� ����

Preparation for the Ackermann lemma� ���� is
in the form suitable for application of the Ackermann
lemma� To see this� we rewrite it as

�x�y�q�r�����u�z	���u� z���B�z���F �u� z�

���u� z������x� y��B�y��F �x� y��

�s�t����s� t��Ab�s� t���Ab�q� r�����q� r��� ����

Application of the Ackermann lemma� Applying
the Ackermann lemma to ����� we obtain

�x�y�q�r��	��B�y���F �x� y����x� y���B�y��F �x� y�

��s�t����s� t��Ab�s� t���Ab�q� r�����q� r��� ��
�

We now remove � in ��
��

Preprocessing� ��
� is in the form which is the goal of
this phase�

Preparation for the Ackermann lemma� Using
Proposition ��� ���� we replace ��
� by

�x�y�q�r���v�w	���v� w��v 
� x�w 
� y��B�y�

��F �x� y����s�t����s� t��Ab�s� t��

����q� r��B�y��F �x� y��Ab�q� r��� ����

Application of the Ackermann lemma� Applying
the Ackermann lemma to ����� we obtain

�x�y�q�r�s�t	�s 
� x�t 
� y��B�y���F �x� y�

�Ab�s� t����q 
� x�r 
� y��B�y���F �x� y��

�B�y��F �x� y��Ab�q� r��� ����



Simpli�cation� We replace ���� by

�x�y�q�r	��B�y���F �x� y��Ab�x� y����q 
� x�r 
� y

��B�y���F �x� y���B�y��F �x� y��Ab�q� r��� ����

Negating ����� we obtain

�x�y�q�r	�B�y��F �x� y���Ab�x� y����q � x�r � y

�B�y��F �x� y����B�y���F �x� y���Ab�q� r��� ����

���� is logically equivalent to

�x�y�q�r	��B�y��F �x� y�����B�y��F �x� y��

���Ab�x� y���q � x�r � y�����Ab�q� r��� ����

which is equivalent to

�x�y�q�r	��B�y��F �x� y��

��Ab�x� y���q � x�r � y���Ab�q� r��� ����

The �rst�order formula ���� is logically equivalent to the
second�order formula ����� Consequently�

CircSO�"�Ab�G��Ab�G� 


"�Ab�G���x�y�q�r	��B�y��F �x� y��

��Ab�x� y���q � x�r � y���Ab�q� r��� ����

A more informative sentence� equivalent to ����� is

�x�y�q�r	Ab�x� y��Ab�q� r��B�y�

�F �x� y� � �q � x�r � y��� ����

����� together with the theory "�Ab�G�� states that there
is exactly one pair of individuals� x and y� such that y
has a birthday� x is a friend of y and x does not give a
gift to y�

��� An Existential Example

	Kolaitis and Papadimitriou� �
��� state

We notice that computing a �rst�order sen�
tence equivalent to the circumscription of P in
an existential �rst�order formula ��P � seems to
increase the size of ��P � exponentially� a phe�
nomenon not observed in the other known cases
of �rst�order circumscription studied in 	Lif����
It would be interesting to determine whether
this is inherent to existential �rst�order formu�
las� or a particular creation of our proof�

Example ��� �Existential Example� In light of the
quote above� we take the example used by Kolaitis and
Papadimitriou and compare the resulting �rst�order for�
mula with that generated by our algorithm� Kolaitis
and Papadimitriou apply their reduction technique to
the theory

�x��x�	R�x�� x���P �x���P �x��� ����

and circumscribe P without varying predicates� The
�rst�order equivalent they obtain is

�x��R�x�� x���P �x�����y�P �y� 
 y � x����

	�x��x��R�x�� x���P �x���P �x����x� 
� x�����y�P �y�


 �y � x��y � x������R�x�� x����R�x�� x����� ��
�

We apply our reduction algorithm to the same theory
and compare the results�
Let "�P � be the theory

�x��x�	R�x�� x���P �x���P �x���� ����

The circumscription of "�P � with P minimized without
variable predicates is

CircSO�"�P ��P � ��� 


"�P ����	"����	� � P � � 	P � ���� ����

where

"��� 
 �x��x�	R�x�� x�����x�����x��� ����

� � P 
 �x���x� � P �x� ����

P � � 
 �x�P �x� � ��x�� ����

In the following� we will reduce

��	"����	� � P � � 	P � ��� ����

in ����� Negating ����� we obtain

��	"����	� � P ���	P � ���� ����

Preprocessing� Replacing "���� � � P and P � � by
their equivalents given by ����!����� eliminating � and
renaming individual variables� we obtain

��	�x��x��R�x�� x�����x�����x����

�y����y��P �y����z�P �z�����z���� ����

We next move �x��x��z to the left� obtaining

�x��x��z��	R�x�� x�����x�����x���

�y����y��P �y���P �z�����z��� ����

Preparation for the Ackermann lemma� Applying
Proposition ��� ��� and some standard equivalences� we
replace ���� by

�x��x��z���q	���q���q 
� x��q 
� x���

��R�x�� x����y����y��P �y���P �z�����z��� ��
�

Application of the Ackermann lemma� The Acker�
mann lemma can now be applied to ��
� resulting in

�x��x��z	R�x�� x����y��y 
� x��y 
� x���P �y���

P �z��z 
� x��z 
� x��� ����



Simpli�cation� Applying Proposition ������� to ��
�
results in

�x��x��z	R�x�� x���P �x���P �x��

�P �z��z 
� x��z 
� x��� ����

Negating ����� we obtain

�x��x��z	�R�x�� x����P �x����P �x��

��P �z��z � x��z � x��� ����

The �rst�order formula ���� is logically equivalent to the
second�order formula ����� Consequently�

CircSO�"�P � 
 "�P ���x��x��z	�R�x�� x��

��P �x����P �x����P �z��z � x��z � x��� ����

Comparing ���� with ��
�� it is easily observed that
not only is there a di erence in the size of the formulas�
but the output appears to make more sense relative to
the minimization policy�

� Conclusion

In this paper� we have presented a general algorithm
which transforms second�order formulas into logically
equivalent �rst�order formulas for a large class of second�
order formulas� The algorithm has been shown to have
a number of attractive properties� including a potential�
ly wide area for practical application� To support this
claim� we have provided a detailed description of the al�
gorithms application to the reduction of circumscription
axioms� In addition� we have shown that the algorithm�
in its general form� provably subsumes nearly all exist�
ing results concerning the reduction of circumscription
axioms� In contrast to previous results� the algorithm is
more constructive in the sense that it provides a step�
by�step method for transforming a formula and is guar�
anteed to terminate�
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