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Abstract

We provide a general method which can be
used in an algorithmic manner to reduce certain
classes of 2nd-order circumscription axioms to
logically equivalent 1st-order formulas. The al-
gorithm takes as input an arbitrary 2nd-order
formula and either returns as output an equiv-
alent lst-order formula, or terminates with fail-
ure. In addition to demonstrating the algo-
rithm by applying it to various circumscriptive
theories, we analyze its strength and provide
formal subsumption results based on compari-
son with existing approaches.

1 Introduction and Preliminaries

In recent years, a great deal of attention has been devot-
ed to logics of “commonsense” reasoning. Among the
candidates proposed, circumscription [Lifschitz, 1994],
has been perceived as an elegant mathematical tech-
nique for modeling nonmonotonic reasoning, but diffi-
cult to apply in practice. Practical application of cir-
cumscription is made difficult due to two problems. The
first concerns the difficulty in finding the proper circum-
scriptive policy for particular domains of interest. The
second concerns the 2nd-order nature of circumscription
axioms and the difficulty in finding proper substitutions
of predicate expressions for predicate variables so the
axioms can be used for making inferences. There have
been a number of proposals for dealing with the second
problem ranging from compiling circumscriptive theories
into logic programs [Gelfond and Lifschitz, 1989], to de-
veloping specialized inference methods for such theories
[Ginsberg, 1989; Przymusinski, 1991].

A third alternative is to focus on the more general
problem of finding methods for reducing 2nd-order for-
mulas to logically equivalent lst-order formulas, where
possible. Although some progress has been made using
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this approach, the class of 2nd-order circumscription for-
mulas shown to be reducible is not as large as one might
desire, the reduction methods proposed are somewhat
isolated relative to each other and, most importantly,
the existing reduction theorems generally lack algorith-
mic procedures for doing the reductions.

In this article, we provide a general method which
can be used in an algorithmic manner to reduce certain
classes of 2nd-order circumscription axioms to logically
equivalent lst-order formulas. The algorithm takes as
input an arbitrary 2nd-order formula and either returns
as output an equivalent 1st-order formula, or terminates
with failure. Of course, failure does not imply that there
1s no lst-order equivalent for the input, only that the
algorithm can not find one. The class of 2nd-order for-
mulas, and analogously the class of circumscriptive theo-
ries which can be reduced, provably subsumes those cov-
ered by existing results. The algorithm can be applied
successfully to circumscriptive theories which may in-
clude mixed quantifiers (some involving Skolemization),
variable constants, n-ary tuples of minimized and varied
predicates, separable, separated and in some cases, non-
separated formulas, and formulas with n-ary predicate
variables, among others. In addition to demonstrating
the algorithm by applying it to some of these theories,
we analyze its strength and provide formal subsumption
results based on comparison with existing approaches.

Due to page limitations and the technical complexity
of both circumscription and the algorithm we propose,we
will be forced to remain brief with preliminaries. Conse-
quently, we assume familiarity with the various types of
circumscription and existing reduction results. In gen-
eral, we will refer to the original articles for the relevant
theorems and results. In addition, we provide only an
informal description of the algorithm, but one that is
adequate and sufficiently detailed for following the ex-
amples provided. For a detailed description of the al-
gorithm and proofs of the subsumption results, we refer
the reader to the technical report [Doherty et al., 1994].



1.1 Notation

An n-ary predicate expression is any expression of the
form AZ. A(T), where T is a tuple of n individual vari-
ables and A(%) is any formula of first- or second-order
classical logic. If U is an n-ary predicate expression of
the form AZ. A(Z) and @ is a tuple of n terms, then
U(@) stands for A(@). As usual, a predicate constant
P is identified with the predicate expression AZ. P(T).
Similarly, a predicate variable @ is identified with the
predicate expression AZ. ®(7).

Truth values true and false are denoted by T and L,
respectively.

If U and V are predicate expressions of the same
arity, then U < V stands for Vz. U(Z) D V(). If
U= (Uy,...,Uy)and V = (V4,...,V,) are similar tu-
ples of predicate expressions, i.e. U; and V; are of the
same arity, 1 < ¢ < n, then U < V is an abbreviation for
Aiz Ui < Vi]. We write U =V for (U < V)A(V < U),
and U <V for (U < V) A—~(V < T0).

If Ais aformula, & = (01,...,0,) and 6 = (81,...,68)
are tuples of any expressions, then A(c — 5) stands for
the formula obtained from A by simultaneously replacing
each occurrence of o; by é; (1 < i < n). For any tuple
z = (#1,...2y) of individual variables and any tuple
t = (t1,...1,) of terms, we write = ¢ to denote the
formula z1 = {4 A - Axy = t,. We write Z £ { as an
abbreviation for —(z = t).

1.2 Definitions

Definition 1.1 (Second-Order Circumscription)
Let P be a tuple of distinct predicate constants, S be
a tuple of distinct function and/or predicate constants
disjoint from P, and let T(P,S) be a sentence. The
second-order circumscription of P in T(P,S) with vari-
able S, written Cireso(T; P; S), is the sentence

T(P,S)AY® U~ [T(D,T)A® < P] (1)
where @ and ¥ are tuples of variables similar to P and
S, respectively. B

1.3 Useful Tautologies

Below we provide a list of some useful tautologies that
are used throughout the paper.

Proposition 1.1 The following pairs of formulas are
equivalent. (Here @ stands for any quantifier and A,
B, C are formulas such that ' does not contain free
occurrences of the variable z. In clauses (8), (9) and
(11), ¢,t1,...,t, are n-tuples of terms and it is assumed
that neither C' nor any term from ¢,#,...,%, contains
variables from Z. In clause (10), f is a function variable

which does not occur in A.)

(1) Qu(A(x))AC and  Qz(A(z)AC)

(2) C’/\Qx(A(x)) and Qz(CAA(x))

(3) Qu(A(x))VC and  Qz(A(z)vC)

(4) CvQue(A(x)) and Quz(CVA(zx))

(5) QxQyA and QyQrA

(6) AA(BVC) and (AAB)V(AAC)

(1) (AVB)AC and (AAC)V(BAC)

(8) A1) ~and VE(A(l —Z)VE £L)

(9) A(t1)v---VA(t,) and Fz((z=8V---VZ =

/\A(fl — 7))

(10) Vi‘glyA(i‘ o) ) and ElfVi‘A(i‘i y — f(z), .
(11) AN ---AA(t,) and V(2 # LA T

The equivalence (8) was found particularly useful by
Ackermann [1935, 1954]. We extend the method by
adding the equivalence (9). Tt makes the technique work
in the case of clauses containing more than one posi-
tive (or negative) occurrence of the eliminated predicate.
This substantially generalizes the Ackermann technique.
The equivalence (10) is a second-order formulation of
the Skolem reduction (see [Benthem, 1983]). It allows
us to perform Skolemization (i.e. elimination of existen-
tial quantifiers) and unskolemization (i.e. elimination
of Skolem functions) in such a way that equivalence is
preserved. We call this equivalence second-order Skolem-
1zation.

2 The Elimination Algorithm

In this section we discuss the elimination algorithm. Its
complete formulation can be found in [Doherty et al.,
1994]. The algorithm was originally formulated, in a
weaker form, in [Szalas, 1993] in the context of modal
logics. It is based on Ackermann’s techniques developed
in connection with the elimination problem. The elimi-
nation algorithm is based on the following lemma, proved
by Ackermann in 1934 [Ackermann, 1935). The proof can
also be found in [Szalas, 1993].

Lemma 2.1 (Ackermann Lemma) Let ® be a pred-
icate variable and A(z), B(®) be formulas without
second-order quantification. Let B(®) be positive w.r.t.
® and let A contain no occurrences of @ at all. Then the
following equivalences hold:

JOVE[®(2)VA(E, 2)]AB(® — @) = B(® — A(%, 7))
(2)

AeVE[-P(Z)VA(Z, 2)]JAB(®) = B(® — A(z,2)) (3)

where in the righthand formulas the arguments z of A are
each time substituted by the respective actual arguments
of @ (renaming the bound variables whenever necessary).
|

The following proposition together with the equiva-
lences given in Proposition (1.1) is also used in the algo-
rithm.



Proposition 2.1 Let A be a formula of the form
preflA1N - - ANAy), where pref is a prefix of first-order
quantifiers and A4, ..., A, are disjunctions of literals. In
addition, let ® be a predicate variable occurring in A and
Conj(A) those conjuncts in A where ® occurs. Assume
that for any conjunct in Conj(A), ® occurs either posi-
tively, or both positively and negatively (or analogously,
negatively, or both negatively and positively). Then

APA = pref(AiA---AA;L) (4)
where i1,...,4, € {1,...,¢} and A;, ..., A; are all the
conjuncts that do not contain occurrences of ® (the emp-
ty conjunction is regarded as being equivalent to T).

Proof See [Szalas, 1993]. m
2.1 Outline of the Elimination Algorithm

We are now ready to outline the elimination algorithm.
The algorithm takes a formula of the form 3®. A, where
A is a first-order formula, as an input and returns its
first-order equivalent or reports failure'. Of course, the
algorithm can also be used for formulas of the form Y® A,
since the latter formula is equivalent to =3®—A. Thus,
by repeating the algorithm one can deal with formulas
containing many arbitrary second-order quantifiers.
The elimination algorithm consists of four phases: (1)
preprocessing; (2) preparation for the Ackermann lem-
ma; (3) application of the Ackermann lemma; and (4)
simplification. These phases are described below. It 1s
always assumed that (1) whenever the goal specific for a
current phase is reached, then the remaining steps of the
phase are skipped, (2) every time the equivalence (4) of
Proposition 2.1 is applicable, it should be applied.

(1) Preprocessing. The purpose of this phase is to
transform the formula 3®.4 into a form that sepa-
rates positive and negative occurrences of the quan-
tified predicate variable ®. The form we want to
obtain is?

JZIP[(AL(P)ABL(P))V - - - V(AL (P)AB, (®))], (5)

where, for each 1 < ¢ < n, A;(®) is positive w.r.t.

® and B;(®) is negative w.r.t. ®.3 The steps of this

phase are the following. (i) Eliminate the connec-
tives D and = using the usual definitions. Remove
redundant quantifiers. Rename individual variables

!The failure of the algorithm does not mean that the
second-order formula at hand cannot be reduced to its first-
order equivalent. The problem we are dealing with is not even
partially decidable, for first-order definability of the formulas
we consider is not an arithmetical notion (see, for instance,
[Benthem, 1984]).

2Tt should be emphasized that not every formula is re-
ducible into this form.

?To increase the strength of the algorithm, it is essential
to move as many existentially quantified variables as possible
into the prefix of (5).

until all quantified variables are different and no
variable is both bound and free. Using the usual
equivalences, move the negation connective to the
right until all its occurrences immediately precede
atomic formulas. (ii) Move universal quantifiers to
the right and existential quantifiers to the left, ap-
plying as long as possible the equivalences (1) - (4)
from Proposition 1.1. (iii) In the matrix of the for-
mula obtained so far, distribute all top-level con-
junctions over the disjunctions that occur among
their conjuncts, applying the equivalences (6) — (7)
from Proposition 1.1. (iv) If the resulting formula
is not in the form (5), then report the failure of the
algorithm. Otherwise replace (5) by its equivalent
given by

A2 (3P(A1(P)ABL(P))V - - - VID.(A(P)ABL(D))).

(6)
Try to find Equation (6)’s first-order equivalent by
applying the next phases in the algorithm to each
disjunct in (6) separately. If the first-order equiva-
lents of each disjunct are successfully obtained then
return their disjunction, preceded by the prefix Jz,
as the output of the algorithm.

(2) Preparation for the Ackermann lemma. The
goal of this phase is to transform a formula of the
form IP(A(P)AB(®)), where A(P) (resp. B(P))
is positive (resp. negative) w.r.t. &, into one of
the forms (2) or (3) given in Lemma 2.1. Both
forms can always be obtained and both transfor-
mations should be performed because none, one or
both forms may require Skolemization. Unskolem-
ization, which occurs in the next phase, could fail in
one form, but not the other. In addition, one form
may be substantially smaller than the other. The
steps of this phase are based on equivalences (6) -
(10) from Proposition 1.1.

(3) Application of the Ackermann Lemma. The
goal of this phase is to eliminate the second-order
quantification over ®, by applying the Ackermann
lemma, and then to unskolemize the function vari-
ables possibly introduced. This latter step employs
the equivalence (10) from Proposition 1.1.

(4) Simplification. Generally, application of Acker-
mann’s Lemma in step (3) often involves the use
of equivalence (8) in Proposition 1.1 in the left to
right direction. If so, the same equivalence, or its
generalization (11), may often be used after appli-
cation of the Lemma in the right to left direction,
substantially shortening the resulting formula.

2.2 Discussion of the Algorithm

Assume we have a second-order formula A of the form

3. [(prefB)A(pref'C))], (7)



where, pref and pref’ are sequences of first-order quan-
tifiers, B and C' are quantifier-free formulas in conjunc-
tive normal forms, B is positive w.r.t. ®, and C' is neg-
ative w.r.t. ®@. Then, the following proposition holds.

Proposition 2.2 Let A be an input formula of the form
(7). Then, as a result, the algorithm returns a first-
order formula provided that unskolemization (if neces-
sary) succeeds. W

Observe that Skolem functions are introduced in the
second step of the algorithm whenever existential quan-
tifiers are to be eliminated. These can appear in the
input formula or may be introduced via application of
the equivalence (9) of Proposition 1.1. In the follow-
ing proposition, we formulate conditions under which no
Skolem functions are introduced and the algorithm ter-
minates successfully.

Proposition 2.3 If one of the following conditions
holds (1) B is universal and each conjunct of B con-
tains at most one occurrence of &, or (2) C' is universal
and each conjunct of C' contains at most one occurrence
of =®, then the algorithm always returns a first-order
formula as output. ®

If the input formula cannot be transformed into the
form (7) then the algorithm fails.

3 On the Strength of the Algorithm

In this section we consider existing reduction results
and their subsumption by our algorithm. A compila-
tion of many of the existing reduction results can be
found in [Lifschitz, 1994], in addition to other relevant re-
sults in earlier papers [Kolaitis and Papadimitriou, 1988;
Lifschitz, 1985; 1988; Rabinov, 1989]. In [Doherty
et al., 1994], we prove that the algorithm subsumes,
and is even stronger than the results given in [Ko-
laitis and Papadimitriou, 1988; Lifschitz, 1985; 1988;
Rabinov, 1989]. We start with Rabinov’s [1989] result
which subsumes earlier results by Lifschitz regarding sep-
arability. In fact, the following theorem is stronger than
the result of Rabinov.

Let D;(P) denote N;(P) A M;(P) such that the pred-
icate constant P is positive in M; and negative in N;.
D;(P) is said to be p-simple if M;(P) has the form
U; < P, where U; is a predicate expression not con-
taining P. D;(P) is said to be n-simple if N;(P) has
the form P < U;, where U; is a predicate expression not
containing P.

Theorem 3.1 If T(P) is of the form

No(P) A\ Di(P)

where each D;(P) is either p-simple or contains no pos-
itive occurrences of P* and No(P) is negative w.r.t. P,

*Rabinov requires n-simplicity here.

then the algorithm eliminates the second-order quanti-
fiers from Clireso(T; P;()). W

The following theorem shows that the algorithm elim-
inates second-order quantification in the case of existen-
tial theories considered in [Kolaitis and Papadimitriou,

1988].

Theorem 3.2 If T is a first-order existential sentence,
then the algorithm eliminates second-order quantifica-
tion from Circso(T; P;()). W

Theorem 3.3 If T is a first-order monadic sentence,
then the algorithm eliminates second-order quantifica-
tion from Circso(T; P;S). R

The SCAN algorithm was introduced by Gabbay and
Ohlbach [1992]. Tt is difficult to compare SCAN with our
algorithm since no syntactic characterization of formulas
accepted by SCAN is known. We conjecture that both
approaches are successful for the same class of formulas.
However, the additional advantage of our algorithm is
that it always terminates, while SCAN may loop. For
example, the formula

VO[(Va®(2)DTyP(y)AQ(2)) DVe—P(2)]

when given as input to our algorithm does terminate,
while for SCAN it does not.

Additional strengths and weaknesses are considered in
the next section.

3.1 Comparison of Approaches

In comparing the different approaches and results con-
cerning the reduction of circumscriptive theories, we will
refer to Figure 1 below, which provides a pictorial view of
the subsumption relation between the various theorems
and types of theories reduced. DLS refers to our algo-
rithm, MIXED refers to theories with mixed quantifiers,
VC refers to theories which allow variable constants, and
MONAD refers to theories with only monadic sentences.
In addition, V and 3 refer to purely universal and ex-
istential theories, respectively, while V3 refers to those
theories where Skolemization is necessary, and 3V refers
to mixed theories not requiring Skolemization. The solid
arrows denote subsumption. In addition there are two
broken solid arrows. The arrow pointing towards “Cor
3.3.3” is broken to signify that although the DLS algo-
rithm in its general form does not fully subsume Corol-
lary 3.3.3, when specialized appropriately, it does. We
discuss this in a later section. The arrow pointing to-
wards SKOLEM is broken to signify that the DLS algo-
rithm works for those theories involving Skolemization
when the unskolemization step is successful and the al-
gorithm returns a first-order formula as output. Since,
it may not be possible to unskolemize certain theories
successfully, there is no complete subsumption of this
class.
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Figure 1: Subsumption Results.

Positive Results

In addition to the results described in the previous sec-
tion, observe that the method we propose is also stronger
in regard to the following features:

e DLS provides us with a more general approach to
existential quantification due to the possibility of
allowing Skolemization. Thus it works for combi-
nations of existential and universal quantifiers. On
the other hand, Kolaitis and Papadimitriou consider
pure existential formulas, while Lifschitz and Rabi-
nov consider pure universal theories.

e DLS does not distinguish between theories with
variable constants and those without. On the oth-
er hand both Rabinov, Kolaitis and Papadimitriou,
(and Lifschitz to some extent), restrict their theo-
ries to those without variable constants. In some
cases, Lifschitz’s results can reduce theories with
variable constants if the theories are separable and
no Skolemization is involved. (See the next section
for problems DLS has with separated theories).

e DLS permits as input circumscriptive theories with
arbitrary numbers of minimized and varied predi-
cates. This 1s not the case for Rabinov’s result nor
for Lifschitz’s result pertaining to separated formu-
las.

e DLS describes how to constructively transform for-
mulas into the required form.

Negative Results
Note that in the end of Section 2.2 we characterized the
class of formulas for which the algorithm fails. Let us
now discuss an additional source of weaknesses of the
algorithm and a possible way of overcoming those weak-
nesses.

Observe that the elimination algorithm we deal with
is independent of any particular theory. On the other

hand, it is well known that second-order quantifiers can
sometimes be eliminated when additional information is
given.

One good illustrative example originates from the area
of modal logics. Namely, McKinsey’s axiom is not equiv-
alent to any first-order formula. Accordingly, our al-
gorithm fails (see [Szatas, 1993]). However, when one
assumes that the accessibility relation is transitive, the
elimination is possible, since McKinsey together with
transitivity is first-order definable (see [Benthem, 1984]).

The same situation may occur when one computes cir-
cumscription. Consider the following theorem from [Lif-

schitz, 1994] (labeled “Cor 3.3.3” in Fig. 1):

Theorem 3.4 If T(P) is a first-order sentence separat-
ed w.r.t. P then

Cireso(T(P); P;()) is equivalent to a first-order sen-
tence. W

It permits one to deal with any sequences of first-
order quantifiers provided that the formula is separat-
ed. The proof given by Lifschitz is based on a clever
move which applies knowledge about the first-order the-
ory one works with. Observe that in Theorem 3.4 the
sentence T'(P) is assumed to be separated, i.e. it is of the
form Ty (P)AT2(P), where Ty (P) is positive w.r.t. P and
T5(P) is negative w.r.t. P. Thus Circgo(TiATs; P; ()
1s equivalent to

Since T5(P) is negative w.r.t. P, To(P) together with
® < Pimply T5(®). Thus when T5(P) is taken into con-
sideration, one substantially simplifies the second order
circumscription into the following second-order formula

Ty(P)AT3(P)A-3P. [T1(D)AD < P].

The last formula is reducible to a first-order sentence
(and is, in fact, in the scope of our algorithm).

The above examples show that the general algorithm
we presented can (and should be) tuned to the particular
situation 1t is applied to. Since circumscription is always
defined over some first-order theory, moves similar to the
method used by Lifschitz above, should be incorporated
into the algorithm. If this is done for the case of sep-
arated theories by slightly modifying the preprocessing
phase, then the specialized version of our algorithm sub-
sumes all previous results concerning the reduction of
circumscriptive theories.

4 Complexity of Reduction

Observe that the elimination algorithm we consider, ter-
minates and 1s easily mechanizable. Let us now estimate
its complexity.

First observe that during phase (3) of the algorithm,



the form of the formula to be transformed is®
APVE[P(2)VA(Z, Z)|AB(® — —®) (8)
and then its form is
B(® — A(z, %)) 9)

after application of the Ackermann lemma.

Thus, if the length of (8) is n, then the length of (9)
is less than n?. Observe, however, that this worst case
occurs when ® has O(n) occurrences in (8). In practical
examples, however, the length of (9) is usually O(n) (and
often less than the length of (8)).

The worst case analysis of steps (1) and (2) shows
that the size of the transformed formula can increase
exponentially (due to possible transformations between
disjunctive and conjunctive normal forms). This, how-
ever, 1s again a rare phenomenon — see examples below,
in particular Section 5.2 concerning a Kolaitis and Pa-
padimitriou example.

5 Applying the Algorithm to some
Examples

The best way to understand how the algorithm works
is to apply it to examples. Due to space limitations,
we only apply the algorithm to two examples. A full
catalogue of worked examples may be found in [Doherty
et al., 1994]. We take a number of liberties in applying
the algorithm so as not to drown in details. For example,
step (2) in the previous section states that both forms
of Ackermann’s Lemma should be considered. In the
examples, we choose one form and apply the algorithm.
This saves considerable space. Also, the simplification
phase is omitted unless it can be applied.

5.1 The Birthday Example

Example 5.1 (Birthday Example)

This example contains both existentially quantified and
universal formulas. In addition, it contains both unary
and binary predicates. Let T'(Ab, ) be the theory

[FxIy(By)AF (z, y) A=G(x, y))IA
[VaVy(B(y)AF(x, y)A—~Ab(x,y) D G(x,y))], (10)

where B, F' and ( are abbreviations for Birthday,
Friend and GivesGift, respectively. Here Ab(z,y) has
the following intuitive interpretation: “z behaves abnor-
mally w.r.t. y in the situation when y has a birthday
and  is a friend of y”. The circumscription of T'(Ab, )
with Ab minimized and G varied is

Cireso(T(Ab, G); Ab; G) =
T(Ab, G)AVOVU[T(®, WIA[D < Ab] D [Ab < B]],(11)

®The second form considered in lemma 2.1 is symmetric
to the first one.

where

L(®,¥) = Fe3y(By)AF (2, y)A\-¥(z, )]
AVeVy(BY)AE (z, y)A=P(x,y) D ¥(z,y))] (12)

O < Ab =VaVy[®(x,y) D Ab(z,y)] (13)

Ab < & = VaVy[Ab(z,y) D O(z,y)]. (14)

In the following, we will reduce

VOVIUT(D, T)A[P < Ab] D [Ab < D) (15)
in (11). Negating (15), we obtain

APIU[T(P, V)A[D < AbJA-[Ab < D]]. (16)

We remove WV first.

Preprocessing. Replacing T'(®, ¥), & < Ab and Ab <
® by their equivalents given by (12)—(14), eliminating
D, renaming individual variables and moving existential
quantifiers over individual variables to the left, we obtain

FwIy3qIr3PIV[B(Y)AF (2, y)A—¥ (2, y)
AYuVz(=B(z)V=F (u, 2)VO(u, 2)V¥(u, 2))
AYsYE(—D(s, t)VAb(s, ))NAb(q, r)A=D(q,7)].  (17)

Preparation for the Ackermann lemma. (17) is
in the form suitable for application of the Ackermann
lemma. To see this, we rewrite it as

o FyAqIrIPIVVuY2[(U(u, 2)V-B(2)V-F (u, z)
VO (u, 2))A-T (x, YYAB(YAF (z, y)A
VsVt(=®(s, )V Ab(s, 1))ANAb(q, )A-D(q,7r)]. (18)

Application of the Ackermann lemma. Applying
the Ackermann lemma to (18), we obtain

JoIyFqIrIR[(—B(y)V-F (2, y)V@(x, y)) AB(Y)AF (2, y)
AVsVE(=®(s, ) VAb(s, 1))ANAb(q, )A=D(q,r)]. (19)

We now remove @ in (19).

Preprocessing. (19) is in the form which is the goal of
this phase.

Preparation for the Ackermann lemma. Using

Proposition 1.1 (8), we replace (19) by

o FyqIrIOVoVw[(P(v, w)Ve # 2V # yV-B(y)
VaF (z, y))AYsYEH(—P(s, 1)V Ab(s, 1))
A=®(q, 7)AB(y)AF (z,y)\Ab(q, 7)]. (20)

Application of the Ackermann lemma. Applying
the Ackermann lemma to (20), we obtain

JeIyqIrVsVi[(s # aVt # yVaB(y)V-F(z,y)
VAb(s,1))A(g £ 2Vr # yV-B(y)V-F(z,y))
AB(WAF (z, y)AAb(q, 7)]. (21)



Simplification. We replace (21) by

J23yIgIr[(~B(y)V-F (2, y)VAb(z, y))A\(g # 2Vr £ y
VaB(y)V-F (z, y))AB(Y)AF (2, y)AAb(q, 7)]. (22)

Negating (22), we obtain

VeV yVgVr[(B(y)AF (2, y) A Ab(z,y))V(g = aAr =y
ABAF (2, g) VBV -F(, y)v=Ab(q, ). (23)

(23) is logically equivalent to

VaVyVgvr{=(B(y)AF (z, )) ((B(yAF(x,y))
N—Ab(z, y)V(g = 2Ar = y)))V-Ab(g, 7)],  (24)

which is equivalent to

VaVy¥gvr[=(B(y)AF (2, y))
VaAb(z, y)V(g = eAr = y)V-Ab(q, r)]. (25)

The first-order formula (25) is logically equivalent to the
second-order formula (15). Consequently,

Cireso(T(Ab, G); Ab; G) =
T(Ab, G)AV2eVyYgVr[—(B(y)AF (2, y))
VaAb(z, y)V(g = eAr = y)V-Ab(q, r)]. (26)

A more informative sentence, equivalent to (25), is

VaVyVeVr[Ab(z, y)ANAb(q, )AB(y)
AF(z,y) D (q = zAr =y)]. (27)

(27), together with the theory T'(Ab, &), states that there
is exactly one pair of individuals, x and y, such that y
has a birthday, = is a friend of y and & does not give a
gift to y.

5.2 An Existential Example
[Kolaitis and Papadimitriou, 1988] state

We notice that computing a first-order sen-
tence equivalent to the circumscription of P in
an existential first-order formula ¢( P) seems to
increase the size of ¥(P) exponentially, a phe-
nomenon not observed in the other known cases
of first-order circumscription studied in [Lif85].
It would be interesting to determine whether
this is inherent to existential first-order formu-
las, or a particular creation of our proof.

Example 5.2 (Existential Example) In light of the
quote above, we take the example used by Kolaitis and
Papadimitriou and compare the resulting first-order for-
mula with that generated by our algorithm. Kolaitis
and Papadimitriou apply their reduction technique to
the theory

E'l‘lal‘z[R(l‘l,l‘z)/\P(l‘l)/\P(l‘z)] (28)

and circumscribe P without varying predicates. The
first-order equivalent they obtain is

Fz1(R(x1, 21)AP(2)ANVY(P(y) =y = 21))V
[E'l‘lal‘z(R(l‘l,l‘z) P(l‘l)/\P(l‘z) ( sl ;é xz)/\(Vy(P(y)
= (y = 21Vy = 22)))A-R(21, £1)A—R(z2, 22))]. (29)

We apply our reduction algorithm to the same theory
and compare the results.
Let T(P) be the theory

E'l‘lal‘z[R(l‘l,l‘z)/\P(l‘l)/\P(l‘z)]. (30)

The circumscription of T'(P) with P minimized without
variable predicates is

Cireso(T'(P); P; () =

L(P)AVR[D(R)A[® < P D [P < @], (31)

where
F(q)) = EleEIxz[R(xl, l‘z)/\q)(l‘l)/\q)(l‘z)] (32)
o< P= vm() P() (33)
P<®= P(x) D ®(x). (34)

In the following, we will reduce
VO[T'(P)A[® < P] D [P < D] (35)
n (31). Negating (35), we obtain
AP[T(P)IN[P < P]A-[P < @]]. (36)

Preprocessing. Replacing I'(®), ® < P and P < & by
their equivalents given by (32)-(34), eliminating O and
renaming individual variables, we obtain

AP[Fxy Fza(R(w 1, 22)AP(21)AD(22))A
Vy(—=®(y)V P (y)AFz(P(2)AD(2))]. (37)

We next move dx13x232 to the left, obtaining

1329 323P[R(21, £2) AD (21 )AD(22)A
Vy(=@(y)V P(y))AP(2)A=®(2)]. (38)
Preparation for the Ackermann lemma. Applying

Proposition 1.1 (8) and some standard equivalences, we

replace (38) by

21322323 PVq[(P(q) V(g # T1Aq # 2))
A(R(z1, 22)AVY(—@(y)VP(y)AP(2)A=P(2)]. (39)

Application of the Ackermann lemma. The Acker-
mann lemma can now be applied to (39) resulting in

ey FwoTz[R(x1, 22)AVY((y # 1Ay # 22)VP(y))A
P(z)Az # x1Az # x3]. (40)



Simplification. Applying Proposition 1.1(11) to (39)
results in

Juy3weTz[R(x1, 22)AP(21)AP(22)
AP(2)Az # 1Az # x3). (41)

Negating (41), we obtain

Vi VaoVz[-R(xy, 22)VP(21) VP (22)
V=P(2)Vz = 21Vz = x3). (42)

The first-order formula (42) is logically equivalent to the
second-order formula (35). Consequently,

Cireso(T; P) = T(P)AVe YaoVz[~R(xy, 22)
VaP(x)VaP(22)VaP(2)Vz = 21Vz = xa]. (43)

Comparing (43) with (29), it is easily observed that
not only is there a difference in the size of the formulas,
but the output appears to make more sense relative to
the minimization policy.

6 Conclusion

In this paper, we have presented a general algorithm
which transforms second-order formulas into logically
equivalent first-order formulas for a large class of second-
order formulas. The algorithm has been shown to have
a number of attractive properties, including a potential-
ly wide area for practical application. To support this
claim, we have provided a detailed description of the al-
gorithms application to the reduction of circumscription
axioms. In addition, we have shown that the algorithm,
in its general form, provably subsumes nearly all exist-
ing results concerning the reduction of circumscription
axioms. In contrast to previous results, the algorithm is
more constructive in the sense that it provides a step-
by-step method for transforming a formula and is guar-
anteed to terminate.
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