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Abstract. In this paper we present a system which integrates computer
vision and decision-making in an autonomous airborne vehicle that per-
forms traffic surveillance tasks. The main factors that make the integra-
tion of vision and decision-making a challenging problem are: the quali-
tatively different kind of information at the decision-making and vision
levels, the need for integration of dynamically acquired information with
a priori knowledge, e.g. GIS information, and the need of close feedback
and guidance of the vision module by the decision-making module. Given
the complex interaction between the vision module and the decision-
making module we propose the adoption of an intermediate structure,
called Scene Information Manager, and describe its structure and func-
tionalities.

1 Introduction

This paper reports the ongoing work on the development of an architecture for
Unmanned Airborne Vehicles (UAVs) within the WITAS project at Linköping
University. One of the main efforts within the project has been to achieve an
efficient integration between a vision module, dedicated to tasks such as object
recognition, velocity estimation, camera control, and an autonomous decision-
making module which is responsible for deliberative and reactive behaviors of
the system. A critical issue in such a system is to handle the fact that the vision
module represents an object in terms of coordinates in some reference frame,
whereas the decision-making module represents the same object in relational
and qualitative terms. For example, the vision module can represent a car as a
point in the image together with some parameters that describe its shape. The
decision-making module, on the other hand, will represent the same car in terms
of its relation to some road, or to other cars, and describe its shape in terms of
symbolic attributes rather than as estimated parameters.

A second issue to be handled in the project is the integration of a priori
information, here referred to as static information, and dynamically acquired
information, e.g., produced by the vision module. An example of this integration



is how to combine information about the shape and topology of a road network,
stored in a conventional GIS (Geographic Information System), and descriptions
about cars (position, shape, etc) produced by the vision system, assuming that
these cars are moving along the roads.

Section 2 presents a more thorough discussion on these and other issues.
The general conclusion is that we need an intermediate structure, the Scene In-
formation Manager (SIM), located between the vision and the decision-making
module. The SIM solves both the problem of translating object references, e.g,
from image coordinates to symbolic road labels, and vice versa, as well as man-
ages the linkage of dynamic to static information and high-level prediction. The
structure and functionalities of the SIM are described in more detail in section
3.

The resulting architecture has been implemented and tested on a number
of scenarios. Section 4 briefly presents some of them and describes how the
SIM is used to solve the above integration issues, thereby allowing the system to
maintain a suitable distinction in abstraction level between the task driven vision
module, mainly devoted to low-level vision processing, and the decision-making
module which operates on symbolic information.

1.1 The WITAS project

The WITAS project, initiated in January 1997, is devoted to research on infor-
mation technology for autonomous systems, and more precisely to unmanned
airborne vehicles (UAVs) used for traffic surveillance. The first three years with
focus on basic research will result in methods and system architectures to be
used in UAVs. Because of the nature of the work most of the testing is being
made using simulated UAVs in simulated environments, even though real image
data has been used to test the vision module. In a second phase of the project,
however, the testing will be made using real UAVs.

The WITAS project is a research cooperation between four groups at Lin-
köping University. More information about the project can be found at [14].

1.2 General system architecture

The general architecture of the system is a standard three-layered agent archi-
tecture consisting of

– a deliberative layer mainly concerned with planning and monitoring,
– a reactive layer that performs situation-driven task execution, and
– a process layer for image processing and flight control.

Of particular interest for this presentation is the interaction between the
reactive layer (currently using RAPS [5] [6]) and the process layer. This is done
in terms of skills, which are groups of reconfigurable control processes that can
be activated and deactivated from the reactive layer, and events that are signals
from the process layer to the reactive layer. Events can both carry sensor data



and status information. In the rest of the paper, we will refer to the deliberative
and reactive layers as the decision-making module.

Besides vision, the sensors and knowledge sources of the system include:

– a global positioning system (GPS) that gives the position of the vehicle,
– a geographical information system (GIS) covering the relevant area of oper-

ation, and
– standard sensors for speed, heading and altitude.

Currently, the system exists as a prototype implementation operating in a
simulated environment, and some functionalities, e.g., GIS and deliberation, only
exist in simplified forms.

1.3 Related Work

The areas in which most work has been produced with relevance to the issues
presented in this document are event/episode recognition and active vision.

Pioneering work in the event/episode recognition has been done by Nagel [11]
and Neumann [12]. The aim of their work was to extract conceptual descriptions
from image sequences and to express them in a natural language. As the focus of
the work is on the natural language aspect, all vision processing up to a complete
recovery of the scene geometry including classified objects was done by humans.

The Esprit project views by Buxton, Howarth and Gong is one of the most
interesting works on episode recognition in the traffic domain [8][2][9]. In this
work, video sequences of the traffic flow in a roundabout are examined and events
such as overtaking and cars following each other are recognized. A stationary and
precalibrated camera is used, and the system presupposes an intermediate-level
image processing that detects moving objects and estimates various properties
of these objects. Given this information, and the ground-plane representation,
the system can recognize simple events, e.g., a car turning left, and episodes,
e.g., a car overtaking another car, which are composed of simple events using
a Bayesian belief network. Focus of attention and deictic pointers are used to
increase the performance of the system.

Active or animate vision is currently an active area of research in computer
vision. One of the pioneers of this area is Ballard [1] who has pointed out that
vision is an active process that implies gaze control and attentional mechanisms.
In contrast to traditional computer vision, active vision implies that the tasks
direct the visual processing and establish which parts of the image are of interest
and which features should be computed. By reducing the complexity and acceler-
ating scene understanding, active vision opens up the possibility of constructing
continuously operating real-time vision systems. Our approach is fully within
the active vision paradigm since the executing tasks at the decision-making level
select what part of the image the vision module processes and what features are
computed. Deictic pointers are also created to objects of interest and the vision
module is focused on these objects.

Our aim is to create an integrated vision and decision-making component
capable of complex behaviors. This was a goal also for the Esprit project Vision



As Process [3]. It integrated a stereo camera head mounted on a mobile robot,
dedicated computer boards for real-time image acquisition and processing, and
a distributed image description system, including independent modules for 2D
tracking and description, 3D reconstruction, object recognition, and control.
This project has similarity with our project even if the application domain is
different. In particular, both projects include active vision, focus of attention,
scene manipulation and the need of real-time performance. We intend to use
some of the methods developed during the Vision As Process project and
reconsider them in the context of our application.

Reece and Shafer [13] have investigated how active vision can be used for
driving an autonomous vehicle in traffic. They address techniques for requesting
sensing of objects relevant for action choice, decision-making about the effect
of uncertainty in input data, and using domain knowledge to reason about how
dynamic objects will move or change over time. Autonomous vehicles have been
investigated also by Dickmanns [4].

A project for autonomous take-off and landing of an aircraft is currently
under development by Dickmanns [7]. Conventional aircraft sensors are combined
with data taken from a camera mounted on a pan and tilt platform. The camera
data is mainly used during the final landing approach to detect landmarks and
possible obstacles on the runway. Regarding vision, this work is mainly focused
on object recognition.

The RAPS system used in our reactive layer has been employed previously
to control a vision module [6]. Similar to our approach, the executing tasks
call visual routines that execute specific image processing routines. The added
difficulty in our case lies in the fact that the anchoring between symbolic and
visual information is complicated by the dynamics of the objects in the scene.
Anchoring between symbolic and perceptual information has been considered in
the Saphira architecture [10], but also in this case mainly for static objects.

To summarize, the aspects that are more extensively studied in the above
projects are event/behavior recognition, active selection of vision processing al-
gorithms, and focus of attention. Not so widely explored are general methods for
integration of static and dynamic knowledge, continuous support of the vision
module by the decision-making module on the basis of short term prediction,
and general methods for anchoring of symbolic to visual information in dynamic
scenes.

2 Integration of vision and decision-making systems

In this section we discuss several important issues related to the integration be-
tween the vision module and the decision-making module. As a result of this
discussion we propose the intermediate structure called Scene Information Man-
ager, elaborated in the next section.



2.1 From image domain to symbolic information

The data required by the decision-making module is mainly about the road
network and about moving objects and their position with respect to the road
network. For example, if the airborne vehicle is pursuing a car, it needs to know
in which road the car is, where along the road it is, and in which direction the car
is moving (dynamic information). It also needs to predict future actions of the
car based on the structure of the road network (static information). Typically,
the static information is retrieved from a GIS, and the dynamic information is
produced by the vision module.

The integration of static and dynamic information can be done in several
ways, but the solution implies in general that symbolic data, e.g., the label of the
road on which the car is traveling, has to be accessed by means of information
derived from the image domain, e.g., image coordinates of the car. This task
depends on low-level parameters from the camera calibration and, therefore,
does not fit the abstraction level of the decision-making module. However, to
access the static information image coordinates have to be transformed into
some absolute reference system, using the information in the GIS. Database
access is not a typical image processing task, and therefore the solution does not
fit the abstraction level of the image processing module.

2.2 From symbolic information to image domain

The above description also applies to the information flow which goes from
the decision-making module to the vision module. For example, if the decision-
making module decides to focus its attention on a specific car (which can be
outside the current field of view), the knowledge about this car is represented
in symbolic form, e.g., that the car is located at a certain distance from an end
point of a specific road. To solve this task, however, the vision module must
know the angles by which the camera has to be rotated in order to point the
camera at the car. Hence, there is a need for translating symbolic information
(road/position) to absolute coordinates from which the camera angles can be
derived given the absolute position of the UAV.

2.3 Support and guidance of visual skills

Knowledge about the road network should help the vision processing and give
hints as to what the vision module is expected to find in the image. For example,
knowledge about roads and landmarks that are expected to be found in the
image can greatly facilitate the vision module in recognizing objects in the image
that correspond to road network elements. Knowledge about the road network
structure and its environment can also avoid failures in the image processing.
For example, if the vision module is tracking a car and the car disappears under
a bridge or behind a building, the vision module can get confused. However, this
situation can be avoided by giving information to the vision module about the



presence of the occluding objects and the coordinates of the next position where
the car is expected to reappear.

The basic mechanism of this support is prediction. Prediction, e.g. of future
positions of a car, or of whether the car will be occluded by another object, is
usually a high-level processing which relies on an understanding of the concepts
of cars, roads, and occlusions. On the other hand, the final result of this predic-
tion will be used directly in the low-level parts of the vision module. This implies
that the prediction processing has to be made by some type of decision-making
and image processing hybrid.

2.4 Support of decision making

The vision system delivers information in the same rate as camera images are
processed, and on a level of detail which is not always relevant to the decision-
making module. Thus, there is often a need to filter and compile information from
the vision module before it is presented to the decision-making module. For in-
stance, some vision skills compute uncertainty measures continuously, but these
measures are only relevant to decision-making when they pass some threshold.

2.5 Discussion

From the above presentation we can conclude that by employing an intermediate
structure, located between the high-level decision-making module and the low-
level vision module, some important issues related to the integration between the
two module can be handled. This structure is dedicated to translating symbolic
references, e.g., in terms of labels, to either absolute or image coordinates, and
vice versa. To do so it needs access to a GIS in order to retrieve information about
the road network, both in terms of the connection topology and the shapes and
positions of each road segment. By means of this information it can make links
between static information (the roads) and dynamic information (the cars). In
order to translate between absolute world coordinates and image coordinates it
needs to have access to a reliable positioning system which continuously measures
the position and orientation of the UAV and its image sensors, e.g., using GPS
and inertial navigation.

Using the information which it stores, this structure can provide support to
the vision module based on high-level prediction of events such as occlusion.
It can also act as a filter and condense the high frequent low-level information
produced by the vision module into low frequent high-level information which is
sent to the decision-making module.

The intermediate structure proposed above is here called the Scene Informa-
tion Manager (SIM), and it is presented in the following section.

3 The Scene Information Manager

Given the complex interaction between vision processing and decision-making,
it is apparent that there is a need for a structure that can store static and



dynamic information required, and that also satisfies the needs of vision and
decision-making as described in the previous section. The Scene Information
Manager (SIM), figure 1, is part of the reactive layer and it manages sensor
resources: it receives requests for services from RAPS, in general requests for
specific types of information, it invokes skills and configurations of skills 1 in the
vision module (and other sensor systems), and it processes and integrates the
data coming from the vision module. Currently, a standard color camera is the
only sensor resource present, but one can expect the presence of additional types
of sensors in the future. In the following sections, we present the functionalities
of the SIM.

3.1 World model and anchoring

The SIM maintains a model of the current scene under observation, including
names and properties of elements in the scene, such as cars and roads, and rela-
tions between elements, e.g., a car is in a position on a specific road, or one car
is behind another car. What is stored is mainly the result of task-specific service
requests from the decision-making levels, which implies that the model is partial;

1 A configuration of skills is a parallel and/or sequential execution of skills.
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Fig. 1. Overview of the Scene Information Manager and its interactions with decision-
making and vision.



with some exceptions, information that has not been requested is not registered.
The SIM also maintains a correlation between the symbolic elements and im-
age elements (points, regions). This correlation (anchoring) is done in terms of
shape and color information, and reference systems which are independent of the
position and orientation of the camera. For instance, if a service request refers
to a specific car by its name, the SIM looks up its coordinates and signature
and provides these as parameters to the vision module. The vision module is
then responsible for performing the processing required to find the car in the
actual image. Likewise, the SIM is also capable of finding the symbolic name of
an object given its position in the image, and of assigning names to objects that
are observed for the first time.

Finally, the SIM contains mappings from symbolic concepts to visual repre-
sentations and vice versa. For instance, colors, e.g., “red”, are translated to color
data, e.g, RGB values, and car models, e.g., “Mercedes”, can be translated to
geometrical descriptions.

3.2 Skill management

The SIM is responsible for managing service requests from the decision-making
levels such as looking for a car with a certain signature and calling the appro-
priate configuration of skills with the appropriate parameters. These parameters
can include cars, which are are denoted with symbolic names in the request and
translated (“de-anchored”) when passed on to vision routines, and concepts,
which go through appropriate translations. The SIM is also responsible for re-
turning the results produced by the vision skills to the task that requested the
service, and to update its information about the relevant objects. In order to
do this, it has to keep track of the identities of relevant objects. For instance,
if a service is active for tracking a specific car, then the SIM must maintain
information about what car is being tracked (indexical referencing).

Furthermore, skill management involves combining the results of different
visual processes, or adapting or compiling the output of visual processes to a form
which is more suitable for decision making. In particular, it involves reducing
the amount of information sent to the decision-making module by detecting and
notifying when certain events occur, such as when a given threshold is passed.
For instance, the visual data include certainty estimates, and the SIM determines
whether to notify the decision-making module that the certainty is too low or to
confirm that it is good enough. This treatment of uncertainty supports making
decisions about taking steps to improve the quality of data when necessary,
without burdening the decision-making module with continuous and detailed
information about measurement uncertainties.

3.3 Identification of roads

The information stored in the SIM is mainly the result of active skills; objects
that are not in the focus of some skills will simply not be registered. The only



“skill-independent” processing going on is the identification of roads and cross-
ings, based on information about the positions and geometries of roads extracted
from the GIS. This information is used to find the parts of the image correspond-
ing to specific roads, which enables determining the position of cars relative to
the roads. This is the most important example of integration of static and dy-
namic knowledge in the system.

This functionality can be implemented in several ways, and two quite different
approaches have been tested. One is based on tracking landmarks with known
world coordinates and well-defined shapes which are easily identified in an aerial
image. From the world coordinates and the corresponding image coordinates of
all landmarks, a global transformation from image to world coordinates (and vice
versa) can be estimated assuming that the ground patch which is covered by the
image is sufficiently flat. A second approach uses the shape information about
each static object, e.g., roads, and measurements of the position and orientation
of the UAV’s camera to generate a “virtual” image. This image “looks” the same
as the proper image produced by the camera, but instead of intensity values each
pixel contains symbolic information, e.g., road names, position along the road,
etc. The virtual image works as a look-up table which is indexed by image
coordinates.

Since it relies on tracking of several landmarks, the first approach is more ro-
bust but less effective and versatile than the second approach which, on the other
hand, is less robust since it depends on having enough accurate measurements
of the camera’s position and orientation.

3.4 Prediction

The information stored in the SIM is not just what is obtained from the most re-
cently processed image, but includes the near past and a somewhat larger region
than the one currently in the image. Past information such as the position of a
car two seconds ago, are extrapolated to find the car again after being tempo-
rally out of focus, thereby increasing the robustness of the system and extending
its functionality. Such extrapolation might involve formulating alternative hy-
potheses, like a number of possible positions of the car. In this case, vision is
directed to check one hypothesis after the other until either the presence of the
car is confirmed in one of the positions or there are no more hypotheses to con-
sider. Likewise, prediction can also aid in determining if a newly observed car is
identical to one observed a short time ago.

3.5 Conclusions

In conclusion, the SIM has a number of functions, ranging from storage and
parameter translation to supportive prediction. In addition, the SIM provides
a flexible interface between the vision system and the decision-making levels,
which supports modifying concept definitions and exchanging visual processing
techniques with preserved modularity. In the next section we present two specific



tasks implemented in our system, namely looking for and tracking a car of a
specific signature.

4 Examples

In this section we illustrate the most significant points of the current implemen-
tation of our system by means of some examples which include looking for cars
of a specific signature and tracking a car. For the case of tracking a car, it is
shown how the vision module can be supported during the tracking procedure
with high-level information regarding occlusion. The examples have been simu-
lated on an SGI machine using MultiGen and Vega software for 3D modelling
and animation.

4.1 Looking for and tracking a car

The goal of the UAV is here to look for a red Mercedes that is supposed to
be near a specific crossing and, once found, follow the car and track it with
the camera. During the simulation sequence, the UAV flies to the crossing and,
once there, the decision-making module requests the SIM to look for the car.
Rather than sending the service request directly to the vision module, it is first
processed by the SIM which invokes a skill configuration and translates the sym-
bolic parameters of the skills to what they mean in vision terms. In this case,
color values, e.g., RGB-values, are substituted for the symbolic name of the
color, and the width and length of the car are substituted for the name of the
car model. Furthermore, the absolute coordinate of the crossing is substituted
for its symbolic name. The vision module then directs the camera to that point,
and reports all cars its finds which fit the given signature within a certain degree
of uncertainty. In this particular case, two cars are found, see figure 2, and their
visual signature (color/shape) together with their image position are sent to the
SIM. Here, image coordinates are translated into symbolic names of roads and
positions along these roads. For each of the two cars, a record is created in the
memory part of the SIM, and each record is linked to the corresponding road
segment already present in the memory. These records also contain information
about the actual shape and color which can be used later, e.g., for reidentifica-
tion. Once established, the linkage between cars and roads can be used by the
decision-making module for high-level reasoning.

So far, most of the activities has been taking place in the SIM and in the
vision module. However, since more than one car has been reported to fit the
description, the decision-making module has to decide on which of the two cars
it will follow or, alternatively, to make more measurements in order to obtain a
better support for its actions. In this case, it chooses to follow one of the two
cars, and it requests that the chosen car is to be reidentified (since it may have
moved since last seen) and then tracked. However, since the decision-making
module only has a symbolic references to the car, the SIM must translate this
reference to a world coordinate which the vision module, in turn, can translate



Fig. 2. Two cars of the right shape and color are found at the crossing.

Fig. 3. The camera is zooming in on one of the two cars in the previous image.



into camera angles. The SIM also provides the previously measured signature
(color/shape) of the specific car to be reidentified. Assuming that the car is
sufficiently close to its latest position it can now be reidentified and the tracking
can start. Figure 3 shows the situation where the camera is zooming in on the
car just prior to starting the tracking. In the case when there are ambiguities
about which car to track, or if none can be found, the vision module reports this
directly to the decision-making module.

If the chosen car turns out to be wrong, e.g., an integration of measurements
shows that it does not match the shape of a Mercedes, this is reported back to
the decision-making module. In this example, there is one more car which fits
the given signature, but it is out of sight from the camera and some time has
elapsed from when it was last seen. However, using the information stored in the
memory of the SIM, the prediction component of the SIM can make high-level
predictions on the whereabouts of the second car. Consequently, upon receiving
a report on the tracking failure of the first car, the decision-making module sends
a request to reidentify and track the second car, this time based on high-level
prediction of the car’s current position. This is solved in the same way as for
the first car, with the exception that there are several options regarding the
car’s position, since it was approaching a crossing when last seen. Each of the
positions is tested using the reidentification skill of the vision module until a
matching car is found or none can be found.

It should be mentioned that during the tracking operation, the vision module
is not just responsible for the camera motion. The image position of the car
is constantly being measured and then translated by means of the SIM into
symbolic links relative to the road network.

4.2 High-level support during tracking

In the second example we illustrate another use of the prediction component
of the SIM. During tracking the prediction component uses information about
the tracked car and of the surrounding road network to perform high-level pre-
dictions about the position of the car, as was mentioned above. However, the
prediction functionality is also used in case of occlusion of the car, e.g., by large
buildings or bridges.

The prediction module regularly estimates the expected position of the car
and, in case the car disappears or there is a significant difference between the
expected and measured positions, it checks the presence of occluding objects by
consulting the geographical information system. If the presence of an occluding
object (e.g. bridge or tunnel) is confirmed, the vision module receives information
about where the object is going to reappear. If there is no record of an occluding
object, the vision module uses predicted information about the car’s position for
a pre-specified amount of time. If the car reappears, normal tracking is continued,
and if it does not reappear, a failure message is sent to the decision-making
module.

Figure 4 shows two identical cars, one traveling along a road which makes
a bend under a bridge, and one which travels on the bridge. In this example,



Fig. 4. The UAV is tracking a car which soon will disappear under the bridge. A second
car is on the bridge.

Fig. 5. The tracked car is occluded by the bridge and is therefore likely to be confused
with the second car.



Fig. 6. The car reappears from under the bridge and can therefore be tracked again.

the UAV is tracking the first car which soon will disappear under the bride and,
even worse, a few moments later the second car will be a position in the image
where the first car would have been, had it not be occluded, figure 5. Using
the high-level prediction provided by the SIM, the vision module reidentifies the
correct car when it reappears from under the bridge, figure 6.

5 Conclusion

This paper presents a system which integrates vision and decision-making in
an autonomous UAV for traffic surveillance. A number of issues related to the
integration have been considered: integration of a priori and dynamically ac-
quired knowledge, anchoring of symbolic data into visual data, focus of atten-
tion, supporting the execution of visual skills by decision-making, and handling
of uncertainty.

A structure, the Scene Information Manager, where these issues are addressed
has been presented. Integration of a priori knowledge and dynamically acquired
knowledge is achieved by continuously matching elements in the GIS and corre-
sponding elements in the current image. Anchoring is performed during service
requests and transmission of visual data to the decision-making module, using
stored data and short term prediction. Certainty of visual data is reported to
the SIM where it is elaborated and transmitted when necessary to the decision-
making module. Uncertainty due to extrapolation of data is handled by the SIM
by guiding the vision in checking one hypothesis after the other. Finally, short
term prediction is used to support the vision module and anticipate failures.
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