
A Framework for Safe Navigation of Unmanned Aerial Vehicles
in Unknown Environments

Mariusz Wzorek, Cyrille Berger, Patrick Doherty
Department of Computer and Information Science

Linköping University Linköping, Sweden
email: mariusz.wzorek@liu.se

Abstract—This paper presents a software framework which
combines reactive collision avoidance control approach with
path planning techniques for the purpose of safe navigation
of multiple Unmanned Aerial Vehicles (UAVs) operating in
unknown environments. The system proposed leverages ad-
vantages of using a fast local sense-and-react type control
which guarantees real-time execution with computationally
demanding path planning algorithms which generate glob-
ally optimal plans. A number of probabilistic path planning
algorithms based on Probabilistic Roadmaps and Rapidly-
Exploring Random Trees have been integrated. Additionally,
the system uses a reactive controller based on Optimal Recip-
rocal Collision Avoidance (ORCA) for path execution and fast
sense-and-avoid behavior. During the mission execution a 3D
map representation of the environment is build incrementally
and used for path planning. A prototype implementation on a
small scale quad-rotor platform has been developed. The UAV
used in the experiments was equipped with a structured-light
depth sensor to obtain information about the environment in
form of occupancy grid map. The system has been tested in a
number of simulated missions as well as in real flights and the
results of the evaluations are presented.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) in recent
years has been becoming common place in military and
civilian markets. We are seeing an increased number of
deployed platforms in many real world applications, such as
search and rescue, physical structure inspection, agriculture,
to name a few. The necessary changes to the aviation laws
are still under discussion in many countries with the main
concern on how to safely allow insertion of UAVs in the
common airspace. From that perspective, the need for safe
navigation is of great importance in order to minimize risks
associated with the deployment of this technology, that is to
minimize the risk of property damage and, most importantly,
human injury. In this paper we address the problem of
safe navigation of multiple UAVs operating in unknown
environments. The UAVs are equipped with range sensors
capable of sensing their surroundings for the purpose of
collision avoidance as well as building of a map.

Typical solutions applied to solve this problem include us-
ing reactive controllers that guarantee real-time performance
at the expense of optimality. Additionally, most sense-and-
react type controllers do not include any predictive capability

hence given range-limited sensor information about the en-
vironment they tend to suffer from the local minima problem
which in this context means getting stuck between multiple
obstacles in the environment.

An alternative solution is to use deliberative tech-
niques developed for solving navigation tasks, namely path
planners. Sample-based approaches such as Probabilistic
Roadmaps (PRM) [1], Rapidly-Exploring Random Trees
(RRT) [2] [3] have been already successfully deployed in
the UAV domain. They are probabilistically optimal and
complete but require a 3D world model for collision check-
ing. Additionally, those techniques are computationally more
demanding than reactive controllers making them infeasible
for direct application to problems where real-time execution
guarantees are required.

In this paper we propose a framework that combines
sample-based path planning techniques with reactive control
and sensing for solving the problem of multi UAV navigation
in unknown environments. The system leverages advantages
of fast sense-and-avoid control with more time consuming
path planning techniques which in turn generate globally
optimal plans. In the context of this work, a globally optimal
plans are considered to be collision-free and optimal in
relation to the 3D map knowledge of the environment
acquired so far, since the UAV is operating in an unknown
environment.

The integration of the reactive and deliberative compo-
nents is not trivial due to several factors. During a mission
execution the control signals guaranteeing collision-free nav-
igation have to be provided in a timely fashion at all times.
Additionally, the large amount of noisy sensor data has to
be processed and integrated in form of a map in order to be
used for optimal plan generation. Finally, smooth transitions
between updated plans provided by path planners need to be
assured.

The proposed framework builds upon the ideas presented
in [4] [5], where path planners used a set of strategies in
order to provide repaired plans during the mission execution
in an anytime fashion. The underlaying control mode used
for the path execution was based on the 3D trajectory
following reference controller [6]. Its goal was to minimize
the tracking error between the planned path and the actually

executed trajectory. In the framework presented in this paper
the Optimal Reciprocal Collision Avoidance (ORCA) [7]
controller is used instead. Plans generated by path planners
are represented as a set of sub-goals and are used as an input
to the controller. The controller is guided by globally optimal
plans and makes sure to reactively avoid any collisions with
static and dynamic (other UAVs) obstacles. This property
is especially important when dealing with navigation of
multiple UAVs in unknown environments.

A system based on the ORCA algorithm deployed on
multiple UAV platforms was presented in [8]. The authors
propose an extension to the original approach in order to
deal with the perceived static obstacles at the reactive layer.
This solution still suffers from the local minima problem
since the control signals are generated based on the locally
sensed obstacles and no predictive functionalities are used.
In our framework this problem is aliviated by using the path
planners for the generation of globally optimal plans which
take into account all the perceived obstacles.

Several other approaches have been presented in the
literature that combine reactive and deliberative function-
alities relevant to the problem considered in this paper. The
two most notable are the following. A system that uses a
combination of RRT path planning with Model Predictive
Control has been presented in [9]. An alternative approach
has been described in [10] where a stochastic optimization
technique called a Particle Swarm Optimization (PSO) was
applied. The system first uses a simple one-at-a-time strategy
to compute a collision-free non-optimal solution which is
then refined by PSO in order to improve its optimality.

Our work in contrast not only considers combining re-
active and deliberative components but also includes the
aspect of environment sensing. In the proposed framework
functionalities for 3D map building are integrated. The
path planning algorithms rely on fast and efficient collision
checks, therefore, a method for incremental updates of the
collision checker data structures is proposed. The system
presented in this paper has been tested in simulation and
verified in real flight tests. The results are presented and
discussed.

The structure of the paper is as follows. Section II presents
the dynamic collision avoidance framework including de-
scriptions of all its components and their integration. The
experimental validation in simulations and real flights is
described in Section III. The paper concludes in Section IV
including a discussion of the future work.

II. DYNAMIC COLLISION AVOIDANCE FRAMEWORK

This section presents an overview of the proposed dy-
namic collision avoidance framework. The system con-
sists of five functional components which execute indepen-
dently: 3D Map, Path Planning Server, Execution Coordi-
nator, Reactive Collision Avoidance and Low-level Control.
Schematic of the system is depicted in Fig. 1.

Path	Planning	
Server	

(RRT,	RRT*,	 PRM,	
Collision	 Checker)

Execution	
Coordinator

Low-Level	Control

Reactive	Collision	
Avoidance	
(3D	ORCA)

3D	Map	
(OctoMap)

UAV Platform

goal
position

point
clouds

En
vi
ro
nm

en
t

Figure 1: Overview of the dynamic collision avoidance
framework.

The 3D Map module is used to store and continuously
update the representation of the environment. Map updates
are based on the perceived range sensor data in form of point
clouds. Such data can be generated by a number of sensors,
for example, a structured-light depth camera, a laser range
finder or a stereo system.

The Path Planning Server includes a number of path
planners capable of generating globally optimal plans given
the current knowledge of the environment encoded in the
collision checker data structures.

The Reactive Collision Avoidance module implements
a reactive controller which executes paths generated by
planners. It makes sure that there is no collision with static
and dynamic obstacles such as other UAV platforms oper-
ating in the environment. The controller generates velocity
commands which are then passed to the Low-Level Control
system of the UAV platform.

The Execution Coordinator (EC) is the central component
integrating the above listed functionalities in order to per-
form the navigation mission, that is safely reaching the goal
position. It achieves its function by performing the following
tasks:
• monitoring execution of the current plan for potential

collisions given newly acquired sensor data,
• triggering path planner collision checker updates,
• querying path planners for new or updated plans given

the current map knowledge.
The following subsections provide detailed descriptions of

the five functional components of the proposed framework.

A. 3D Map

In order to navigate safely in an unknown environment it
is essential to perceive and represent it in form of a map.
Both, path planners, and reactive controller make use of the
information stored in the map.

segment	1

waypoint	1	
- start

waypoint	2

waypoint	3

waypoint	4	
- goal

segment	2 segment	3

waypoints
sub-goals
initial	 plan
plan	repair
area	selected	 for	collision	
checker	update
current	 UAV	position

Figure 2: An example plan generated by the path planner including a plan repair and a collision checker update.

Depth	camera
(e.g.	Xtion Pro)

Depth	
image Point	cloud	

calculation
Point cloud 3D	Map

(OctoMap)
Map

Camera	
calibration	
parameters

Sensor
pose

Figure 3: Schematics of the map generation process.

The Dynamic Collision Avoidance framework makes use
of an octree-based 3D map structure, the OctoMap [11] to
represent the perceived environment. The OctoMap is an
open source framework suitable for efficient map representa-
tion. It uses probabilistic occupancy estimation which makes
it suitable for incorporating noisy sensor data. The 3D map
is built incrementally based on the information about the
environment in form of point clouds.

Point clouds can be generated using a number of sensors
and techniques. These include structured-light depth cam-
eras, laser range finders, stereo vision systems or monocular
structure from motion techniques, to name the most com-
monly used ones. In the context of this paper we are focusing
on using a depth camera as the main source of range data.
Sensors of this type are characterized by low weight and
low power consumption, fast update rate and are therefore
suitable for small scale UAV platforms.

The process of building a map of the environment for the
UAV platform used for experimental validation presented in
Section III-A is schematically depicted in Fig. 3. First, a
depth image is obtained from the sensor. Each of the image
pixels encodes a distance to an object in the environment.
If no information is available for certain pixels then this is
encoded with a reserved values denoting out-of-range mea-
surements. Construction of a point cloud from a depth image
is achieved by first rectifying the image (i.e. removing the
lens distortion) and applying the camera pin-hole model with
the intrinsic camera parameters. The required parameters are
obtained through the calibration procedure. Finally, the point
cloud is transformed from the sensor’s coordinate frame to
the global one by applying the extrinsic parameters (i.e.
translation and rotation of the sensor) and added to the map.

B. Path Planning Server

Using path planning techniques for navigation allows for
finding collision-free and optimal paths to reach mission
goal positions given a 3D map of the environment. Com-
monly used planners for the UAV domain take advantage
of sample-based probabilistic approaches and include Proba-
bilistic Roadmaps (PRM), Rapidly-Exploring Random Trees
(RRT), and its variation (RRT*) [12], [13].

PRM planners work in two phases, one offline and the
other online. In the offline phase a discrete roadmap in form
of a graph representing an approximation of a free state
space is generated using a 3D world model encoded in the
collision checker. In the online (querying) phase initial and
goal states are added to the previously generated roadmap
and a graph search algorithm such as A* is used to find
a path. Since the PRM requires the offline phase which is
computationally expensive this type of algorithm is more
suited for multi query usage in static environments.

The RRT and RRT* are variants of the sample-based
algorithms that, unlike the PRM planners, do not use a
precompiled roadmap. Instead, they use a specialized search
strategy to construct a roadmap online to find solutions
quickly during runtime. This is a strong advantage since
the RRT and RRT* do not require an a-priori 3D model of
the environment and that makes them applicable for solving
planning problems in dynamic and unknown environments.
The RRT* algorithm is probabilistically complete, provides
anytime solutions and provably converges to an optimal
solution.

The Path Planning Server (PPS) of the presented system
includes all of the above algorithms. However, for the above
mentioned reasons, the RRT* has been chosen as the main
path planner used in the context of this paper (i.e. solving
the navigation problem in unknown environments).

All path planners rely on efficient collision checking when
looking for a solution and, in fact, it is one of the most
computationally demanding elements of the process. The
OctoMap which is used for the 3D map representation is
well suited for map building considering noisy sensor data.
Unfortunately, this representation is not directly well suited
for fast and efficient collision checking required for path

vA

vB

vC

vD

pA

pB

pC

pD

rA

rB

rC

rD

vy

x

y

vy

vx

r/t

p=pB-pA

VOt
A|B

p/t

u
n

O
RC
At

A|
C

Figure 4: An example 2D navigation scenario with four robots on a collision course depicted on the left. On the right,
the corresponding velocity obstacle V OτA|B for τ = 2 (gray), ORCA half-planes (green lines) and the region of allowed
velocities (green area) calculated from the perspective of robot A.

planning. A more suitable approach it to use a specialized
collision checker such as the OBBTree algorithm [14]. The
OBBTree relies on spatial subdivision of the 3D space and
constructs a tree of Oriented Bounding Boxes (OBBs). It
allows for efficient collision checking not only for a single
state but also whole 3D path segments (solved analytically).

The system presented in this paper takes advantage of a
custom implementation of OBBTree collision checker which
is tailored to the UAV domain. Detailed description of this
implementation is presented in [15].

The path planners integrated in the presented system gen-
erate plans in form of a segmented cubic polynomial curves
which are then executed by a reactive collision avoidance
controller. Fig. 2 depicts an example path consisting of 3
segments. The plan is initially collision-free (black splines)
with respect to the current map of the environment encoded
in the OBBTree collision checker. As the mission is being
executed the new point cloud data provided by a range
sensor is added to the OctoMap (stripped rectangle). The
process of building new OBBs for collision checking is time
consuming, therefore adding of new OBBs into the OBBTree
structure is performed incrementally and limited to areas
directly influencing the current path (red square). After the
OBBTree update is completed the newly generated paths are
again collision-free (blue spline).

C. Reactive Collision Avoidance - 3D ORCA

The Reactive Collision Avoidance (RCA) module imple-
ments the Optimal Reciprocal Collision Avoidance (ORCA)
algorithm which is used for fast real-time sense-and-avoid
behavior as well as plan execution. ORCA addresses the
problem of navigation for multiple robots operating in a
common environment. The algorithm works in velocity
space and each robot uses relative position and velocity to
independently and simultaneously select a new velocity in

order to ensure collision-free navigation for at least a preset
amount of time.

Consider a 2D navigation example scenario presented in
Fig. 4 where four robots Ri=A..D are represented as discs
with radius ri=A..D located at positions pi=A..D. ORCA
defines a velocity obstacle V OτA|B as a set of relative
velocities v for robot RA with respect to robot RB that
will lead them to collision within a time window τ when
keeping their current velocities.

V OτA|B = {v|∃t ∈ [0, τ] : : tv ∈ D (pB − pA, rA + rB)}
(1)

where D (p, r) is an open disc of radius r centered at p:

D (p, r) = {q|‖q − p‖ < r} (2)

To guarantee collision free navigation, robots RA and RB
have to choose relative velocities vA− vB and vB − vA that
are outside of V OτA|B and V OτB|A, respectively. Ultimately
there are infinitely many pairs of velocities meeting this
criteria and in ORCA, pairs of sets are chosen that max-
imize the allowed velocities close to individual optimization
velocity (i.e. preferred velocity) imposed by a control system
on each robot. Formally the set of collision free velocities
of robot A imposed by robot B is a half-plane defined as
follows:

ORCAτA|B =

{
v|
(
v −

(
voptA +

1

2
u

))
· n ≥ 0

}
(3)

where v and voptA are current robot velocity and its opti-
mization velocity, respectively. u is a vector from voptA −v

opt
B

to the closest boundary of velocity obstacle V OτA|B and the
half-plane ORCAτA|B is starting at the point voptA + 1

2u. Note
that each robot takes half of the responsibility of avoiding
the other by applying 1

2u of minimal velocity change.

In case of n-robot navigation scenario, each robot calcu-
lates a set of half-planes imposed by other robots based on
relative position and velocity information. The intersection
of the half-planes is calculated and a new velocity is chosen
to minimize the following function:

ORCAτA = D (0, vmaxA)
⋂ ⋂

B 6=A

ORCAτA|B

 (4)

vnewA = argmin
v∈ORCAτA

‖v − vprefA ‖ (5)

The calculation is done using quadratic programming and
in case it is infeasible the problem is relaxed by decreasing
τ to ensure collision free navigation.

In the system presented in this paper a 3D variant of the
ORCA algorithm is used. It is partially based on RVO2-3D
implementation [16] with an extension for handling static
obstacles proposed in [8], that is a static obstacle perceived
in the environment is treated as a non-collaborative agent
and the UAV will apply full value u of minimal velocity
change instead of 1

2u.
The Reactive Collision Avoidance module actively mon-

itors point cloud sensor data and selects a number of
closest points as a potential obstacle for collision avoidance
(i.e. obstacle points, see Fig. 5). The obstacle points are
also used for checking potential collisions with the currently
executed global plan (see Section II-E). When the original
plan becomes invalidated during the flight due to a newly
perceived obstacle and a new plan in not yet available, the
use of the reactive controller (i.e. ORCA) will guarantee
collision free operation.

D. Low-Level Control

The task of the Low-Level Control module is to execute a
set of velocity commands provided by the Reactive Collision
Avoidance component. The velocities are generated based on
the set of sub-goals as described in the following section.

A velocity control mode is a typical functionality offered
by UAV platforms implemented in their low-level control
systems. It allows for flying with velocities given as a
3-dimensional vector. When all components of the veloc-
ity vector are zero the UAV platform remains stationary
(i.e. hovers). Specific platform used in this paper is described
in Sec. III-A and details of its low-level control system are
provided in [17].

E. Execution Coordinator

The role of the Execution Coordinator (EC) is to manage
the interactions between different functional components of
the presented framework. Fig. 5 depicts those interactions
in detail including the data flow. The EC is implemented
as a state machine with 5 states: Wait for command, Plan,

Path	Planning	Server
(RRT,	RRT*,	 PRM,	

OBBTree Collision	 Checker)

Execution	
Coordinator

Low-Level	Control

plan	queries
collision	 checker			 	
queries

target
velocities

current	
state

Collision	 checker
OBBTree updates

plan	updates
plans

goal
position Reactive	Collision	

Avoidance
(3D	ORCA)

current	
state

Point	 clouds

set of sub-
goals

other	
UAV	
poses

3D	Map	
(OctoMap)

UAV Platform

point	
clouds

obstacle	
points

Figure 5: Interaction between different functional modules
during a mission execution.

Wait	for	
command

Plan

Monitor

Send	to	
3D	ORCA

Update	
OBBTree

Go
al
	re

ce
iv
ed

Plan	updated
(set	of	sub-goals)

Goal	reached

Pl
an
	fa

ile
d

Figure 6: State machine used for mission execution in the
Execution Coordinator.

Send to 3D ORCA, Monitor and Update OBBTree. Transi-
tions between each state are triggered by events which are
depicted in Fig. 6.

A mission execution starts after receiving of a goal
position. The EC queries the Path Planning Server (PPS)
with the initial and goal positions (Plan state). As previously
described the plan consists of a segmented cubic polynomial
curve (Fig. 2). The length of a segment depends on the
platform’s flight capabilities. Furthermore, each segment of
the plan is sampled along the path at specified distances and
the resulting positions are used as sub-goals (Fig. 2, green
dots) which are provided to the reactive collision avoidance
controller for execution (Send to 3D ORCA state). Both, the
segment length and the density of the sub-goal positions
depend on the platform and control system capabilities and
are chosen empirically.

Figure 7: LinkQuad platform with an Asus Xtion PRO depth
camera.

While the current sub-goal positions are being followed
by the 3D ORCA algorithm, the EC monitors for potential
plan violations caused by the perceived obstacles (Monitor
state). The check for a potential collision is based on a
number of obstacle points (i.e. a set of closest points to
the UAV position, cf. Section II-C) which are selected from
each point cloud reading. If any of the points are within
a predefined safety distance to the currently executed path,
the EC triggers OBBTree collision checker update (Update
OBBTree state). For efficiency reasons the new OBB data
structure is generated only in a selected area in the direction
from which the latest sensor data was acquired (cf. Fig. 2,
red square).

When the OBBTree update has been completed the EC
queries the PPS for a new collision-free plan based on the
extended knowledge of the environment (Plan state). Note
that the collision checker data structures are continuously
updated by adding new OBBs as the UAV is perceiving
new obstacles. The system will make use of the gained
map knowledge and effectively rely less on the reactive
control for avoiding static obstacles and rely more on the
optimal plans generated by the path planner. The execution
continues as described until the final goal position is reached.
This results in a transition into the Wait for command state.
Alternatively, when a new goal position is received during
the mission execution, a transition to the Plan state is
triggered.

III. EXPERIMENTAL VALIDATION

This section presents results of experimental validation of
the proposed framework. First, the UAV platform used is
presented. Followed by the description of the two types of
experiments that were performed: (i) a set of simulations
in randomly generated dense worlds and (ii) a real flight
in an indoor environment. The first type of the experiment
was performed to show successful collision-free operation of

Figure 8: A world model example generated for the simu-
lation.

multiple UAVs in unknown dense environments. The second
type shows application of the proposed framework on a real
UAV platform.

A. UAV Platform

The UAV platform used in the evaluation of the pro-
posed framework is the LinkQuad - a highly versatile
autonomous Micro Aerial Vehicle. The platform’s airframe
is characterized by a modular design which allows for
easy reconfiguration to adopt to a variety of applications.
Thanks to its compact design (below 70 centimeters tip-to-
tip) the platform is suitable for both indoor and outdoor use.
Depending on the required flight time, one or two 4.6Ah
batteries can be placed inside an easily swappable battery
module. The maximum take-off weight of the LinkQuad is
2kg with up to 600g of payload and an endurance of up to
30 minutes.

The LinkQuad is equipped with an advanced flight control
board - the LinkBoard [18]. The LinkBoard has a modular
design that allows for adjusting the required computational
power depending on mission requirements. Due to the
available onboard computational power, it has been used for
computationally demanding applications such as the imple-
mentation of an autonomous indoor vision-based navigation
system with all computation performed on-board. In the full
configuration, the LinkBoard weighs 30 grams, has very low
power consumption and has a footprint smaller than a credit
card (45mm × 80mm).

The system is based on two ARM-Cortex microcontrollers
running at 72MHz (or 168MHz) which implement the core
flight functionalities and optionally, two Gumstix Overo
boards for user software modules. The LinkBoard includes a
three-axis accelerometer, three rate gyroscopes, and absolute
and differential pressure sensors for estimation of the altitude
and the air speed, respectively. The LinkBoard features

Figure 9: Visualization of an example navigation mission executed in simulation. Initial and later stages of the flight are
depicted on the left and right, respectively. Original and repaired plans are represented by green splines. Gray splines
visualize plans from previous flights within the mission. Red cubicles mark the update areas for the OBBTree collision
checker. Multi-color voxels show occupied areas in the OctoMap.

0 5 10 15 20 25 30

Flight number

0

0.05

0.1

0.15

0.2

0.25

0.3

ti
m

e
 [

s
]

Collision checker (OBBTree) update

Path planning

(a) Average times for path planning and collision
checker (OBBTree) updates.

0 5 10 15 20 25 30

Flight number

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

p
o

in
ts

(b) Average point cloud sizes for collision checker
(OBBTree) updates.

0 5 10 15 20 25 30

Flight number

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
u

m
b

e
r

o
f

u
p

d
a

te
s

(c) Number of collision checker (OBBTree) updates.

0 5 10 15 20 25 30

Flight number

70

75

80

85

90

95

F
lig

h
t
ti
m

e
 [
s
]

(d) Total flight times.

Figure 10: Empirical results for 28 navigation missions executed in an example simulation environment.

a number of interfaces which allow for easy extension
and integration of additional equipment. It supports various
external modules such as laser range finders, analogue and
digital cameras, GPS receivers, and magnetometers. The
LinkQuad can also be equipped with an external Intel NUC
computer which is connected to the LinkBoard.

Commonly used sensors for sensing of the environment
in the case of small scale platforms are sweeping laser
range finders (as presented in [19]) or cameras in different
configurations (monocular or stereo). For the purpose of this
work an Asus Xtion PRO1 depth camera is used. Compared
to a laser range finder, the sensor delivers range information
within the field of view of the camera. It uses structured light
technology and illuminates the environment with infrared
light to obtain the depth information.

The dynamic collision avoidance framework has been im-
plemented in Robot Operating System2 (ROS) and integrated
with the LinkQuad. Each of the five components were im-
plemented as separate ROS nodes. Exchange of information
was realized using ROS topics and common visualization
tools were used for monitoring progress of the missions.
The framework is a part of the hybrid deliberative/reactive
architecture (HDRC3) presented in [20].

B. Experimental evaluation in simulations

The first set of experiments was performed in simulation
executed on a single PC equipped with a 3.5GHz Intel
Xeon E5-1620 CPU. The Modular OpenRobots Simulation
Engine (MORSE) [21] was used for generating the depth
camera sensor data based on the model of the Asus Xtion
PRO sensor and the position and orientation of the UAV
in the generated world model. Simulation of the UAV
platform behavior was based on the flight dynamics model
of the LinkQuad platform and its low-level control system
allowing for easy switching between simulations and real-
flight experiments.

A set of 20 dense world models (50m × 50m) were
generated for the evaluation. Each model includes 200
uniformly distributed obstacles in form of rectangular blocks
with 1m× 1m size and 1m− 10m height. An example world
model used in the simulation is depicted in Fig. 8.

Each simulation run included five UAVs navigating in
an environment without any prior map knowledge. Four of
the UAVs were commanded to fly to randomly generated
positions within the world. While the remaining UAV was
commanded to fly diagonally between two corners of the
environment up to 30 times. A safety distance of 1m was
used both for reactive collision avoidance and path planning.

In all the experiments the UAVs successfully navigated
in the environments and avoided at all times collisions
with static and dynamic (other UAVs) obstacles. The safety

1Asus: http://www.asus.com/Multimedia/Xtion PRO/
2ROS: http://www.ros.org/

UAV1

UAV0Perceived	
obstacle

Figure 11: Visualization of the real flight experimental setup
and mission result. Original and repaired plans are repre-
sented by gray and green lines, respectively. Red cubicle
marks the update area of the OBBTree collision checker.
Multi-color voxels show occupied areas in the OctoMap.

distance was never violated with respect to the obstacles or
between UAVs. Fig. 9 shows a visualization of an example
mission executed with the initial and later flight stages
presented on the left and right, respectively. In the beginning
of the experiment the path planner provides a plan to the
UAV (green spline). Initially the UAV has no information of
the environment thus the path is a straight line. As the flight
progresses new objects in the environment are perceived
and added to the 3D Map (OctoMap) represented as multi-
color voxels (i.e. occupied space). Potential obstacles on
the way of the currently executed plans are added to the
collision checker OBBTree structure in form of new OBBs
in selected areas (red cubicle). The path planner generates
new plans taking into account the updated knowledge of
the environment. The mission execution continues and the
more information about the environment is gained the more
optimal plans are generated by the path planner resulting in
shorter flight times. This eventually leads to the situation that
the reactive collision avoidance module will mostly take care
of avoiding collisions with other UAVs as all the obstacles in
the environment will be known and plans will be collision-
free in respect to static obstacles.

Fig. 10 presents quantitative results from an example sim-
ulation run which included 28 diagonal flights between two
opposite corners of the environment. The more flights are
performed in the environment the more obstacles are repre-
sented in the OBBTree collision checker data structures. This
results in fewer and less time consuming collision checker
updates. As a result, obtaining new collision-free optimal
plans from the path planner becomes quicker (Fig. 10a-10c).
After performing 19 flights no more updates are necessary.
Since the plans generated by the path planner become more
optimal in relation to the static obstacles, the flight time

decreases (Fig. 10d). Initial flight times are as high as 94s
down to 75s on average for later flights.

C. Experimental evaluation in real flight

The real-flight evaluation was performed indoors with the
use of a commercial motion capture system from Vicon3.
The system consists of ten T10 and six T40 cameras. The
operation volume of the system is approximately 10×10×5
meters. The cameras illuminate the scene with infrared light
which is reflected by a set of markers attached to a tracked
physical object (see Fig. 7). In the real-flight experiment
presented in this paper the UAV position and heading
information is used at the rate of 10 Hz for autonomous
flight as well as at 25 Hz for the mapping purpose.

The UAV operates in an indoor environment with one
static and one dynamic obstacle. The former, is a 2m high
white-board positioned in the middle of the flight area.
The latter is a simulated UAV executing a continues flight
between two points in the environment. The target altitude
and velocity for the flight of both UAVs was set to 2m
and 1m/s, respectively. Fig. 11 depicts a visualization of the
experimental setup and the mission progress. Start and goal
positions are marked as yellow circles for both UAVs. The
real platform (UAV0) was commanded first to fly behind
the obstacle crossing the other UAV’s path and then back
to the start position. The simulated platform (UAV1) was
commanded to continuously fly between two points parallel
to the white-board obstacle.

The UAV0 successfully executed the mission finding a
path around the static obstacle, as well as avoiding collisions
with the UAV1 (Fig. 11). As can be seen, the original
plan (grey line) was invalidated when the obstacle was
perceived. After the OBBTree collision checker update was
completed (red square area), a new plan was found (green
lines). Fig. 12 depicts the actual flight trajectories including
a reactive collision avoidance maneuver performed by the
UAV0. The safety distance which was set to 1.4m for this
flight experiment was never violated confirming the validity
of the proposed dynamic collision avoidance framework in
real-flight conditions.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented a framework for solving
the problem of safe navigation for multiple UAVs operating
in unknown environments. The framework combines reactive
controller based on the Optimal Reciprocal Collision Avoid-
ance (ORCA) algorithm with sample-based path planning
techniques. We have discussed the aspects of integrating a
fast sense-and-react type controller with deliberative path
planners which are capable of generating globally optimal
plans. In the system described we have shown how the
large amount of noisy range sensor data can be processed in

3Vicon: http://www.vicon.com

order to facilitate the usage of path planners. This is done
by first using an octree-based map representation handling
the problem of noisy sensor data. Second, by performing
incremental collision checker updates to assure that potential
obstacle information is considered while the path planners
repair or generate new plans. Experimental evaluations in
simulation and in real flight tests were performed using the
presented system and the results confirmed the applicability
of the method to the problem of multi-UAV navigation in
unknown environments.

The future work will include performing simulations in-
volving more UAV platforms and larger environments since
the used simulation engine allows for running in a distributed
manner. Additionally, focus will be put on applying the
proposed framework to navigating outdoors with the use of
different types of sensors.

ACKNOWLEDGMENT

This work is partially supported by the Swedish Re-
search Council (VR) Linnaeus Center CADICS, the ELLIIT
network organization for Information and Communication
Technology, and the Swedish Foundation for Strategic Re-
search (Smart Systems: RIT 15-0097). The authors would
like to acknowledge the software development support of
Tommy Persson.

REFERENCES

[1] L. E. Kavraki, P. S̆vestka, J. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high dimensional
configuration spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” in Proc. ICRA, 2000.

[3] S. LaValle, “Rapidly-exploring random trees: A new tool for
path planning.” Computer Science Department, Iowa State
University, Tech. Rep., 1998.

[4] M. Wzorek, J. Kvarnström, and P. Doherty, “Choosing path
replanning strategies for unmanned aircraft systems,” in Proc.
of the International Conference on Automated Planning and
Scheduling (ICAPS), 2010.

[5] M. Wzorek, “Selected aspects of navigation and path planning
in unmanned aircraft systems,” Licentiate thesis, Linköping
University, 2011.

[6] G. Conte, S. Duranti, and T. Merz, “Dynamic 3D path
following for an autonomous helicopter,” in Proc. IFAC Symp.
on Intelligent Autonomous Vehicles, 2004.

[7] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Re-
ciprocal n-body collision avoidance,” in Robotics research.
Springer, 2011, pp. 3–19.

[8] D. Alejo, J. Cobano, G. Heredia, and A. Ollero, “Optimal
reciprocal collision avoidance with mobile and static obsta-
cles for multi-uav systems,” in Unmanned Aircraft Systems
(ICUAS), 2014 International Conference on. IEEE, 2014,
pp. 1259–1266.

-4 -3 -2 -1 0 1 2 3 4
x [m]

-4

-3

-2

-1

0

1

2

3
y

[m
]

UAV0
UAV1

Start	and	goal	positions
Obstacle Reactive	

collision	
avoidance

0
4

0.5

1

2 4

z
[m

]

1.5

y [m]

20

2

x [m]

0

2.5

-2
-2

-4 -4

UAV0
UAV1

Reactive	
collision	
avoidance

Figure 12: Real flight experiment results showing the actual trajectories executed during the flight.

[9] K. Yang, S. K. Gan, and S. Sukkarieh, An Efficient Path
Planning and Control Algorithm for RUAV’s in Unknown and
Cluttered Environments. Dordrecht: Springer Netherlands,
2010, pp. 101–122.

[10] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, “Collision-
free 4d trajectory planning in unmanned aerial vehicles for
assembly and structure construction,” Journal of Intelligent &
Robotic Systems, vol. 73, no. 1, pp. 783–795, 2014.

[11] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “OctoMap: An efficient probabilistic 3D
mapping framework based on octrees,” Autonomous Robots,
2013.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, June 2011.

[13] ——, “Incremental sampling-based algorithms for optimal
motion planning,” in Robotics: Science and Systems (RSS),
June 2010.

[14] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree:
A hierarchical structure for rapid interference detection,”
Computer Graphics, vol. 30, no. Annual Conference Series,
pp. 171–180, 1996.

[15] P.-O. Pettersson, “Using randomized algorithms for helicopter
path planning,” Licentiate thesis, Linköping University, 2006.

[16] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and
D. Manocha, “Rvo2 library: Reciprocal collision avoidance
for real-time multi-agent simulation,” 2011.

[17] P. Rudol and P. Doherty, “Bridging the mission-control gap:
A flight command layer for mediating flight behaviours and
continuous control.” in IEEE International Symposium on
Safety Security and Rescue Robotics, October 2016.

[18] M. Wzorek, P. Rudol, G. Conte, and P. Doherty, “Linkboard:
Advanced flight control system for micro unmanned aerial
vehicles,” in IEEE International Conference on Control and
Robotics Engineering, 2017.

[19] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous
indoor quadrotor,” IEEE Transactions on Robotics (T-RO),
vol. 8, no. 1, pp. 90–100, 2 2012.

[20] P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz,
and G. Conte, “Hdrc3 - a distributed hybrid delibera-
tive/reactive architecture for unmanned aircraft systems,” in
Handbook of Unmanned Aerial Vehicles :, 2014, pp. 849–952.

[21] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan,
“Modular openrobots simulation engine: Morse,” in Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), 2011.

