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Abstract—In this paper we address the issue of connect-
ing abstract task definitions at a mission level with control
functionalities for the purpose of performing autonomous
robotic missions using multiple heterogenous platforms. The
heterogeneity is handled by the use of a common vocabulary
which consists of parametrized tasks such as fly-to, take-
off, scan-area, or land. Each of the platforms participating
in a mission supports a subset of the tasks by providing
their platform-specific implementations. This paper presents
a detailed description of an approach for implementing such
platform-specific tasks. It is achieved using a flight-command
based interface with setpoint generation abstraction layer for
vertical take-off and landing platforms. We show that by
using this highly expressive and easily parametrizable way of
specifying and executing flight behaviors it is straightforward
to implement a wide range of tasks. We describe the method
in the context of a previously described robotics architecture
which includes mission delegation and execution system based
on a task specification language. We present results of an
experimental flight using the proposed method.

I. INTRODUCTION

Recent research and development concerning Unmanned
Aerial Vehicles (UAVs) has focused strongly on the vehicle
airframe and its avionics and sensors. Low-level control
systems and navigation functionalities combined with task
and motion planners provide the necessary support for per-
forming missions of low to moderate complexity. However,
mission specification is often manual or semi-automatic and
results in a sequence of actions a robot should perform to
fulfill the mission objectives. This is often time consuming
and also prone to error due to the low level of abstraction
used and the lack of automation in generating plans.

The problem becomes more complex when considering
missions involving collaborating systems. Such missions
typically include multiple platforms together with operators
where interaction between them is necessary to achieve
mission goals. This increases the complexity of the func-
tionalities required by individual platforms as well as of
the architectural support required for collaboration and task
specification.

One way of dealing with the interoperability of het-
erogenous systems in cooperative missions is to split the
definitions of the functional building blocks, the tasks, into

two parts: Generic high-level declarative task specifica-
tions understood by all participating systems, and a set of
platform-specific implementations, each of which interfaces
to the low-level flight functionalities of a particular platform.

Typical high-level tasks for UAVs include taking off, fly-
ing to a sequence of positions, following a target, patrolling
a region, and landing. Traditionally, all these actions are
seen as atomic at the mission level and are handled using
dedicated control functions implementing continuous con-
trol laws. The switching between these tasks is performed
through transitions in a hybrid automaton which combines
continuous control with discrete mode switching.

This approach, however, suffers from a number of short-
comings. First, the transitions between flight functionalities
are potentially non-trivial, requiring adding helper states in
the automaton to preserve the continuity of control signals.
In case of flying robots this usually results in fly-brake-
stop-fly behavior. Second, the repertoire of existing control
functions for performing specific actions or maneuvers is
static. Adding new functionalities requires either restructur-
ing and re-parameterizing existing ones or even developing
completely new ones which is usually time consuming.

This paper shows how platform-specific execution func-
tionalities for common tasks can be implemented using a
flight-command based interface with a setpoint generation
abstraction layer for vertical take-off and landing platforms.
The use of this particular approach gives the ability to easily
implement a wide range of flight behaviors. This includes
functionalities where a high level of interactivity between a
platform and an operator is required. One example of this
aspect is a mission break-in, which involves suspending the
current flight activity, switching to a new one, and eventually
resuming the execution of the original mission.

The functionalities described here are fully implemented
within the Hybrid Deliberative/Reactive HDRC3 architec-
ture for unmanned aircraft systems [1]. This architecture
has been instantiated and used with multiple vertical take-
off and landing aerial vehicles such as the Yamaha RMAX
helicopter and the LinkQuad quadrotor, but is not limited
to use in particular aircraft systems. It combines various
generic functionalities essential to the integration of low
autonomy and high autonomy in a single system and has also
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(b) The layered view

Figure 1: The structure of the Hybrid Deliberative/Reactive (HDRC3) architecture.

The interfaces used to transition between these layers are central to the success of such architectures.
The HDRC3 architecture provides a rich set of interfacing mechanisms:

Interfaces between the Control Layer and the Reactive Layer A specialized language and implementa-
tion is used for interfacing between the control layer and the reactive layer. Hierarchical Concurrent
State Machines are used to specify and implement mode switching behaviors at the control layer.
Additionally they are used to implement low-level reactive behaviors normally associated with flight
control or perception control.

Platform Server Interface Helicopter pilots and ground control personal often think of controlling un-
manned aircraft in terms of a Flight Control Language (FCL) representing various flight modes and
a Payload and Perception Control Language (PPCL) representing various modes of perception and
sensor control. Because this abstraction is so powerful, an independent server exists which imple-
ments this abstraction using two well-defined languages for flight control and perception control,
respectively. Any functionality in the system can access the server through these abstract languages.

Interfaces between the Reactive and Deliberative Layers The notion of robot task specifications and the
processes they invoke are central to the achievement of goal-directed behavior. Tasks can be spec-
ified in many different ways. HCSMs are one way to specify low-level tasks. At the other end of
the spectrum are highly complex tasks which use low-level tasks as primitives. Task Specification
Trees (TSTs) are used as a means of not only specifying such high-level tasks declaratively, but also
providing procedural correlates executable in the system. TSTs therefore provide both a declarative
and procedural means of transitioning between the deliberative and reactive layers. It is often the
case for instance that TSTs are used to sequentialize commands associated with the FCL and PPCL.
Additionally, the output of an automated planner may be viewed as a TST.

3.1.1 Middleware Infrastructure

The functionality in the reactive and deliberative layers of the HDRC3 architecture should be viewed as
sets of loosely coupled distributed processes that are highly concurrent and often require asynchronous
communication with each other. These processes run on multiple on-board (or ground-based) computers,
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Figure 1: Layered view of the Hybrid Deliberative/Reactive
(HDRC3) architecture instantiated for two autonomous plat-
forms: the RMAX helicopter and the LinkQuad quadrotor.
The dashed line outlines the focus of this paper.

been extended for use with multi-platform systems. High-
level tasks are specified through a Task Specification Tree
(TST) formalism that also supports context-dependent and
platform-specific implementations through the use of TST
Executors, which make use of the flight command interface
presented in this paper. TSTs thus provide both a declarative
and procedural means of transitioning between the delib-
erative and reactive layers of a robotic architecture. The
focus of this paper within the HDRC3 robotics architecture
is highlighted using a dashed rectangle in Fig. 1.

The remainder of the paper is structured as follows. First,
the Task Specification Trees are described in Section III
with the emphasis put on the implementation aspects of task
executors. Sections IV and V follow with the description
of the existing low-level control system as well as its
Robot Operating System1 (ROS) based wrapper. Section VI
describes implementations of example TST Executors, and
finally Section VII describes results of experimental flights
using these task executors.

II. RELATED WORK

Software architectures for mobile robots generally use
three-layered (3T) structures, where each layer has specific
temporal properties associated with the length of decision
cycles. The first reactive layer, with the shortest cycles
(orders of milliseconds), consist of a set of reactive skills
which map sensor stimuli directly onto actuators with min-
imal internal state. The second sequencing layer, with a
larger decision cycle (measured in seconds), is responsible
for sequencing of activities. The third layer, with the longest

1ROS: www.ros.org

decision cycles measured in seconds or even minutes, is
the deliberative layer, which is responsible for reasoning
about mission goals through the use of search-based tech-
niques [2]. The traditional 3T structure has been extended
in a number of ways. For example, a four layer variant
has been presented in [3]. A mission management system
based on a 3T architecture for a VTOL UAV has been
proposed in [4]. The paper presents the overall structure
of an architecture and proposes a supervisory system that
interacts with a sequence control system. It, in turn, contains
movement primitives. The model of the transition between
these primitives includes a slow down state which brings the
system into a stand by mode.

An architecture with a more hybrid flavor and slightly
different naming of the layers, deliberative, reactive and
control (HDRC3), has been described in [5]. Its general
structure is presented in Fig. 1. It uses concepts of delegation
and Task Specification Trees described in the following
section and in detail in [1].

A considerable amount of research has been devoted to
addressing the control issues as well as development of
platforms themselves. This has allowed for flying a wide
range of maneuvers – from waypoint following [6], through
take-offs [7] and landings [8] to, for example, employing
machine learning to improve the flight performance over
time [9], or for the purpose of avoiding obstacles [10].

III. DELEGATION AND TASK SPECIFICATION TREES

While this paper focuses on the transition between reac-
tion and control, we must first place these contributions in
their proper context by briefly discussing certain aspects of
the higher deliberative layers in the HDRC3 architecture.

When an unmanned system is viewed as an agent, it is
natural to view the assignment of a complex mission to
that system as delegation, the act of assigning an agent the
authority and responsibility to carry out specific activity. The
HDRC3 architecture uses the delegation concept for dealing
with these issues as well as the problem of task allocation for
multiple systems: A delegator can ask a contractor to take
the responsibility for a specific task to be performed under
a set of constraints representing mission requirements, and
a contractor can in turn ask other agents for assistance by
attempting to delegate subtasks to them [1].

Delegation requires a general and expressive task specifi-
cation language, and HDRC3 uses Task Specification Trees
(TSTs) for this purpose. Inner nodes in a TST can specify
standardized control structures such as sequences (S), con-
current execution (C), conditionals (IF) and loops (WHILE).
Leaf nodes declaratively specify potentially domain-specific
tasks to be executed, typically corresponding to high-level
actions such as taking off or scanning an area. Such tasks are
viewed as elementary and indivisible from the point of view
of a delegator, but during the delegation process, contractors
can choose to elaborate and expand them into trees of

www.ros.org
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Figure 2: Schematic view of the interaction between Task
Specification Trees and platform-specific TST Executors.

subtasks through calls to general task planners or problem-
specific functionalities such as scan pattern generators.

Each task in a TST is parameterized and parameters can
either be specified directly or constrained through a general
constraint language, allowing a certain degree of freedom in
setting parameters in order to satisfy the overall requirements
of a mission. For example, the flight velocity and altitude
for a particular task can be constrained to be within specific
intervals, allowing these parameters to be adapted to fuel
and time constraints.

A platform can accept the delegation of a TST – a mission
or a part of a mission – if it can execute the root node of
that TST. It may then also execute the children of the node
or may delegate those to other participants.

In order to execute a particular node, a platform requires
an executor providing a procedural implementation of the
declarative specification encapsulated in a TST node. Plat-
forms can share implementations of some executors, such as
those corresponding to general control structures. However,
most executors must be platform-specific in order to call
the proper platform-specific functionalities. These executors
must satisfy the general definition of the node type in
question, such as fly-to, and must also explicitly declare
any platform-specific constraints on their parameters. For
example, each platform may have a distinct constraint on
altitude and velocity.

The TST Execution System (see Fig 2 right) is re-
sponsible for interfacing with platform-specific executors.
This architectural element includes support for executing
and synchronizing tasks in a distributed manner, potentially
across several robotic platforms, and is used during the
delegation process as well as during the execution of the
task.

The details of the involved mechanisms, however, are
outside the scope of this work. A detailed description of
TSTs and the delegation functionalities used in the HDRC3
robotic architecture is presented in [5]. From the perspective
of the work presented in this paper, implementing TST
Executors is the most important aspect and therefore the
remainder of this section will focus on this issue.

A. Implementing TST Executors

A TST Executor is implemented as a class. Therefore
the process of implementing platform-specific executors
involves providing program code for a set of predefined
methods as well as setting values in certain data structures
used for specifying execution properties and status feedback
information. Interaction between the TST Execution System
and executors is performed in two phases. First, an executor
participates in a delegation process. Second, the executor
performs the actual execution of a task. An overview of a
lifecycle of an executor is presented in Fig. 3.
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Figure 3: Lifecycle of a Task Specification Tree Executor.

During the delegation process, the TST Execution System
invokes the following methods:

• expand()
• get_constraints()
• check()

As already mentioned, leaf nodes specify potentially
domain-specific tasks which are viewed as elementary from
the point of view of a delegator. Specific implementations,
however, may include an expansion of the task into subtasks.
This process is invoked by calling the expand() method.
Its implementation may involve using problem-specific func-
tionalities or calling a task planner to generate additional
nodes. These are then returned and appended to the tree,
potentially including sequence and/or concurrency nodes.

TSTs provide support for specifying a task’s
context in form of constraints. Therefore a call to
get_constraints() returns any constraints (in a
general constraint language [1]) which are platform-specific
and should be checked for consistency with a constraint
solver for both the delegation and execution phases.
An example constraint to enforce might be a maximum
duration of a task which is limited by the current fuel level.
Obtaining this type of information may require interacting
with the platform directly to get the most up to date set of
constraints. If that is the case, appropriate calls through a
platform’s API are made.

The last call invoked during the delegation phase is
check(). Its purpose is to verify whether the execution



can be performed with the provided input parameters as well
as checking whether other platform-specific requirements are
met. For example, a check whether a camera or a laser range
finder sensors are present, properly configured and ready
to provide data required for the specific task the executor
defines.

Beside implementing the three methods, a TST Execu-
tor additionally has to provide execution information by
setting fields in a data structure summarized in Fig. 4.
The information is used to inform the TST Execution
System whether the execution of the task implemented
using the node can be aborted (can_be_aborted),
paused (can_be_paused), or stopped and finished
(can_be_enoughed). In this context, enoughing means
that the task should stop as enough of it has been performed
(e.g. scanning of an area). It is distinct from aborting which
is considered an abnormal and urgent stopping of a task
which should yield an immediate reaction from the platform.
The execution information can be set directly based on the
intentions of the programmer, properties of the platform,
or can be based on the information provided through a
platform’s API.

Name Meaning

can_be_aborted True if execution can be aborted

can_be_paused True if execution can be paused

can_be_enoughed True if execution can be enoughed

bool can_be_aborted      # True if the execution of the 
node can be aborted.
bool can_be_paused

bool can_be_enoughed

Figure 4: Node execution information provided by a TST
Executor in form of boolean flags.

After a successful delegation the TST Executor performs
its task. It is achieved by the TST Execution System invoking
the following methods:

• prepare()
• start()
• abort()
• {pause|continue|enough}_requested()
Execution of an elementary task through an executor

starts by invoking the prepare() method. Along with
performing a number of predefined housekeeping actions,
a check is carried out to verify whether the system is
ready for execution. This method is similar to check()
(called during the delegation phase) but it is invoked before
imminent execution of the task. This is done because some
time might have passed since the delegation phase and the
circumstances might have changed making the platform no
longer ready to perform the task. If the platform is ready,
however, a call to start() spawns the execution thread
and the actual activity begins.

The task defined by a specific TST Executor can finish
in a number ways depending on the previously provided
execution information. First, it can naturally run its course,
for example, when the platform arrives at the desired loca-

tion or completes a landing. Second, if the TST Executor
allows for it, the execution can be stopped by invoking
the abort() method. Third, for tasks which do not have
a defined end condition, for example, patrolling a region
or following a target, a call to enough_requested()
finishes the execution. An additional way to influence a
task’s execution is to temporarily suspend it. This is possible
if the can_be_paused flag is set to true. If that is the case,
invoking {pause|continue}_requested() methods
will result in suspending and resuming (respectively) the
currently executed task.

Throughout the complete lifecycle a TST Executor has
to provide status information, shown in Fig. 5. The com-
bination of the boolean flags fully encodes the state of the
executor at any give time. After a call to prepare(), the
active flag is set to true. The waiting flag indicates
that the executor is waiting for housekeeping activities to
finish. The executing flag is set to true after the call
to start(). The finished flag set to true specifies
that the executor has finished. The aborted flag is set
to true when the current activity has been successfully
aborted. The succeeded flag is set to true if the execution
finished in a nominal way. The paused flag is set to
true when a successful pause was executed. The textual
field fail_reason provides means of introspection for
a human operator.

Land
TST node

prepare()
start()
abort()

Name ROS Type Meaning

position geopoint Geographical location of the landing. 

land_at_current_position_flag bool Use position or current location.

Name Meaning

active True if executor exists and has started a successful prepare()

waiting True after start when waiting for all wait conditions to be satisfied

executing True when all the wait conditions are met

finished True if the executor has finished

aborted True if the execution of the node was aborted 

succeeded True if the execution of the node was successful

paused True if the execution of the node is paused

fail_reason Reason for a failure

Figure 5: TST Executor status. All fields except a string
fail reason are boolean flags.

Implementing TST Executors using the methods and pro-
viding the information described above allows to transition
from a platform independent task specification to a platform-
specific instance of a task. The provided methods allow
for specifying context in form of constraints as well as
for expanding the leaf nodes into sub-nodes if necessary.
Providing feedback information and executing specific plat-
form functionalities is achieved through appropriate calls to
platform’s API. The following sections provide a description
of such an API for VTOL platforms.

IV. LOW-LEVEL CONTROL SYSTEM INTERFACE

The notion of flight behavior definition and control is
central to performing autonomous missions. As previously
stated, independently of the complexity and the source of



a mission (e.g. a task planer, a template, pre-programmed)
the result is a sequence of elementary tasks a robot should
perform to fulfill the goal of a mission. These typically
include actions such as take-off, flying to a number of
waypoints, landing and so on. The most common way of
implementing the elementary actions is through the use
of control functions implementing continuous control laws.
The switching between these actions is performed through
transitions in a hybrid automata. It combines continuous
control laws with discrete mode switching. The downside
of this approach is that the transitions might be non-trivial
requiring helper states in the automata to deal with discon-
tinuities. Additionally, the number of the existing control
functions for performing specific actions or maneuvers is
usually fixed. Adding new functionalities requires either
restructuring and re-parametrizing of existing methods or
implementing completely new ones which is usually time
consuming.

For these reasons a preferred solution is to take advantage
of an approach based on a highly parametrizable interface
which interacts with the underlying control functionalities.
The idea is based on configurable flight commands which
govern horizontal, vertical and heading control channels
(Fig. 6a). Selecting from a number of modes for each of
these channels and setting their parameters to achieve the
wanted behaviors is very flexible. Additionally, organizing
these parametrized commands into sequentially executed
list allows for specifying a wide range of flight behaviors.
Furthermore, the idea employs a setpoint generation step
which assures continuity and bounds of the setpoints for the
underlying control functionalities. It is configured using the
flight commands on the input side and allows for specifying
constraints on accelerations, speeds and positions being
generated on the output side (Fig. 6b). Moreover, it increases
safety of operation by, for example, making it impossible to
command a UAV to leave a designated operational area or
to exceed a safe speed in the context of the mission being
executed. The setpoint generation layer also alleviates the
problems associated with traditional mode switching as it
assures continuity of setpoint signals for all possible flight
commands. Finally, the generated setpoints are used by the
underlying control system scheme, for example based on
cascaded PID controllers (Fig. 6c).

A detailed description of the approach has been presented
in [11]. The main concepts related to the work presented here
are described in the remainder of this section.

A. Flight command structure

Flight commands are a central component of the method
for interfacing with an underlying control system. A flight
command consists of three main components managing the
control channels, namely horizontal, vertical, and heading,
as well as a miscellaneous component dealing with aspects
such as an end condition of a command.

command 0
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Figure 6: Low-level control system structure and interface:
(a) flight commands, (b) setpoint generation and (c) control
system scheme.

1) Horizontal channel: The horizontal channel governs
movement of a UAV on a plane. The following modes with
parameters and modifiers (see Fig. 7a) are available for the
horizontal control channel:

• Position (HPos): Fly to an absolute, relative or body relative 2D
position with the specified speed and have the specified end speed
upon arrival. Speed can be modified when used with appropriate
vertical or heading commands (see below).

• External position (HExtPos): Similar to Hpos but the parameters are
provided externally as a stream of values. Offset parameters allow to
specify a constant offset from a target position (e.g. 2m to the north
of the target).

• Keep distance: Fly at a constant distance to an externally provided
target position.

• External velocity (HExtVel): Fly with the velocities provided from an
external source (e.g. a joystick).

• RC velocity (HRCVel): Fly with the velocities provided by the RC
transmitter of the backup pilot calculated onboard the platform.

• Do not use (HDNU): Do not use the horizontal flight channel i.e. the
setpoints governing this channel will remain constant.

Upon arriving at the desired position, the end flag (Hend) is
set and can be used to indicate the end of the current com-
mand execution (see Subsection IV-A4). The end condition
is evaluated based on the position setpoints rather than the
actual values (e.g. GPS position). This results in the setpoints
arriving exactly at the desired values (e.g. a waypoint).

2) Vertical channel: The following modes with parame-
ters and modifiers (see Fig. 7b) are available for the vertical
control channel:

• Position (VPos): Equivalent of HPos for the vertical channel i.e. fly
to a specified absolute or relative altitude with specified speed and
have end speed upon arrival.

• With horizontal (VWithHor): Extends the HPos to a 3D case, and
results in flying a straight line path to a waypoint specified including
the altitude.

• External position (VExtPos): Equivalent of HExtPos for altitude. Offset
allows to specify a constant vertical offset from a target (e.g. 2 m
above the target).

• External velocity (VExtVel): Fly with the vertical velocity provided
from an external source (e.g. a joystick).



Control Kernel Parameters Modifiers Output

Position (HPos)

north

east

absolute

relative

body relative end flag (Hend)

speed vertical, heading
end speed -

External position (HExtPos)
offset north 

offset east -

end flag (Hend)
speed vertical, heading

Keep distance (HKeepDist)
distance -

end flag (Hend)
speed vertical, heading

External velocity (HExtVel) - - end flag (Hend)
RC velocity (HRCVel) - - -
Do not use (HDNU) - - -

Horizontal flight channel

(a) Horizontal

Vertical flight channel

Mode name Parameters Modifiers Output

Position (VPos)
altitude absolute


relative end flag (Vend)

speed modifier (Vsm)speed heading

end speed -
With horizontal 
(VWithHor)

altitude - end flag (Vend)

External position 
(VExtPos)

offset altitude - end flag (Vend)

speed modifier (Vsm)speed heading

External velocity 
(VExtVel) - - end flag (Vend)

RC velocity (VRCVel) - - -
Do not use (VDNU) - - -

(b) Vertical

Mode name Parameters Modifiers Output

Position (HdPos)
heading

absolute

relative

stop at heading

end flag (Hdend)

speed modifier (Hdsm)

rate heading

In flight direction 
(HdFlightDir)

offset -
speed modifier (Hdsm)

rate -

External position 
(HdExtPos)

offset - end flag (Hdend)

speed modifier (Hdsm)speed heading

External velocity (HdExtVel) - - end flag (Hdend)
RC velocity (HdRCVel) - - -

Point (HdPoint)
north

east

offset

rate

- end flag (Hdend)

External point (HdExtPoint) offset - end flag (Hdend)
Do not use (HdDNU) - - -

(c) Heading

Figure 7: Control channel modes with parameters and modifiers.

• RC velocity (VRCVel): Fly with the vertical velocity provided by the
RC transmitter of the backup pilot calculated onboard the platform.

• Do not use (VDNU): Do not use this flight channel.

The channel has two additional flags: take-off and allow
landing. These are used to indicate that the commands are
in fact take-off or landing maneuvers, respectively.

3) Heading channel: The following modes with parame-
ters and modifiers (see Fig. 7c) are available for the heading
control channel:

• Position (HdPos): Set the heading to a specified absolute or relative
value with the specified rate. If stop at heading is false, the yawing
will be carried out continually with the specified rate. The use sign
flag allows to force the rotation direction. If set to false, the rate sign
will be ignored and the closer rotation direction will be used.

• In flight direction (HdFlightDir): Set the heading to the offset value
relative to the flight direction (e.g. heading along the path when offset
is 0, or fly ”backwards” for offset of 180 degrees).

• External position (HdExtPos): Set the heading to a value provided
from an external source.

• External rate (HdExtVel): Yaw with the rate provided from an external
source (e.g. a joystick).

• RC rate (HdRCVel): Yaw with the rate provided by the RC transmitter
of the backup pilot calculated on board.

• Point (HdPoint): Set the heading to point towards a specified location
plus an offset.

• External Point (HdExtPoint): Similar to HdPoint but target location
point is provided externally.

• Do not use (HdDNU): Do not use this flight channel.

4) Command end condition: The condition allows for
specifying when the current command should be considered
finished. The end condition consists of a number of elements
with parameters summarized in the table in Fig. 8. The three
elements are evaluated as a conjunction if more than one
type is used at a time.

The first type of the end condition is related to the
three command channels (Fig. 8 - Channel). Depending on
their configuration, Hend, Vend, Hdend output flags are set
to true when appropriate. This happens, for example, when
a waypoint position is reached, or the desired altitude or
heading are achieved. Then, these flags are evaluated if
EH, EV, EHd flags (respectively) of the end condition are
specified (or if any of the channel flags are true for EAny).

Finish condition

Name Parameters

Channel
horizontal (EH)

any (EAny)vertical (EV)
heading (EHd)

User confirmation - (EUser)
Wait time (EWait)

Figure 8: Flight command end
condition structure with pa-
rameters.

The second type
(Fig. 8 - User
confirmation) of the
end condition can
be specified to allow
finishing a command
only if an explicit user
confirmation is provided
through an external signal
(EUser). The confirmation
can be performed at any point of execution of the current
command.

The third type (Fig. 8 - Wait) allows for specifying a
timeout which triggers ending of a command (EWait). If a
flight command consists only of a wait end condition it
effectively becomes a pause.

B. Sequencing of flight commands

A single flight command composed of a selection of
modes and their parameters allows for defining already
expressive but rather simple flight behaviors. For this reason
the commands are organized and executed as sequences.
Thanks to this functionality, the range of the achievable
behaviors is extensive. It can be a single command as,
for example, flying to a waypoint, or a longer sequence
which covers a complete mission from take-off to landing.
Implementing TST Executors using the sequences of the
flight commands takes advantage of this fact. Examples are
provided in Section VI.

C. External data

A number of flight command modes allow the system to
be configured to accept external streams of data influencing
the flight behavior. The purpose of these modes is to allow
more flexibility when it comes to changing flight behavior
in a timely manner, for example, in a closed loop control
fashion. A typical use case is a joystick commanding ve-
locities to the platform. Only one flight command is used
in such a case along with a stream of the desired velocities



received continuously and controlling one or more channels
(see examples in Section VII).

Beside the parameters required for the particular modes,
which are the same as for their non-external counterparts
(cf. tables in Fig. 7), other kinds of data are also expected
with the external data streams. For velocity commands, a
validity time of the data is provided. After this time, if no
new data is received, the system sets the desired values to
zeroes. This prevents a platform from continuing to fly if
communication is lost with the entity providing the data.

D. Setpoint generation and control

The interplay of the setpoint generation step with the
underlying control system plays a major role in the proposed
system. First, it allows for arbitrary and seamless change or
adjustment of commands being executed avoiding the dis-
continuities associated with mode switching. For example,
during flying to a waypoint: it can be switched to another
waypoint; the speed of flight can be adjusted; an operator can
take full or partial control (e.g. adjust altitude, heading), or
it can directly transition into a landing, and so on. Second, it
assures that the generated setpoints are compatible with the
platform’s properties and its control system. Additionally it
allows for applying constraints of a mission being executed
by, for example, limiting the maximum allowed velocities.

A schematic of the process of generating control signals
based on configurations of flight commands is presented in
Fig. 9.

Desired 

parameters
Setpoint 

generation
Control
 loops

ActuatorsFlight
command(s)

Target

parameters


applies to, for example, a stream of velocities provided through
a stream of external data (similarly for external position).
For these, the ending condition is provided along with the
external data streams. More information about these streams
is provided in Section III-D2.

The second type of the end condition can be specified to
allow finishing a command only if an explicit user confir-
mation is provided through an external signal (EUser). The
confirmation can be performed at any point of execution of the
current command. This user confirmation functionality allows
to specify a command (when HDNU, VDNU, HdDNU modes are
used) with an infinite wait requiring an input. This facility can
be used before a landing command of a mission, so that an
operator can explicitly confirm that the landing location is safe
and the manoeuvre can commence. Similarly, it can be used to
synchronise mission execution if several UAV platforms take
part in a mission.

The third type allows for specifying a timeout which triggers
ending of a command (EWait). Note that a flight command can
consist only of a wait end condition, effectively becoming a
pause.

The three elements of the end condition are evaluated as a
conjunction if more than one type is used at a time.

2) External data: Some of the flight commands allow the
system to be configured to accept external streams of data
influencing the flight behaviour. These are the external position
(ExtPos) and external velocity (ExtVel) applicable to all three
control channels, HKeepDist, and HdExtPoint. The purpose of
these modes is to allow more flexibility when it comes to
changing flight behaviour in a timely manner, for example,
in a closed loop control fashion. A typical use case is a
joystick commanding velocities to the platform. Only one
flight command is used in such a case along with a stream
of the wanted velocities provided continuously and controlling
one or more channels (see examples in Section V).

Beside the parameters required for the particular modes,
which are the same as for their non-external counterparts
(c.f. tables in Figures 3 to 5), other kinds of data are also
sent with the external data streams. For velocity commands, a
validity time of the data is provided. After this time, if no new
values are received, the system sets the wanted values to 0.
This prevents a platform from continuing to fly, potentially
indefinitely (within battery lifetime), if communication is lost
with the entity providing the data. In other words, the validity
time dictates the expected update rate of the external data.

As already mentioned, for the external data modes, the
ending condition flags are also part of the data streams. For
such flight commands, it is the provider of the data who is
responsible for the behaviour’s termination.

3) Composing flight commands: The previous sections in-
troduced the concept of flight commands which can be used
to specify a particular flight behaviour. The commands are put
on a list or a queue. The list manipulation operators include
uploading command configuration at a specific index, starting
and stopping execution. It is up to a user to manipulate the

command execution list as desired to achieve the behaviours
with the required level of sophistication.

From the perspective of a higher level interface, a behaviour
can be composed of one or more commands. For example, a
takeoff, a landing or flying to a waypoint can be implemented
using a single flight command, while a behaviour ”go home
and land” can be composed of a number of sequential com-
mands. Furthermore, a sequence of commands can implement
a complete mission from takeoff to landing including complex
behaviours in-between.

A more advanced flight command list manipulation possi-
bilities will be further explored in future work but the current
set of operators allows for specifying and executing complex
autonomous missions.

IV. SETPOINT GENERATION AND CONTROL

The interplay of the setpoint generation step with the
underlying control system plays a major role in the presented
system. First, it allows for arbitrary and seamless change or
adjustment of commands being executed. For example, during
flying to a waypoint: it can be switched to another waypoint;
the speed of flight can be adjusted; an operator can take
full or partial control (e.g. adjust altitude, heading), it can
directly transition into a landing etc. Second, it assures that
the generated setpoints are compatible with the underling low-
level control system and platform’s properties as well as the
requirements of a mission being executed. Additionally, limits
on the generated values are enforced at all times contributing
to the safety of execution.

In this section we describe how the flight commands in-
troduced in the previous section are used in the process of
calculating the control signals. Figure 7 presents an overview
of that process.

Desired 
parameters

Pd
Setpoint 

generation
Control
 loops

ActuatorsFlight
command(s)

Target
parameters

Pt

Fig. 7. An overview of the process of calculating control signals based on
flight commands.

The configuration of a flight command being executed
produces a set of target parameters in a general form of
Pt = [~pt  t speedt ratet]. Depending on a command con-
figuration the set of target parameters will be different. For
example, it could be a subset if any of the channels uses
DNU mode. Similarly, the speed can be given for 2D and
altitude case separately (HPos, VPos), or for 3D case at once
(HPos, VWithHor). For that reason, the following derivations will
present the 3D case as the other ones follow similar principle.
[MAKE CLEARER]

The role of the setpoint generation module is to produce
a trajectory of desired parameters for positions, velocities,
and accelerations: Pd = [~pd ~vd ~ad]. This is achieved using
the constant acceleration model and taking into account the
constraints in form of allowed maximum positions, velocities,
and accelerations Penv = [~penv ~venv ~aenv].
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2) External data: Some of the flight commands allow the
system to be configured to accept external streams of data
influencing the flight behaviour. These are the external position
(ExtPos) and external velocity (ExtVel) applicable to all three
control channels, HKeepDist, and HdExtPoint. The purpose of
these modes is to allow more flexibility when it comes to
changing flight behaviour in a timely manner, for example,
in a closed loop control fashion. A typical use case is a
joystick commanding velocities to the platform. Only one
flight command is used in such a case along with a stream
of the wanted velocities provided continuously and controlling
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(c.f. tables in Figures 3 to 5), other kinds of data are also
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validity time of the data is provided. After this time, if no new
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This prevents a platform from continuing to fly, potentially
indefinitely (within battery lifetime), if communication is lost
with the entity providing the data. In other words, the validity
time dictates the expected update rate of the external data.

As already mentioned, for the external data modes, the
ending condition flags are also part of the data streams. For
such flight commands, it is the provider of the data who is
responsible for the behaviour’s termination.

3) Composing flight commands: The previous sections in-
troduced the concept of flight commands which can be used
to specify a particular flight behaviour. The commands are put
on a list or a queue. The list manipulation operators include
uploading command configuration at a specific index, starting
and stopping execution. It is up to a user to manipulate the

command execution list as desired to achieve the behaviours
with the required level of sophistication.

From the perspective of a higher level interface, a behaviour
can be composed of one or more commands. For example, a
takeoff, a landing or flying to a waypoint can be implemented
using a single flight command, while a behaviour ”go home
and land” can be composed of a number of sequential com-
mands. Furthermore, a sequence of commands can implement
a complete mission from takeoff to landing including complex
behaviours in-between.

A more advanced flight command list manipulation possi-
bilities will be further explored in future work but the current
set of operators allows for specifying and executing complex
autonomous missions.

IV. SETPOINT GENERATION AND CONTROL

The interplay of the setpoint generation step with the
underlying control system plays a major role in the presented
system. First, it allows for arbitrary and seamless change or
adjustment of commands being executed. For example, during
flying to a waypoint: it can be switched to another waypoint;
the speed of flight can be adjusted; an operator can take
full or partial control (e.g. adjust altitude, heading), it can
directly transition into a landing etc. Second, it assures that
the generated setpoints are compatible with the underling low-
level control system and platform’s properties as well as the
requirements of a mission being executed. Additionally, limits
on the generated values are enforced at all times contributing
to the safety of execution.

In this section we describe how the flight commands in-
troduced in the previous section are used in the process of
calculating the control signals. Figure 7 presents an overview
of that process.
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The configuration of a flight command being executed
produces a set of target parameters in a general form of
Pt = [~pt  t speedt ratet]. Depending on a command con-
figuration the set of target parameters will be different. For
example, it could be a subset if any of the channels uses
DNU mode. Similarly, the speed can be given for 2D and
altitude case separately (HPos, VPos), or for 3D case at once
(HPos, VWithHor). For that reason, the following derivations will
present the 3D case as the other ones follow similar principle.
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The role of the setpoint generation module is to produce
a trajectory of desired parameters for positions, velocities,
and accelerations: Pd = [~pd ~vd ~ad]. This is achieved using
the constant acceleration model and taking into account the
constraints in form of allowed maximum positions, velocities,
and accelerations Penv = [~penv ~venv ~aenv].Figure 9: An overview of the process of calculating control

signals based on flight commands.

The configuration of a flight command being executed
produces a set of target parameters Pt which includes target
positions, speeds, rates etc. Depending on the used modes
of the three channels, the set of target parameters varies.
The role of the setpoint generation module is to produce
trajectories of desired parameters for positions, velocities,
and accelerations: Pd = [~pd, ~vd,~ad] based on Pt. This is
achieved using the constant acceleration model and taking
into account the constraints in form of allowed maximum
values Penv = [~penv, ~venv,~aenv].

The final element is a low-level control system capable
of executing trajectories of desired parameters Pd. One
example of such a system is a cascade of PID loops as
presented in [11]. It consists of a set of outer control loops
which control position and produce input to inner loops
which control attitude angles. The output is then fed into
a mixer which produces final signals for servo motors or
speed controllers. This approach is sufficient for most typical

UAV missions for which functionalities such as aggressive
or aerobatic maneuvers are not needed.

V. INTERMEDIATE INTERFACE

The low-level interface and control system described in
the previous section are computationally lightweight and
suitable for implementing in microcontroller class processors
which are typically used for this kind of application. This
allows for achieving robust and realtime performance as
there is no operating system overhead. Typically microcon-
troller code (i.e. firmware) is executed as a single thread with
statically scheduled tasks. However, to allow for integration
with higher level middleware as, for example, the Robot
Operating System (ROS), functionalities such as TCP/IP
connectivity are required.

For this reason, the low-level control functionalities de-
scribed in the previous section are wrapped into an inter-
mediate interface called Quad API (QAPI). It allows for
preserving the realtime properties of execution of tasks and,
at the same time, easy integration with ROS-based system
components. A general schematic of the modules involved
in implementing the QAPI is presented in Fig. 10. Some
aspects of the interface, such as the streaming of the external
data to the system as well as requesting and receiving
telemetry data, are omitted for clarity.
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Figure 10: Integration of the QAPI with the low-level control
system.

There are two main components involved in implementing
the QAPI. First, a ROS-based QuadNode which implements
service calls of the QAPI as well as advertises data topics
which are derived from the platform’s telemetry data. Sec-
ond, the platform’s firmware which implements the low-level
control system and interfaces with the hardware. The two
components interact with each other to allow accessing the
flight control functionalities through a ROS interface which
makes it straightforward to integrate with the TST Execution
System.

A ROS message equivalent of flight commands are put
on a queue (see left side of Fig. 10) to define the wanted
flight behaviors as described in Section IV-B. This allows for
creating behaviors consisting of virtually unlimited number
of flight commands. Due to hardware memory limitations
typical of microcontrollers, only a sub-queue is actually
synchronized with the platform’s firmware at any given time.



This is done by first converting a ROS representation of a
flight command to its C-code equivalent and transferring
it to the microcontroller. During the execution of a flight
behavior, status information is transferred back in form of
telemetry data to allow for advancing of the command queue
and thus updating the flight command list on the platform.

The QAPI consists of the following methods:
• add_command(command)
• run()
• stop()
• pause_direct(behaviour_id)
• pause_after_current(behaviour_id)
• reset()
• user_confirm()
There are two methods which allow for

manipulating the flight command queue. First is the
add_command(command) which allows for appending
commands represented as ROS messages to the queue. The
second, reset(), allows for clearing the contents of the
queue. If any command was being executed by a platform
it is immediately stopped and the platform is brought to a
hover state.

The execution of the command queue is started using
the run() method. This can be done at any time, that
is after a desired sequence of commands is put on the
queue or even before. In that case the execution is started
as soon as any command is placed on the queue. The
execution can be stopped using the stop() method
and it means not advancing to the next command and
the currently executed command will be immediately
stopped if allowed. The command being executed can be
paused directly (pause_direct(behaviour_id))
or after the current command finishes
(pause_after_current(behaviour_id)). Both
kinds of pauses can be invoked with an optional
behaviour_id, to be executed during the pause. A
behavior in this context is a predefined sequence of one
or more flight commands which is used for a number of
typical behaviors such as joystick control (ExtVel). After
this predefined behaviour is finished, the execution resumes
with the next command on the list. The final method of
the QAPI is user_confirm(). It is used to provide an
external user confirmation as part of an end condition of a
flight command (cf. end condition in Section IV-A4).

A typical flow of defining flight behaviors and executing
them using the QAPI is the following. First, one or more
flight commands are added to the queue. Then the execution
is started. If needed the execution can be paused or a
user confirmation is sent. Depending on a command being
executed, a stream can be provided to the system as external
data using an appropriate ROS topic. Examples of this pro-
cess are presented in the following section where a number
of TST Executors are described and the corresponding flight
commands presented.

The following information is provided by the QAPI to
allow for determining the status of the execution of flight
functionalities:

• queue_system_status: Running, Overridden.
• queue_status: Stopped, Running, Waiting for be-

havior and stopping, Waiting for behavior and contin-
uing.

• current_command_index: Current index of the
command being executed.

• current_command_status: Unknown, Stopped,
Running, Paused.

• confirmation_required_status: The com-
mand being executed requires a user confirmation to
finish.

• limit_reached: Position limit reached.
• target_position_unreachable: Externally

provided position is outside the allowed region.
• is_synced: True if the sub-queue is synchronized.
The onboard system provides a number of status vari-

ables sent as telemetry data. Based on the information the
complete state of the onboard execution is known at any
time. The information can be used both as feedback of
the invoked methods as well as status information for the
operator. The queue_system_status informs whether
the onboard system is ready to accept the QAPI commands,
or it is overridden by the backup pilot. This is part of
the safety system which allows the backup pilot to over-
ride the commands being executed. The queue_status
is updated in response to run() and stop() methods.
The current_command_index specifies which com-
mand is currently executed, or will start executing if
run() is invoked. The current_command_status
provides information about the current command. The
confirmation_required_status indicates that the
current command is expecting a user confirmation in order
to finish. The limit_reached flag informs whether the
platform has reached a position limit. This provides feedback
for commands for which the resulting position cannot be
predicted in advance (e.g. velocity based control). The
is_synced flag informs whether the firmware command
list reflects the current ROS queue.

The ROS-based QuadNode which provides the QAPI
functionalities can reside either onboard the platform on
a computer separate from the microcontroller, or can be
executed an a ground station computer. The communication
between the ROS node and the firmware is physically
realized though an RS232 connection in the case of the
LinkQuad platform. It can be wired if the two components
are executed onboard the platform, or wireless, if they are
executed on remote computers.

VI. EXAMPLES OF TST EXECUTOR IMPLEMENTATIONS

Previous sections described the mechanisms involved in
implementing TST Executors as well as a low-level control



system and its interface which allows for achieving different
flight behaviors through parametrization of flight commands.
This section presents how a number of executors are imple-
mented using these functionalities.

It shows how platform independent definition of tasks
are instantiated using a platform-specific API. Thanks to
the expressiveness of the flight command-based interface
presented in Sections IV and V, it is straightforward to map
typical tasks to appropriate flight commands to achieve the
desired flight behavior. Moreover, it is easy to achieve be-
haviors which traditionally would require additional control
functionalities or deep restructuring of the existing ones.

Along with the general information about executor im-
plementations in form of flight command configurations,
information about the specific aspects of the platform used
for experimental validation (see Section VII), the LinkQuad,
are additionally provided where applicable.

A. Take-off

The take-off executor is responsible for making the plat-
form airborne and ready to execute subsequent tasks. This
executor does not have any input parameters. The typical
take-off parameter, the final altitude, is not used in the take-
off executor. The reason is that the executor can be used by
different types of platforms with different requirements, for
example VTOL as well as fixed-wing configurations. There-
fore this and other parameters are not specified and are used
internally as needed by the specific executor implementation.

The configuration of the low-level flight command which
implements the take-off task is presented in Fig. 11. Hor-
izontal and heading channels of the flight command are
not used when configuring the take-off (HDNU and HdDNU).
The vertical channel uses the position mode (VPos) and
the take-off flag is set to true. The altitude to which the
take-off is performed depends on whether it takes place
indoors or outdoors and is typically set to 2 and 5 meters,
respectively, for the LinkQuad platform. The vertical channel
end condition flag (EV) is used to finish the task.
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Figure 11: Take-off executor flight command configuration.

The take-off task implemented on the LinkQuad platform
cannot be paused, aborted, or stopped after it has been
initiated which is reflected by setting all the execution
information flags to false.

B. Fly-to

The fly-to executor defines one of the most common
elementary tasks and is used to bring a platform to a
specified location. The parameters and their meanings are
summarized in Fig. 12a.

Fly-to

TST node

Parameters:

"p", "geopoint", true;

"commanded-speed", "float64"
"speed", "string"
// Qualitative specification of speed. The meaning is platform dependent.
// Possible values: "fast", "standard", "slow"
// If the commanded-speed parameter is specified use that value for commanded speed

"follow_ground_flag", "bool"
"follow_ground_altitude", "float64"

"fly_staight_line_flag", "bool"
// If true fly in a straight line to get to the target position

    // Resources needed
 add_node_resource (id, "fly");
 add_node_resource (id, "fly_to"); // must be _ here

prepare()
start()
abort()

Name ROS Type Meaning

position geopoint Geographical location of the target position.

commanded-speed float64 Wanted speed in m/s.

speed string Qualitative specification: “slow”, “standard”, “fast”.

follow_ground_flag bool Ground relative flight.

follow_ground_altitude float64 Distance to the ground if follow_ground_flag is true.

fly_straight_line_flag bool Enforce straight line flight to the target position.

(a) Executor input parameters.
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(b) Flight command configuration alter-
natives.

Figure 12: Fly-to executor parameters and configuration of
the flight commands.

The target position is specified as a geopoint (longitude,
latitude, and elevation above WGS84 ellipsoid). The desired
speed of the flight can be specified in two ways: as slow,
standard, or fast using the speed parameter, or as a specific
value using the commanded-speed parameters expressed in
m/s. The fly straight line flag is used to specify that the
flight should be carried out along a straight line if set to true.
Otherwise, the shape of the path to fly along is not important
from the perspective of the mission. The remaining two
parameters specify how the altitude of the flight should
be handled. If follow ground flag is true, the flight should
be carried out with the distance of follow ground altitude
meters above the ground. It this case, the executor is also
responsible for making sure all the facilities for detecting
the altitude above ground are present (sensors and/or algo-
rithms).

Two alternatives of the flight commands used to imple-
ment the fly-to executor are presented in Fig. 12b. Horizontal
channel of the flight command uses the position mode (HPos).
The longitude and latitude of the geopoint are recalculated
into a local coordinate system (i.e. north and east in Fig. 7a).
The mode of the vertical channel depends on the value of
the fly straight line flag and is set to VWithHor or VPos (for
true and false, respectively). The heading remains constant
throughout the flight as the HdDNU mode is used.

The LinkQuad specific fly-to executor can be paused and
aborted i.e. the can_be_aborted and can_be_paused
fields are set to true in the node_execution_info
structure.

C. Land

The role of the land executor is to perform a landing at a
current or a specified location, depending on the values of
the input parameters summarized in Fig. 13a.

If the landing maneuver is required to be performed at a
specific location, the land at current position flag is set to
false. In that case, the geopoint specifies the requested land-



Land
TST node

prepare()
start()
abort()

Name ROS Type Meaning

position geopoint Geographical location of the landing. 

land_at_current_position_flag bool Use position or current location.

Name Meaning

active True if executor exists and has started a successful prepare()

waiting True after start when waiting for all wait conditions to be satisfied

executing True when all the wait conditions are met

finished True if the executor has finished

aborted True if the execution of the node was aborted 

succeeded True if the execution of the node was successful

paused True if the execution of the node is paused

fail_reason Reason for a failure

(a) Executor input parameters.

Horizontal Vertical Heading
End 

condition Flags

DNU Pos DNU EV Takeoff

Alternatives Horizontal Vertical Heading End 
condition Flags

1 Pos Pos Pos EH, EV, EHd HHdSM

2 Pos WithHor Pos EH, EV, EHd HHdSM

Horizontal Vertical Heading End 
condition Flags

DNU Pos DNU EV Allow landing

Seq. no. Horizontal Vertical Heading End 
condition Flags

1 Pos WithHor Pos EH, EV, EHd -

2 DNU Pos DNU EV Allow landing

Horizontal Vertical Heading End 
condition Flags

DNU DNU DNU EWait -
Horizontal Vertical Heading

End 
condition Flags

Pos Pos Pos EH, EV, EHd HHdSM

TO

Fly to

land

Wait
sgs

(b) Flight command configurations.

Figure 13: Land executor parameters and the flight com-
mands.

ing location. Otherwise, the landing should be performed at,
or close to, the current location.

In the former case, the land executor uses both com-
mands presented in the table in Fig. 13b. The first one,
is used to bring the platform to the required geopoint
location (similarly to a fly-to). The second command is
configured as follows: the horizontal and heading channels
are not used (HDNU and HdDNU), and the vertical channel
is configured to use the position mode (VPos). Additionally,
the Allow landing flag is used, to enable the detection of
touchdown as described in [11].

D. Wait

The role of the wait elementary task is to provide means
to specify a timed period of inactivity of a platform. The
amount of time to wait is provided as a task input parameter.
The implementation of the task using the low-level flight
commands interface is straightforward. All three channels
are configured to be inactive (HDNU, VDNU, and HdDNU) and
the end condition uses EWait parameter to specify the amount
of time for the wait.

E. Scan-ground

The purpose of the scan-ground executor is to perform a
flight following a scanning pattern. This is a generic func-
tionality required in various missions, for example mapping,
searching for entities of interest, end so on. Depending on
the requirements of the mission different sensors can be
used, for example, a camera, a laser range finder or an
ARTVA (avalanche beacon). The input parameters and the
configuration of the flight commands are presented in tables
in Fig. 14a.

The area to be covered during the execution of the
scan-ground task can be specified in two ways. The first
is to provide coordinates of a polygon using the area
parameter and the sequence of waypoints which guaran-
tees the area coverage can then be calculated using the
algorithm presented in [12]. The second way is to set
the waypoints scan flag to true and provide the list of
waypoints directly. In that case the following additional

Scan-ground-single

TST node

Meaning
Specification of the area to scan.

If true scan flying the waypoints instead of area scan.

Interpret the waypoints as a sequence of straight line 
segments to fly
 If true fly segments or waypoints in any order

"fast", "standard", “slow”, unspecified

"high", "standard", “low”, unspecified

 If this is true we are in patrol mode and repeat the scan 
of the area
“artva”, “laser”, “camera”

In degree, wanted fov, real fove might be restricted by 
actual sensor fov and sensor side resolut
Used to identify the result of the scan.

If true generate scan specs and put in queue

Default is "approved" if nothing is specified. Possible to 
specify: "wait-for-approval"
    // This default is overridden by the value in the SWM.

Name ROS Type Meaning

area geopoints Specification of the area to scan.

waypoints_scan_flag* bool If true scan flying the waypoints instead of area scan.

*waypoints geopoints A list of waypoints.

*loiter_mode string Behavior at a waypoint.

*segment_flag bool Interpret the waypoints as a sequence of straight line segments.

*any_order_flag bool  If true fly segments or waypoints in any order.

speed string "fast", "standard", “slow”, unspecified.

altitude string "high", "standard", “low”, unspecified.

follow_ground_flag bool Terrain following flag.

follow_ground_altitude float64 Terrain relative altitude.

repeat_flag bool If this is true we are in patrol mode and repeat the scan of the area.

sensor_type string “artva”, “laser”, “camera”.

data_uuid string Used to identify the result of the scan.

generate_scan_specs_flag bool If true generate scan specs and put in queue.

(a) Executor input parameters.
Alternatives Horizontal Vertical Heading End 

condition Flags

1 Pos WithHor DNU EH, EV -

2 Pos ExtPos DNU EH -

Horizontal Vertical Heading
End 

condition Flags

Pos Pos Pos EH, EV, EHd HHdSM

sgs

(b) Flight command configuration alternatives.

Figure 14: Scan-ground executor parameters and the flight
commands.

parameters can be used. The behavior at a waypoint can be
specified using the loiter mode. The segment flag specifies
that the waypoints are describing segments, that is the flight
between these segments can be performed in an arbitrary
way. The any order flag allows to specify that the order of
scanning segments does not have to be enforced. The fol-
low ground flag and follow ground altitude have the same
meaning as for the fly-to executor. The speed and altitude
parameters describe the respective values qualitatively, it is
up to the executor to assign appropriate platform-specific
values. The repeat flag allows to specify that the scanning
should be done continuously. This way it is possible to
execute the mission of a patrolling type. The sensor type
parameter allows for specifying which sensor should be used
during the execution of the task. The data uuid parameter
specifies that the data collected during the execution of
this task should be labeled with this unique identifier. The
generate scan spec flag specifies that the executor should
generate a sub-area of interest to be subsequently scanned.

Two alternatives of flight commands used to implement
the scan-ground executor are presented in Fig. 14b. The
horizontal channel of both flight commands uses the position
mode (HPos). The parameters of positions to fly to are
re-calculated to the local coordinate system based on the
list of the provided waypoints or on the output of the
scan pattern generation algorithm. The vertical channel uses
either VWithHor or VExtPos modes. The latter one is used to
implement ground relative flight when follow ground flag
is set to true. The externally provided altitude to fly at
is calculated taking into account readings from a ground
proximity sensor (e.g. a laser range finder).



The LinkQuad implementation of the scan ground execu-
tor has all three execution info flags: can_be_aborted,
can_be_paused, and can_be_enoughed set to true.

F. External-velocity

The purpose of the external-velocity executor is to allow
for flight with velocities (including yaw rate) provided from
an external source (external from the perspective of the low-
level control system and provided as a ROS topic). A typical
example of the usage of this executor is to enable an operator
to control a platform using a joystick. It can also be used
for any other application where this mode of operation is
needed (e.g. visual servoing).

All three channels use the external velocity (ExtVel)
modes. The command is finished by the user confirmation
end condition (EndUser). Since this type of a command has
no inherent end, the finish condition has to be provided by
the user.

VII. EXPERIMENTAL VALIDATION

The system presented in this paper has been fully
implemented and used in numerous autonomous mis-
sions. This section presents results of one example mis-
sion. Its structure is of a generic scan and search
type and is similar to the one presented in [13].

Figure 15: Task Specification
Tree of the experimental mis-
sion.

The experimental setup is
as follows. The ground
operator selects an area
to scan for salient points
(e.g. a missing person).
This area is provided as
an input to the scan-
ground executor. A scan-
ning pattern in form of
a sequence of waypoints
is generated. During the
execution of the scan, the
operator monitors the live
video from the platform.
Upon noticing a potential
person, the operator can brake-in and be given direct control
of the platform (velocity control using a joystick). Depend-
ing on the result of the closer investigation, the operator
can resume the execution, or indicate that enough of the
mission has been performed and thus skipping the remaining
waypoints of the scan because the missing person has been
found. In the latter case, the execution of the mission
continues with a flight to a predefined location, and finishes
with a landing. Fig. 15 presents the Task Specification Tree
for the experimental mission. It consists of a sequence
of four tasks: take-off, scanning of the area, flying to a
predefined location, and performing a landing.

The example mission was performed using the LinkQuad
platform (80cm propeller tip-to-tip size ) in an indoor motion

capture arena2. The state estimate was provided externally
to the onboard system as a substitute for a GPS, a compass,
and a pressure sensor used for state estimation for outdoor
flights. Beside this aspect, the complete system is used both
in indoor and outdoor flights in an identical manner. The
platform and its architecture which allows for such mode of
operation is presented in [14].

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

(a) Position and its setpoints during the mission.

TST Executor
Segment 
endpoints Horizontal Vertical Heading

End 
condition Flags

take-off p0-p1 DNU Pos DNU EV Takeoff

scan-ground p1-p5 Pos Pos Pos EH, EV, EHd -

scan-ground
(paused)

p5-p6 ExtVel ExtVel ExtVel EUser -

scan-ground p6-p9 Pos Pos Pos EH, EV, EHd -

scan-ground 
(paused/enoughed)

p9-p10 ExtVel ExtVel ExtVel EUser -

fly-to p10-p11 Pos Pos Pos EH, EV -

land p11-p12 DNU Pos DNU EV
Allow 
landing

(b) Configurations of the flight commands im-
plementing the executors.

Figure 16: Experimental validation mission setup and results.

Fig. 16a presents the plot of the flight path of the
experimental mission. The area to scan is denoted using a
green line. The resulting scan pattern is depicted using a
dashed gray line, and the waypoints are highlighted with
circles. The position setpoints (cf. Pd in Section IV-D) are
drawn using blue lines and the actual path during the flight
is marked using the red line.

Fig. 16b shows the flight commands implementing the
TST Executors used in the presented mission. Executors:
take-off, fly-to, land are implemented using single flight
commands while scan-ground consists of a sequence of
flights to waypoints of the scanning pattern. Additionally,
a pause is executed during the scan (at points p5 and p9).
This results in executing a flight command which puts all
the flight channels into external velocity modes. In this case
the operator uses a joystick to command the platform to

2Arena equipped with ten T10 and six T40-S Vicon cameras covering
approx. 10×10×5m volume.



go closer to the point of interest. The operator continues
the execution of the scan at p6. After the second pause at
p9, however, enough action is issued (at point p10) which
finishes execution of the scan without reaching the last
waypoint. The mission continues with the next executor at
p10, and a flight to p11 is performed. Finally, the mission
finishes with a landing.

Despite exchanging flight commands during the flight, the
setpoints remained continuous from takeoff to landing. All
flight behaviors were achieved by appropriately parametriz-
ing the modes of flight commands. The maximum absolute
control error measured for the horizontal channel was:
39.1cm with root-mean-square (RMS) of 14.1cm. For the
vertical channel (excluding takeoff) the values were: 19.2cm
and 5.4cm, respectively. This shows that the underlying
control system using cascaded PID loops provides sufficient
control accuracy for this kind of mission.

VIII. CONCLUSION

We have presented an approach to connecting mission-
level task definitions with low-level control functionalities.
This has been achieved taking into account architectural
requirements of missions involving multiple heterogenous
UAV platforms. We have described how platform-specific
implementations of parametrized generic tasks can be re-
alized using a flexible low-level control system interface.
This has been done in the context of a previously de-
scribed robotics architecture. We have shown that by using
a flight-command based interface and control system at an
appropriate abstraction levels it is straightforward to im-
plement platform-specific task executors. This has allowed
for implementing a wide range of common tasks only by
appropriate parametrization of the control interface. It did
not require any development of new flight control functions.
The presented system has already been used in numerous
missions and one example mission has been presented and
described.
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