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Abstract— We present a general framework to estimate the
parameters of both a robot and landmarks in 3D. It relies
on the use of a stochastic gradient descent method for the
optimisation of the nodes in a graph of weak constraints where
the landmarks and robot poses are the nodes. Then a belief
propagation method combined with covariance intersection is
used to estimate the uncertainties of the nodes.

The first part of the article describes what is needed to define
a constraint and a node models, how those models are used to
update the parameters and the uncertainties of the nodes. The
second part present the models used for robot poses and interest
points, as well as simulation results.

I. INTRODUCTION

A. Simultaneous Localisation and Mapping

Accurate localisation and accurate environment models
are essential for a robot to accomplish its mission. While
accurate localisation can be obtained from an accurate envi-
ronment model, and the other way around, it is very seldom
that accurate models or accurate localisation is available. It
is therefore needed to compute both at the same the time,
which is referred as the SLAM (Simultaneous Localisation
and Mapping) problem.

An extensive overview of existing solution to this problem
is provided in [4], [1]. The most famous and widely used so-
lution to the estimation of landmarks positions and robot pose
relies on the use of an Kalman filter [13]. However, since the
SLAM problem is non-linear, a linearisation approximation
is needed to be able to use a Kalman filter, also, in a real
time system, the computational complexity of the algorithm
limit the number of features that can be inserted in the map,
as well as the memory requirement.

The main solution around this problem is the use of
submap [5]: the robot construct independent local maps,
with a limited number of features, and then a transformation
between each submaps is recorded in a graph. When a loop
closure happens, the position of each submaps is updated.
However, the main drawback is that since maps are inde-
pendent, when a landmark is shared between two maps, its
parameters in one map are not updated with the observations
made in the second map, which leads to poorly estimated
parameters for those landmarks.

In [11], Piniès proposed a method that allow to share
consistently some information between maps while keeping
the submaps independent. The cost is an overhead on the
size of each maps.
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An alternative to the use of the Kalman filter has also been
investigated, most notably, the Graphical SLAM approach
[6], [15], it is deriving from the EKF, a graph of robot pose
and nodes is built, but it suffers from problems during loop
closure. They are also limited to a robot evolving in a plane.

Those methods have the advantage to recover the full
trajectory of the robot, and many of the improvement of those
methods only estimate the trajectory, landmarks positions
are to be estimated separately. The efficiency problem of
those methods have been addressed by Olson in [10]. He
proposed to insert robot pose into a tree, and then a rotation
and translation error is computed for each constraint, and
used to adjust the parameters of the pose along the tree.

Olson methods is limited to the second dimension, because
it relies on the commutativity of rotations, which is only
correct in two dimensions, in three dimensions, only rotation
with the same axis can commute. But in [7], Grisetti demon-
strated how to solve this problem, using a spherical linear
interpolation [2], and his algorithm is capable of optimising
a full trajectory in three dimensions, using full constraints
between the nodes. However, their are two limitations for
both algorithms, they are limited to the estimation of the
trajectory, and they do not provide uncertainties for the robot
poses. This algorithm has been generalised in [8] for any
kind of graph of full constraints, but dropping support for
incremental optimisation.

While it is possible to recover the landmarks positions
given an accurate robot trajectory, we believe that the lack
of estimation of landmarks parameters is a serious limi-
tation of those algorithms. Especially since it implies the
need for computing full constraint from each observation
of the environment. This is acceptable in a two dimensions
environment, with the use of a 2D scan laser, but in a 3D
environment, this impose severe restriction on what kind
of sensor can be used: either a stereo-vision system, or a
3D laser. Both are complex systems, relatively expensive,
heavy and space consuming, which prevent to use them on
many robotic systems, for instance small UAV. Also, even for
stereo-vision based SLAM, it has been demonstrated that it is
better to consider both camera as two different sensors [14],
as it allows the modelling of uncertainties in the calibration.

The goal of this article is to address those problems, and
our main contribution is to extend the optimisation algorithm
presented in [7] to work with any kind of landmarks in
three dimensions, as well as any kind of constraint with
incremental updates. The second contribution is to provide
a method to compute uncertainties. To achieve those goals
a stochastic gradient descent method is used to update the
parameters of the nodes in the graph, and belief propagation



Fig. 1. Represents a graph of objects and the constraints between the
objects, where O0, O4, O6 and O8 are robot poses, O1 and O5 are points
and O3 and O7 are facets. C0,4, C4,6 and C6,8 are constraints coming from
an odometer.

combined with covariance matrix intersection is used [16].

B. Graph modelling

When representing the SLAM problem as a graph, nodes
represents objects Oi, whose parameters are unknown, like
robot poses and landmarks. And the edges are the constraints
Ci,j between two objects Oi and Oj . Those constraints are
computed from observing the environment. For simplicity,
objects are indexed in order of observation, so that if i < j,
then object Oi is more ancient than Oj .

Figure 1 shows an example of graph, with the constraints
between objects.

The constraint network optimisation technique presented
in [7] is limited to objects parametrised by a rotation and
translation, which is the case of robots pose, and to a lesser
extent to planes, but this does not work for other features
like points or segments. Also in [7] the constraints have to
contain the full transformation: rotation and translation.

For the algorithm presented in this article, any type of
object parameters can be used, provided that a model of the
objects is given, including the following functions:
• initialisation this function uses one or several con-

straints to compute a first estimation of the parameters
of an object, as well as the associated uncertainty

• rotation update this function rotates the object on itself,
in case the object is a point, this rotation can be ignored.

• translation update this function translate the object
Also, for each type of constraints, a different model of

constraint will be used, and it will need to provide the
following functions:
• rotation error r̂ci,j this function compute the rotation

error between the two nodes, it is defined as the rotation
that need to be applied on Oi so that the constraint is
fully satisfied

• translation error t̂ci,j . this function compute the trans-
lation error between the two nodes, it is defined as the
translation that need to be applied on Oi so that the
constraint is fully satisfied

• constraint observation model h(Oi,Oj) it is the func-
tion that given the state of Oi and Oj computes the

Fig. 2. Objects tree associated with the graph of figure 1. The connection
represent the parent to child relation.

constraint parameters, the Jacobian of this functions are
used to update the uncertainty of the state of each node.

The next section explains how this object and constraint
models are used to compute an update of the parameters and
of the associated uncertainties of the objects contained in the
graph.

II. WEAK CONSTRAINTS NETWORK OPTIMISER

A tree structure is used along the graph to keep the
parameters of the graph, so that they are expressed locally
with respect to a parent. One of the reason is that the global
parameter of the objects is rather meaningless, in the sense
that when the robot is far away from its initial position, the
uncertainty on the position of the objects will be important.
By using local information, the relative uncertainty with the
surrounding object remains small. An other reason for the
tree structure is that it will be used to propagate the rotation
and translation adjustment between nodes of the graph. Also
it is interesting to note that cutting a part of the tree would
give us a local map of a part of the environment.

Figure 2 shows an example of tree associated to the graph
presented in figure 1.

As in [10], [7], for each constraint Ci,j between the objects
Oi and Oj , given that OAi,j is the common ancestor of
both objects in the tree, the optimisation process is going
to minimise the rotation and translation error on the path
Pi,j = Oi → OAi,j −→ Oj closed by the constraint Ci,j .

The optimisation algorithm follows those steps:
1) Initialise the tree structure and the objects initial pa-

rameters
2) For each constraints Ci,j

a) Compute the rotation error r̂ci,j and use it to
update the nodes parameters

b) Compute the translation error t̂ci,j and use it to
update the nodes parameters

3) For each node, update the uncertainty matrix
4) Repeat step 2 and 3 until the parameters have con-

verged
The remaining of the section will go over the detail for

each of the steps, first an explanation of how the tree structure
is constructed is provided, then how the computation error
and translation errors are propagated. Then the algorithm to



provide update for the uncertainty matrix is given, and the
last part is a discussion on how to use the algorithm when
building the map incrementally.

A. Tree structure

The tree structure is constructed in the same way as [7].
However, it is important to note that not all type of objects
can be parents. Indeed, it is required that the parent is a pose,
otherwise it would not be possible to express the parameters
of the children in function of its parent: a robot pose is a pose,
but points or segments are not, under some circumstances,
a plane can be used as a pose [3]. Also since the tree is
used to generate path for the update process, it is important
to keep a good balance on the length of each path. A long
path would allow to propagate the error correction quickly,
but will have a high computational cost, while a short path
will require more iteration to propagate the error.

A good compromise can be achieved by trying to minimise
the length l(Oi) of the path between an object Oi and all
the object it is connected to. Therefore the tree is constructed
following those rules:
• The root of the tree is the first pose of the robot
• For an object Oi connected to a set of objects {Oj}, the

parent will be Ok the connected object with the shortest
connection to the root:
Ok ∈ {Oj} such as: ∀j, l(Ok) < l(Oj). In case Ok is
not a pose, the parent of Oi will be set to be the parent
of Ok, as long as Ok was not observed at the previous
time.

It shall be noted that constructing the tree in such a way
does not guarantee to get an optimal tree, but it is efficient,
and in case of a loop closure, it will still be able to ensure
that the distance between the node of the two ends of the
loop is minimal.

This is an other difference with the tree used by Grisetti
in [7], since in our algorithm, it is not necessary true that
there is a constraint between the parent and a child in the
tree.

The reason that the parent of a landmark is used, instead of
restricting to the objects directly connected, is that it would
lead to the tree being constructed as a long chain of robot
pose, and when the robot closes a loop the full chain would
have to be evaluated, leading to a slower convergence rate.

B. Update objects parameters

As in [7], the rotation and translation errors are distributed
on the objects of the path, and the update is done in two steps,
first the rotation is updated, then the translation.

The path Pi,j =
{
Ol/l = pi,jk

}
is the sequence of n

objects that needs to be traversed in the tree to connect object
Oi and Oj . pi,jk is suite that gives the indexes of the objects
of the path, it is defined such as pi,j1 = i and pi,jn = j, and
the index R = pi,jr is the root of the path, such as OR is
the parent of OQ and of OS with Q = pi,jr−1 and S = pi,jr+1.
TA→k is the transformation between the common ancestor
and an object k in the path.

a) Update of the rotation: The rotation error is com-
puted using the constraint model function r̂ci,j , and its update
is distributed along the path, using the slerp method [2]. In
practise, if r̂ci,j = (θi,j ,xi,j), where θi,j is the angle of the
rotation and xi,j its axis.

0 < k < rrupdatek = Ti→k ⊗−r′k ⊗ T −1
i→k (1)

r < k ≤ nrupdatek = Ti→k ⊗ r′k ⊗ T −1
i→k (2)

ck = λr ·
wk
n∑

i=1,i6=r
wi

(3)

r′k = (ck · θi,j ,xi,j) (4)

The node model is then used to update the parameters of
the object k with the rotation rupdatek .

b) Update of the translation: The translation update is
more straightforward, and it is done by simply translating
the objects:

0 < k < rtupdatek = −ck · TA→k · t̂ci,j (5)

r < k ≤ ntupdatek = ck · TA→k · t̂ci,j (6)

ck = λt ·
wk
n∑

i=1,i6=r
wi

(7)

The node model is then used to update the parameters of
the object k with the translation tupdatek .

c) Damping coefficients: λr and λt are damping values,
that are inferior to 1, to avoid the optimisation to overshoot
and whose value is decreased iterations after iterations. It
is also possible to give a higher value to λr and λt for
constraints with the lowest uncertainty, this will gives the
constraints with highest information more importance than
the one with lowest.

While the wk are computed from the uncertainty of the
nodes parameters, a higher coefficient is given for nodes with
higher uncertainty so that they get more updated than nodes
whose parameters are already well known.

C. Update information matrix of objects

Since the steepest gradient descent does not provide a
method to update the covariance matrix of the estimate of
landmarks parameters nor of robot poses, it is necessary to
use a different method. In [16] proposed an improvement
to the loopy belief propagation [12] that does apply to pose
graph (such as [7]), however this method is not directly appli-
cable to our problem, since it computes a global uncertainty,
and we are interested in computing local uncertainty. Also
in [16], the spanning tree used to compute the uncertainty
require the existence of a constraint between the parent and
the child, while this is reasonable for a pose graph, in our
case, when a loop closure happen, recent poses get connected
to older poses in the tree, without the existence of a constraint
between them.

Compared to [16], a more general formulation is used,
given xi the state of the node i, while hk(xik , xjk) is the



observation function of the constraint between node ik and
node jk, zk is the observation of the constraint. The goal of
the algorithm is then to minimise the following function:

δΘ∗ = argmin
δΘ

K∑
k=1

‖Hikδxik + Jjkδxjk − ck‖2Rk
(8)

Where Rk is the covariance of the zero-mean measurement
noise, Hik and Jjk are respectively the Jacobian of hk with
respect to a change in xik and in xjk . ck is the measurement
prediction error: ck , zk − hk(xik , xjk).

The distributions parameters are then given by:

Λij ,

[
Λiiij Λijij
Λjiij Λjjij

]
=

[
HT
ik

JTjk

]
R−1
k

[
HT
ik

JTjk

]T
(9)

For each constraint, the mutual information shared be-
tween the nodes i and j can be computed:

M i
ij = Λiiij − Λ

ij
ij(Λ

jj
ij +Mj)

−1Λjiij (10)

The resulting information matrix M i is given by the
intersection of all the mutual information M i

ji, for the nodes
which share a constraint:

M i =
∑
j

ωijM
i
ij (11)

Where
∑
j ωij = 1, and ωij are chosen to maximize the

determinant of Mi using a gradient descent technique.

D. Incremental updates

For an use in a robotic system, it is often desirable
to get incremental update, so that the robot get benefits
from better localisation and better environment model while
performing its current task. The algorithm can be used in
such a context rather easily: new poses, new landmarks and
new observations are continuously added to the graph, and
the iteration process can run in the background.

Also, it is good to reset the damping coefficients when
new nodes are added, otherwise either old constraints gets
more importance than new one, or the other way around.

III. FEATURE MODELS

The feature models are used to update the parameters of
the features. Those update are rather straightforward since it
is mostly a matter of a applying a rotation and a translation.

A. Pose

A pose is modelled as a rotation part R and as a translation
t. The update is simply done by the following equations:

Rn = Rup ·Rn−1 (12)
tn = tup + tn−1 (13)

The initialisation is done using the odometric information.

B. Point 3D

A point 3D is modelled with a translation t. The update
is simply done by the following equation:

tn = tup + tn−1 (14)

The initialisation process depends on whether a full ob-
servation of the point is available, like with a stereovision
process, in which case the translation t is computed from the
observation.

In case of a monovision process, only the direction d is
known, and t = α · d, where α is not available from the
observation. For the EKF filter, it has been suggested in
[9] to use an inverse depth representation t = d/β, which
allow to take an arbitrary β and associate it with a small
covariance, which allow to keep the linearisation constraints
of the EKF filter. However, an optimisation process is not
sensitive to lineariation issues, but the convergence rate is
faster if the initial values are close to the solution (it also limit
the problem of local minima), it is therefore better to wait
for a second observation and to compute the inital position
as the line interesection.

C. Plane 3D

A plane in the environment does not give easy access to a
pose, because while it is possible to define a normal and an
origin, it is more tricky to measure accurately an orientation
vector in the plane, we have define one in previous work
[3], for small planes detected around interest points using
a camera, but if the robot using a LIDAR it is not easily
possible to define a stable orientation. However, not being
able to define an orientation vector does not prevent to use
the same model as the pose model, but it will be important
to keep in mind that the orientation vector in the plane is
meaningless, which has consequences when computing the
rotation and translation error, but also it means that a plane
cannot be used as the parent of other objects inside the tree.

IV. CONSTRAINTS MODELS

The main purpose of the constraint models is to provide
the rotation and translation error between the two nodes
connected by the constraint. But the models are also used
to compute update to the uncertainties.

In the context of the constraint models, the full path and
graph does not matter, only the two object Oi and Oj as
well as their common ancestor Oa in the tree.

A. Full 3D: between two poses

This model is used between two poses Bi = (Ri, ti) and
Bj = (Rj , tj), expressed in their respective parent frame,
while (Ra→i, ta→i) and (Ra→j , ta→j) are their parameters
expressed in the common ancestor frame. The parameters of
the constraint can be computed from odometers, GPS... It is
perfectly acceptable to compute a constraint from two type
of sensor, like a wheel and gyroscope.

The full 3D constraints includes a rotation part Ri→j and
a translation part ti→j .



Fig. 3. Rotation and translation error for a point Pj observed from the
pose Bi, with the constraint Ci,j .

d) Rotation error:

r̂ci,j = Ri · (Ri→j ·R−1
a→j ·Ra→i) ·R

−1
i (15)

The term r̂ = (Ri→j · R−1
a→j · Ra→i) is the product of

the constraint rotation by the parameters of both poses, this
terms tend toward the identity rotation, until the constraint
is fully satisfied.
r̂ is then multiplied by Ri and R−1

i because in three
dimensions, rotations are not commutative. And the update
equation for a node is given by equation 12, as you can see,
in case the correction is only applied on the node i, using
equation 1 to compute the value of the rotation update:

rupdatei = r̂ci,j (16)

Ri ← r̂ci,j ·Ri = Ri · r̂−1 (17)

Then if the new value of Ri is used in equation 15, the
rotation error is equal to the identity.

e) Translation error: t̂ci,j is the translation given by the
following transformation:

(R, t̂ci,j) = Ta→i ⊗ T ci→j ⊗ T −1
j→a (18)

t̂ci,j = Ra→i · tci→j + ta→i − ta→j (19)

f) Constraint observation model: The constraint obser-
vation model is simply given by:

hi,j = B−1
i ⊗Bj (20)

B. Direction to a 3D Point from a pose
This model is used between a pose Bi = (Ri, ti) and

a point Pj = (tj), expressed in their respective parent
frame, while (Ra→i, ta→i) and (ta→j) are their parameters
expressed in the common ancestor frame.

In this paper, we focus on the case where only the direction
to the 3D point is known, as provided by a monocular system.
Figure 3 shows the geometry associated with computed the
rotation and translation error for this model.

g) Rotation error: It is simply define by the rotation
around Bi that would move the point Pj on the line that
follow the direction of the constraint Ci,j :

r̂ci,j = Ri ·
(
cos−1

(
〈BiPj , Ci,j〉
‖BiPj‖

)
,
BiPj ∧ Ci,j
‖BiPj‖

)
·R−1

i

(21)

h) Translation error: In case of a stereovision model,
it would be possible to use the constraint to compute the
position of the point on the line of direction Ci,j , and
from there the translation error would be given by the
translation Pj to that point. But in the monovision case,
the depth information is not available, and any point on
the line would satisfy the constraint Ci,j , however it is
preferable to minimise the translation, for the reason that
it would minimise the error that will be created on the other
constraints in the graph.

Given P⊥j the orthogonal projection of Pj , the translation
error is given by:

t̂ci,j = P⊥j − Pj (22)

i) Constraint observation model: The constraint obser-
vation model is simply given by:

hi,j = SphericalAngles(R−1
i · (Pj − Pi)) (23)

Where SphericalAngles is a function that return the two
spherical angles of a vector.

V. SIMULATION

We analyse simulation results for a large loop, a smaller
loop but with an increase uncertainty, and finally a Monte
Carlo simulation to evaluate the validity of the uncertainty
model.

For the experiment, the following uncertainties models
were used: the diagonal of the covariance for the odometry
(x, y, z, roll, pitch, yaw) is (σt, σt, σt, σθ, σθ, σθ). While the
diagonal of the covariance for the direction vector between
the robot and a point is (σω, σω).

A. Large environment

In this experience, the robot is following a circular tra-
jectory of 100m diameter, and its vertical position oscillate
between −1m and 1m. The odometry has an accuracy of
σt = 0.01m/m for the translation parameters, and of σθ =
0.001rad/m for the angles parameters, while the accuracy
on the direction for the interest points is σω = 0.001rad.
We believe that those values are representative of an error
model for average sensors.

In the environment of the simulation the points are set on
two grids, at altitude z = 0m and z = 6m and the spacing of
the grid is 6m (see figure 4 for images of the environment).
And the sensor has a range of 10m.

Figure 4 shows the difference between the estimation of
the trajectory parameters and the reality. As expected, on
the first part of the trajectory the optimisation process gives
a result that is close to the odometry, until a loop closure
is detected, at which point the optimisation process is able
to give a much accurate position. As shown on figure 6, the
uncertainty on the objects position is correctly propagated
when a loop closure happen.

Figures 5 shows how the estimation of parameters for a
few nodes evolves during the experiment. It is interesting
to note that while the global error decreases during a loop
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Fig. 4. Those figures show the evolution of the estimation of the position
of the robot following the trajectory. The green curve is the error on position
for the odometry, while the black curve is the error on the position estimated
by the optimisation process, the blue curves are the uncertainties. The red
line shows when the robot has reach the starting position.

closure, and the localisation of the robot is improved, the
figure 5 shows that many individual nodes will get a less ac-
curate position as a result of the optimisation. It is especially
true for landmarks that were observed early on the trajectory.

As visible on figure 6, there is a delay on the update of the
covariance during a loop closure, it is because the uncertainty
is decreased when the tree structure is optimised, so that the
parent of past pose node get a more direct connection to the
root node. However, this optimisation of the tree structure
takes several iterations.

B. Monte-carlo

A Monte-carlo simulation with 50 runs was performed
to evaluate how the uncertainty estimate performs. The
normalised estimation error squared (NEES) of the current
robot pose in the world frame was computed:

εi = (xi − x̂i)′ · P−i 1 · (xi − x̂i) (24)

ε̄ =
1

N

n∑
i=1

εi (25)

For the simulation the robot is moving on a circle of radius
of 40m of diameter, in the grid environment. The odometry
has an accuracy of 0.01m/m for the translation parameters,
and of 0.001rad/m for the angles parameters, while the
accuracy on the direction for the interest points is 0.001rad.

The result shown on figure 7 shows that globally the error
is almost always consistent. The inconsistency happen during
loop closure, which is not surprising, since the covariance
intersection algorithm used to update the uncertainty of each
node has a faster convergence rate than the steepest gradi-
ent descent algorithm used to update node position, which
means it takes a few more steps before the consistency is
restored. This also illustrate one of the problem of the method
presented in this paper, since the covariance estimation and
the parameters estimation are computed using two separate
methods, there is no guarantee of consistency, even if it is
generally achieved.
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Fig. 5. Those graphics show the evolution of the parameters estimation for
different points in the graph. The blue curve is the estimated uncertainty,
and the black curve is the error between the estimated parameters and the
real parameters. The red line shows when the robot has reach the starting
position.

C. Large uncertainty

In this experiment, the effect of increasing the uncertainty
is studied to see how the optimisation process behaves.
The robot is moving on a circular trajectory with a 40m
diameter. The the following three settings are used (σt =
0.01m/m, σθ = 0.001rad/m, σω = 0.001rad) (small
uncertainty), (σt = 0.01m/m, σθ = 0.01rad/m, σω =
0.001rad) (large uncertainty on the odometry) and (σt =
0.01m/m, σθ = 0.01rad/m, σω = 0.01rad) (large uncer-
tainty on both the odometry and the landmarks observation).

The results are shown on figure 8, they show that despite
an important uncertainty, especially during loop closure, the
optimisation process is capable of finding a good solution.

Also, the figure 8 shows that for the second time the
robot run over the loop, the uncertainty get bigger than for
the first time, this is because on the second and third run,
the uncertainty on the robot position is mostly computed
from the interest points, which provides limited information
on the robot parameters. This effect is increased when the
uncertainty on the landmark observations is increased.



VI. CONCLUSION AND FUTURE WORK

A. Discussion

We have presented a SLAM technique that allow 3D
mapping of the environment, using a graph of pose and
features.

The main advantage of a graph optimisation technique
does not lie in improvement on the position, but on the
possibility to edit the graph, either to add new information
or to fix errors. For instance, in a robotic system we can
have sensor information coming from different sources, with
a different rate, in a Kalman filter approach, all those data
needs to be synchronised. With a graph approach if older
data is processed after new data is added, it is still possible
to add information to previous poses. Also, a wrong data
association would break a Kalman filter, while in a graph
approach it could be detected that the optimisation does not
converge, and the faulty node could be found, and either
removed or split. The information provided by the graph
would have been wrong until the error is found, but then the
graph will fix itself.

Also in previous work [17], we have shown how to model
the environment using cooperative robots, with a multimap
approach, one of the drawback of that approach is that when
two robots have a rendez-vous they have to start a new map,
which can lead to unfinished maps with poorly estimated
features, also if two robots remains in view of each other for
a long time, they would benefit of the other robot position
only once, while with a graph approach a constraint can be
added between both robot position each time they detect each
other.

B. Future work

While our simulation results have shown that the algorithm
works on the two most extreme case, when we have the most
information for the node and the constraint (robot pose and
full transformation), and when we have the least information
(interest point and direction), it would be interesting to test
the algorithm with a wider variety of input: global positions,
stereovision, segments, planes...

During our experimentations, we have noticed that the
damping factor used during the optimisation process yields
a strong influence on both the quality of the results and the
computational speed.

Also, keeping all the information is overkill, it would be
beneficial to reduce the number of edges in the graph, and
once the position of a node has been well observed, its edges
should be concatenated into a single one.
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Fig. 6. Those figures shows the evolution of the environment model and the
associated uncertainties, before and after the loop closure. The red dots are
landmarks, cyan dots are features in the model. Robot poses are represented
by the cyan arrows. And the black ellipsoid is the uncertainty associated
with each object.
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Fig. 7. Normalised estimation error squared of the current robot pose in the
world frame, the red line shows the limit above which the value is estimated
to be inconsistent.
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(a) small uncertainty
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(b) large uncertainty on the odometry
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(c) large uncertainty on the odometry and the landmarks observations

Fig. 8. Those graphics show how the algorithms behave for larger
uncertainty values. The blue curve is the estimated uncertainty, and the black
curve is the error between the estimated parameters and the real parameters.
The red line shows when the robot has reach the starting position.


