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Abstract. The study of cooperation among agents is of central interest in multi-
agent systems research. A popular way to model cooperation is through coali-
tional game theory. Much research in this area has had limited practical applica-
bility as regards real-world multi-agent systems due to the fact that it assumes
deterministic payoffs to coalitions and in addition does not apply to multi-agent
environments that are stochastic in nature. In this paper, we propose a novel ap-
proach to modeling such scenarios where coalitional games will be contextual-
ized through the use of logical expressions representing environmental and other
state, and probability distributions will be placed on the space of contexts in order
to model the stochastic nature of the scenarios. More formally, we present a for-
mal representation language for representing contextualized coalitional games
embedded in stochastic environments and we define and show how to compute
expected Shapley values in such games in a computationally efficient manner. We
present the value of the approach through an example involving robotics assis-
tance in emergencies.

1 Introduction

The study of cooperation among agents is of central interest in multi-agent systems re-
search. The reason for this is that more often than not, agents working together perform
tasks more efficiently than agents that do not. Although our intuitions tell us this is so,
formal models provide a basis for actually proving when and when not this is the case,
in addition to providing a basis for efficient implementation of cooperative multi-agent
systems.
A popular way to model cooperation is through coalitional games. The key questions
in coalitional game theory are related to division of payoff from cooperation so that
stability and/or fairness are achieved. Although many of these issues have already been
extensively studied in the AI/MAS context [12], most of the research has had limited
practical applicability as regards real-world multi-agent systems. The reasons for this,
from the modeling point of view, are twofold. Firstly, most work to date assumes de-
terministic payoffs to coalitions, which is clearly not achievable in many multi-agent
systems which are embedded in stochastic environments. Secondly, although some re-
cent work in AI has proposed game models that account for uncertainty, these new
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developments are highly theoretical and do not take into account computational issues.
Specifically, from the computational point of view, the paramount question is how to
concisely represent a coalitional game when the number of potential coalitions is ex-
ponential, precisely 2n − 1 where n is the number of agents. Important measures used
to asses representations are: expressiveness, i.e., does it allow representation of a broad
class of games, and efficiency, i.e., does it allow for efficient computing of solutions to
games from a considered class.
As a motivating example of a real-world multi-agent system, consider a scenario in
the emergency services application domain where, as support for rescue missions, one
wants to hire configurations of autonomous ground robots (UGVs) and Unmanned
Aerial Vehicles (UAVs) from a number of suppliers. Each of the robots, may take on
different roles, based on particular sensor capability. In addition, operational efficiency
may be affected by particular environmental characteristics which in turn influence the
payoffs to coalitions in a contextual manner. Since future environmental characteristics
are unknown, the contexts are stochastic in nature.
For instance, in cases where there is wind and rain in the catastrophe areas, it may be
the case that only one type of UAV can be used. When the wind is very strong such as
during a typhoon, UAVs are useless and one has to depend more on the use of UGVs or
other types of vehicles. Use of different configurations of UGVs and UAVs contribute
to different hiring costs and differences in resulting quality of usage. One also has to
pay a certain fixed fee for keeping equipment ready for immediate use. In cases such
as this, one of the main issues is how to distribute the total budget among different
suppliers, when a long term contract is being negotiated and many such missions are
expected to be carried out under various circumstances. The key factors involved here
are dynamic coalition formation, dynamic contexts in which coalitions form, and the
stochastic nature in which these contexts occur in the long run.
The research topic is to develop general and computationally efficient frameworks to be
able to model such scenarios. Although such scenarios can be modeled to some extent
by a number of existing theoretical frameworks that account for uncertainty [8], even
for a relatively small number of agents and states in the environment, these models
become impractical from a computational point of view and perhaps even a modeling
point of view. Thus simplicity is one of our important goals.
Therefore, in this paper we propose a novel approach to modeling such scenarios where
coalitional games will be contextualized through the use of logical expressions repre-
senting environmental and other states. Probability distributions are placed on the space
of contexts in order to model the stochastic nature of the scenarios. More specifically:

– we define contextual coalitional games embedded in stochastic environments and
show how to efficiently translate contextual coalitional games into linear combina-
tions of traditional coalitional games;

– we propose a family of formalisms for representing contextualized coalitional
games, where each specific formalism is obtained from the general pattern instan-
tiated by fixing a specific representation of traditional coalitional games and a spe-
cific logic;
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– we define and show how to compute expected Shapley values in such games in
a computationally efficient manner; and

– we instantiate our general representation and exemplify its use by modeling the
informal scenario involving UGVs and UAVs.

The paper is structured as follows. The first section contains notation and preliminary
definitions. In the second section we introduce and discuss contextual coalitional games
and the Shapley value for such games. In the third section we introduce and motivate
our representational viewpoint as well as demonstrate its flexibility and conciseness. We
also show that the new representation differs in complexity from conventional games by
a factor of the number of states. Next, we instantiate our general definition to Marginal
Contribution Nets [7]. Then, we consider computational aspects related to our repre-
sentation and discuss related work.

2 Preliminaries

A game-theoretical convention for modeling coalitional games is a characteristic func-
tion game (CFG) representation. In this approach values of all non-empty coalitions are
explicitly listed. Formally, a coalitional game is described by a tuple G = 〈A, v〉, where
A = {a1, . . . , an}, is a set of n = |A| agents, and a function v : 2A −→ R maps any
coalition, i.e., a set of agents, to a real value, where it is assumed that v(∅) = 0. The
coalition of all the agents in the game is called the grand coalition.

Example 2.1 (Characteristic function). For A = {a1, a2, a3}, a sample characteristic
function is:

v({a1}) = 0 v({a2}) = 0 v({a3}) = 1
v({a1, a2}) = 1 v({a1, a3}) = 1 v({a2, a3}) = 1
v({a1, a2, a3}) = 2. �

The majority of the best-known solution concepts used with coalitional games have
been developed building upon the above CFG representation. Arguably the most famous
normative solution concept is the Shapley value. Assuming that the grand coalition is
optimal and eventually will form, the Shapley value shows what is the fair division of
payoff between agents.4 Any agent is reimbursed, not only for its performance in the
grand coalition, but for its potential marginal contribution to every other coalition. It
is assumed that agents join the coalitions in random order and thus all permutations
of agents are equally likely. More formally, let Π(A) be the set of all permutations
of agents in A. For π ∈ Π(A) denote by Cπ(ai)

def
= {aj | π(aj) < π(ai)}, where

π(aj) < π(ai) denotes the fact that agent aj occurs in π before agent ai. The Shapley

4 The grand coalition is optimal if its value is at least as large as the sum of the values of any
partition of agents into smaller coalition. This assumption ensures that it is a rational choice
to form the grand coalition, as is required by the Shapley value as well as many other solution
concepts. Nevertheless, the formal analysis is meaningful without the assumption.
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value of agent ai in a game G = 〈A, v〉, denoted by φG(ai), is given by the following
expression:

φG(ai) =
1

n!

∑
π∈Π(A)

[
v(Cπ(ai) ∪ {ai})− v(Cπ(ai))

]
.

Example 2.2 (Shapley value). For the game G = 〈A, v〉 defined in Example 2.1, the
Shapley values of successive agents are φG(a1) = φG(a2) =

1
2 and φG(a3) = 1. �

The importance of the Shapley value comes from the fact that it is the only payoff
division scheme that satisfies the following natural “fairness” axioms:

1. efficiency: it fully distributes the total payoff available to the agents:∑
a∈A

φG(a) = v(A) (1)

2. symmetry: if agents ai and aj are interchangeable, then they have the same payoff:

if, for any C ⊆ A \ {ai, aj}, one has v(C ∪ {ai}) = v(C ∪ {aj})
then φG(ai) = φG(aj)

(2)

3. dummy: if an agent ai does not contribute to any coalition then its value is 0:

if, for any C ⊆ A \ {ai}, one has v(C) = v(C ∪ {ai}) then φG(ai) = 0 (3)

4. linearity: for any two coalitional games G = 〈A, v〉 and G′ = 〈A, v′〉:

φa∗G+b∗G′(ai) = a ∗ φG(ai) + b ∗ φG′(ai) (4)

where a, b ∈ R and a ∗ G + b ∗ G′ def= 〈A, a ∗ v + b ∗ v′〉.

If a coalitional game is modeled using a CFG representation, computation of the Shap-
ley value as well as many other solution concepts becomes problematic. This is because
the number of feasible coalitions grows exponentially in the number of agents. It means
that the size of the input renders the computational insights regarding those solution
concepts meaningless for larger n.
We will say that a given representation of coalitional games is fully expressive iff it
allows to represent a characteristic function of any coalitional game. Clearly, the CFG
representation is fully expressive.

3 Formalization of Contextual Coalitional Games

In this section, we formally introduce coalitional games with stochastic contexts and
their representations.

Definition 3.1. A contextual coalitional game (CCG, in short) is a tuple: 〈A,S, ϑ,P〉,
where:
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– A is a set of agents in the game;
– S def

= {σ1, . . . , σk} is a finite set of states of the environment in which the game
is played; it is assumed that, in a given moment, the environment is in exactly one
state;

– ϑ : S × 2A −→ R is a mapping, which associates payoffs to coalitions in states;
– P = {pσ | σ ∈ S} is a probability distribution on states, where pσ denotes the

probability that state σ materializes. �

As before, we assume the payoff 0 for the empty coalition, i.e., for all s ∈ S it holds
that ϑ(s, ∅) = 0.

Definition 3.2. Let G = 〈A,S, ϑ,P〉. The expected value vG(C) of a coalition C ⊆ A
in game G is defined by:5

vG(C)
def
=
∑
σ∈S

pσ ∗ ϑ(σ,C). �

The following example illustrates the idea of CCGs.

Example 3.3. A sample contextual coalitional game G can be given by setting A =
{a1, a2}, S = {σ1, σ2}, pσ1

= 0.4 and pσ2
= 0.6 and

ϑ(σ1, {a1}) = 2 ϑ(σ1, {a2}) = 3 ϑ(σ1, {a1, a2}) = 4
ϑ(σ2, {a1}) = 2 ϑ(σ2, {a2}) = 1 ϑ(σ2, {a1, a2}) = 3.

Consider coalitional games G1 = 〈A, v1〉,G2 = 〈A, v2〉, where:

v1({a1}) = 2 v1({a2}) = 3 v1({a1, a2}) = 4
v2({a1}) = 2 v2({a2}) = 1 v2({a1, a2}) = 3.

The intuition behind the contextual coalitional game G is that the coalitional game G1
takes place when the environment is in the state σ1 (with probability 0.4) and the coali-
tional game G2 takes place when the environment is in the state σ2 (with probability
0.6). �

We can generalize this in the following proposition, showing that contextual coalitional
games can be represented as linear combinations of traditional coalitional games. This
can be proved by a direct application of Definition 3.2.

Proposition 3.4. Let G = 〈A,S, ϑ,P〉 be a CCG. Then G =
∑
σ∈S

pσ ∗ Gσ , where

Gσ
def
= 〈A, ϑσ〉 with ϑσ

def
= ϑ(σ,C). �

We then have the following definition of the expected Shapley value for CCGs.

Definition 3.5. Let G = 〈A,S, ϑ,P〉 be a CCG. Then the expected Shapley value for
G is

ΦG(ai)
def
= Φ∑

σ∈S pσ∗Gσ (ai). �

5 Throughout the paper we omit the expectation symbol for notational convenience.
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4 Representations of Contextual Coalitional Games

A general representation for CCGs considered in this paper is composed of rules of the
form:

prerequisite (α) | coalitional game representation (%) (5)

where the prerequisite α is a formula expressed in some logical language L. We do not
fix any particular representation type used for %. CFG is one such conventional game
representation type, although in what follows, we will not restrict ourselves to only CFG
representations. Intuitively, rule (5) reads as

“in the states where the prerequisite α is true, the coalitional game is repre-
sented by %”.6

If multiple rules are true at the same time, then coalition values are to be computed
additively.
The game consisting of no rules is called the empty game. In the empty game the payoff
for all coalitions is 0.
This representation is intended to take into account influences or circumstances exter-
nal to a coalitional game. Such influences are expressed by the “α parts” of rules (5).
The formal meaning of α formulas is given by states, where each state materializes
with a given probability. Such probability distributions are often given on the basis of
statistical data and from other sources (see, e.g., [14]).
Let us now formally define our representation.

Definition 4.1. A CCG representation is a tuple 〈A,S,P,R,F〉, where:

– A, S and P are as in Definition 3.1;
– R is a finite set of rules of the form (5) such that for each (α|%) ∈ R, for the game
G = 〈A′, v〉 that % represents, it holds that A′ ⊆ A;

– F = {α | there is (α|%) ∈ R}, i.e., F is the set of formulas appearing as prereq-
uisites in rules ofR . �

Definition 4.2. An interpretation of a CCG representation 〈A,S,P,R,F〉 is a tuple
〈A,S,P,R,F , f〉, where:

– A, S, P ,R and F are as in Definition 4.1;
– f : F −→ 2S is a mapping, which associates to formulas sets of states where they

are TRUE. �

Remark 4.3. Observe that f appearing in Definition 4.2 should reflect the semantics of
a particular logic chosen for expressing prerequisites of rules.
Note also that f provides truth values of formulas in states. Namely, a formula α ∈ F
is TRUE in a state σ ∈ S iff σ ∈ f(α). �

6 For notational convenience, we assume that for an instance where the prerequisite α is omitted,
this rule should be treated as having α being TRUE.
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Representations and their meanings are defined as follows.

Definition 4.4. Given a state σ ∈ S and an interpretation I = 〈A,S,P,R,F , f〉, the
meaning of a rule ofR is defined by

(α|%)Iσ
def
=

{
% if σ ∈ f(α)
∅ otherwise, (6)

where ∅ is the game given by a representation consisting of no rules. �

Now we define the value of a coalition C and the Shapley value in a state σ ∈ S as
follows.

Definition 4.5. Let R = 〈A,S,P,R,F〉 be a CCG representation with the set of rules
R = {α1|%1, . . . , αm|%m} and I = 〈A,S,P,R,F , f〉 be an interpretation of R.

– For σ ∈ S , by the (σ, I)-reduct of R we understand game GIσ represented by the
set of conventional rules {(αi|%i)Iσ | 1 ≤ i ≤ m}.

– The value of a coalition C ⊆ A in state σ ∈ S under interpretation I, is defined as
vGI

σ
(C).

– The Shapley value for ai over R, I and σ ∈ S , denoted as φIR,σ(ai), is defined as
the Shapley value φGI

σ
(ai). �

Definition 4.6. We say that R = 〈A,S,P,R,F〉 represents a CCG G = 〈A,S, ϑ,P〉
over an interpretation I = 〈A,S,P,R,F , f〉 provided that for any coalition C ⊆ A
and σ ∈ S we have that vGI

σ
(C) = ϑ(σ,C), where GIσ is the (σ, I)-reduct of R. �

We have the following lemma showing that CCGs can be represented as traditional
coalitional games.

Lemma 4.7. Let R = 〈A,S,P,R,F〉 represent a CCG G = 〈A,S, ϑ,P〉 over an
interpretation I = 〈A,S,P,R,F , f〉. Then:

G =
∑
σ∈S

pσGIσ . (7)

Proof. According to Definition 3.2, vG(C) =
∑
σ∈S

pσ ∗ ϑ(σ,C). By Definition 4.5, for

any C ⊆ A and σ ∈ S we have that ϑ(σ,C) = vGI
σ
(C). Therefore,

vG(C) =
∑
σ∈S

pσ ∗ vGI
σ
(C),

which completes the proof. �

Similarly, in the broader contextual coalitional context, we compute the Shapley value
for players in state σ ∈ S using the additivity axiom met by the Shapley value.
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Having defined the Shapley value for a game in state σ ∈ S , we are now interested in
the value for a contextual coalitional game as a whole. In our stochastic environment
this value will be a mapping which takes as input a tuple 〈I, R, ai〉, where I is an
interpretation, R is a CCG representation and ai ∈ A is an agent, and returns the
expected Shapley value of ai in the game represented by R over I. This value will be
denoted by ΦR,I(ai) and formalized as follows.

Definition 4.8. The expected Shapley value of a contextual coalitional game repre-
sented by R = 〈A,S,P,R,F〉 over an interpretation I = 〈A,S,P,R,F , f〉 for
player ai ∈ A is given by:

ΦR,I(ai)
def
=
∑
σ∈S

pσ ∗ φIR,σ(ai). �

Our contextual coalitional game representation is intended to reflect games which are
repeated over a longer time period in order to make the stochastic nature of the expected
Shapley values practically acceptable. For example, rather then considering a single res-
cue mission relative to the generic scenario described in the introduction, we would con-
sider a time period where there might be many such missions. The equipment/services’
suppliers need to have equipment and staff ready on demand, so they have to know in
advance whether their income will be satisfactory. It is reasonable to assume that they
receive a fixed fee covering fixed costs such as equipment amortization, maintenance,
etc., independently of the number of missions actually carried out. For each mission
carried out they then receive additional fees covering resources used, e.g., gas, electric-
ity, repairing, etc. In such scenarios we mainly focus on the distribution of fixed fee,
which reflects the importance of equipment and services supplied.

Definition 4.9. Let P = 〈R, I〉, where R is a set of representations and I is a set of
interpretations. We say that P is fully expressive for CCGs iff for any CCG G there is
R ∈ R and I ∈ I such that R represents G over I. �

Remark 4.10. Recall that any rule of the form TRUE|% represents % itself. Therefore
P = 〈R, I〉 is fully expressive if the representation type used for righthand sides of rules
is fully expressive for conventional games. �

By Definition 4.8, the expected Shapley value ΦR,I(ai) is given by
∑
σ∈S

pσ ∗ φIR,σ(ai).

An algorithm for computing ΦR,I(ai) directly from this formula provides the following
complexity result.

Theorem 4.11. The complexity of computing the expected Shapley value for the CCG
representation R = 〈A,S,P,R,F〉 over an interpretation I = 〈A,S,P,R,F , f〉 is

O

|S| ∗ max
ρ∈
{
(α|%)Iσ | (α|%)∈R

}{g(ρ), h(f)}


where g(%) is the complexity of computing the Shapley value for the representation
% and h(f) is the complexity of checking whether a given formula is true in a given
state. �



Contextual Coalitional Games 9

Due to the linearity of the Shapley value, every basic rule

ai1 ∧ . . . ∧ aim ∧ ¬aj1 ∧ . . . ∧ ¬ajk → V alue

can be considered as a separate game. The Shapley values for any
agent aiu and ajw are respectively:

V alue

m

(
m+ k

k

) and
−V alue

k

(
m+ k

m

) (8)

Fig. 1. Ieong and Shoham’s method for computing Shapley value

5 Contextual Marginal Contribution Nets

The representation described in the previous section is general in the sense that the
context α in a rule can denote a formula of a given logic and % denotes a conventional
game representation CFG.

6 Contextual Marginal Contribution Nets

In this section, we will instantiate the general representation in the following manner
by choosing propositional logic as the given logic for α and by using basic Marginal
Contribution Nets (abbreviated by MC-nets) of [7] for %. The choice of MC-Nets for %
is useful due to the computationally efficient manner in which Shapely values can be
computed and also due to the fact that the representation is in logical form.
Formally, given a set of agents, an MC-net is defined as a finite set % of rules of the form

P→ V alue

where V alue is a real number and pattern P is a Boolean expression with agents as
atoms. A coalition C of agents is said to meet the requirements of (or shortly meet)
a given P (denoted by C |= P) if P evaluates to TRUE when the values of all Boolean
variables that correspond to agents in C are set to TRUE, and the values of all Boolean
variables that correspond to agents not inC are set to FALSE. The value v(C) is equal to
the sum of all values from rules of which the requirements are met byC. More formally,

v(C) =
∑

P→V alue∈%: C|=P

V alue

Example 6.1 (MC-nets representation for Example 2.1). The coalitional game from Ex-
ample 2.1 can be represented with only two rules a3 → 1 and a1 ∧ a2 → 1. �
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Such rules have an interesting interpretation, as they show the marginal contribution to
all the coalitions agents can form. The advantages of MC-nets are twofold. Firstly, they
allow for representing many important classes of games in a number of rules that is
polynomial in n. Secondly, they allow for computing the Shapley value in time linear
in the number of rules. However, although the definition of MC-nets is quite general,
this latter computational result, as discussed in [7], is limited only to patterns which are
conjunctions of literals. More formally, patterns taking the form:

ai1 ∧ . . . ∧ aim ∧ ¬aj1 ∧ . . . ∧ ¬ajk (9)

Following [6] we will call them basic patterns and the representation basic MC-nets.7

It will be formally denoted 〈A, %〉 where % is the set of all the rules. Note, that all the
patterns in Example 6.1 are, in fact, basic.
MC-nets are fully expressive [7] even when limited to conjunctions of literals. The
linear method of computation of the Shapley value from rules of the form shown in (9)
is explained in Figure 1.
Let V0 = {p0, . . . , pl} be a finite set of propositional variables. Variables specify
atomic properties of a context by means of a mapping:

f0 : V0 −→ 2S (10)

where f0(p) is the set of states in which p is TRUE.
Propositional formulas over V0 are built using V0 and connectives ¬,∨,∧,→,≡. The
set of propositional formulas is denoted by F0. The mapping f0 is extended to F0 in
the standard way:

f0(¬α)
def
= S − f0(α)

f0(α ∨ β)
def
= f0(α) ∪ f0(β)

f0(α ∧ β)
def
= f0(α) ∩ f0(β)

f0(α→ β)
def
= f0(¬α) ∪ f0(β)

f0(α ≡ β)
def
= f0(α→ β) ∩ f0(β → α).

(11)

Consequently, the rule representation for contextual MC-nets consists of rules of the
form:

α|{p→ Value} (12)

where α is a propositional formula over the set of propositional variables V0, p is a pat-
tern of the form (9) and Value is a real number.

Definition 6.2. By a contextual MC-net we understand any finite set of rules of the
form (12). �

7 In the rest of the paper we will assume that every pattern has distinct literals, i.e.,
|{i1, . . . , im, j1, . . . , jk}| = m + k. It can be easily seen that if a conjunction of literals
cannot be normalized to this form, i.e., iu = jw for some u,w, then removing it does not
change the represented game.
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Definition 6.3. An interpretation of contextual MC-nets is a tuple 〈A,S,P,R,F , f0〉,
where

– A is a finite set of agents in the game;
– S,P are as in Definition 4.2;
– R is a finite set of rules of the form (12);
– F ⊆ F0 are propositional formulas over V0, appearing as prerequisites inR;
– f0 is defined by (10) and (11). �

Since MC-nets are fully expressive, we have the following corollary (cf. Remark 4.10).

Corollary 6.4. The representation of contextual MC-nets is fully expressive. �

The complexity of computing the Shapley value for MC-nets is PTIME. Therefore, by
Theorem 4.11 we have the following corollary.

Corollary 6.5. The complexity of computing the expected Shapley value for contextual
MC-nets is in PTIME in the maximum of size of the representation and the number of
states. �

7 An Example using Contextual MC-nets

In the following example, we will show how contexts and uncertainty associated with
contexts can be used to model stochastic contextual coalitional games.

Example 7.1. Using the scenario considered in the introduction, one can assume that
there are states providing values for the propositional variables r, w, s standing for rain,
moderate wind and strong wind. Assume that for the rescue missions considered, there
is a probability distribution on weather conditions.
The CCG modeling our scenario is 〈A,S, ϑ,P〉, where

– A = {uav1, uav2, ugv1, ugv2};
– S = {σ1, σ2, σ3, σ4};
– ϑ(σ1, {uav1}) = 6, ϑ(σ1, {uav1, uav2}) = 13, etc.; 8

– P is provided in Table 1.

The following contextual MC-net rules are used to model our scenario:

| {uav1→6, uav2→7, ugv1→3, ugv2→2, ugv1 ∧ ugv2→1} (13)
r ∧ w | {uav1 → −6, ugv1 → 2, ugv2 → 2} (14)
¬r ∧ s | {uav1 → −6, uav2 → −7, ugv1 → 4, ugv2 → 3.5} (15)

The first rule defines the basic game which applies in all contexts. The values of this
game can be amended by other rules if specific weather condition contexts occur.

8 We avoid here listing values for all 4∗15 = 60 state–coalition pairs. The values are actually
given by rules (13)–(15).
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Table 1. Probability of various weather conditions .

State Weather Literals true in the state Probability
σ1 rain and moderate wind r, w,¬s 0.20
σ2 rain without wind r,¬w,¬s 0.10
σ3 rain with strong wind r,¬w, s 0.35
σ4 no rain with strong wind ¬r,¬w, s 0.35

Specifically, in the case of rain and moderate wind, uav1 becomes useless and the im-
portance of ground robots, ugv1, ugv2 increases. If the wind becomes strong, both UAVs
are grounded and the importance of both ground robots increases even more.
Using formulas from Figure 1, it is easy to check that the Shapley values in the game
described by rules (13), (14) and (15) are respectively:

φ1(uav1) = 6 φ1(uav2) = 7 φ1(ugv1) = 3.5 φ1(ugv2) = 2.5
φ2(uav1) = −6 φ2(uav2) = 0 φ2(ugv1) = 2 φ2(ugv2) = 2
φ3(uav1) = −6 φ3(uav2) = −7 φ3(ugv1) = 4 φ3(ugv2) = 3.5.

By referring to prerequisites of the rules and Table 1, one observes that the rule (13)
always holds, the rule (14) holds with probability 0.20, whereas the rule (15) holds with
probability 0.35. Thus, the expected Shapley values for the entire game are:

φ(uav1) = 2.7, φ(uav2) = 4.55, φ(ugv1) = 5.3, φ(ugv2) = 4.125.

This means that ugv1 contributes most value to the coalitional game, while uav1 con-
tributes the least value. �

8 Related Work

Two main streams in the literature on coalitional games are relevant to the ideas con-
tained in this paper. Firstly, there is a body of research where uncertainty is modeled
probabilistically and secondly, there is a body of research which focuses on concise
representations of coalitional games which enhances computational efficiency in their
use.
Regarding the modeling of uncertainty in the context of coalitional games, a short but
informative literature review is provided in [8]. Important and relevant recent contribu-
tions include [13], [9], [1,2,3] and [8] itself. We focus on [8], where Bayesian Coali-
tional Games are introduced as a tuple of agents, set of possible worlds (i.e., states),
common prior over these worlds, each agent’s information partition of the worlds, and
their preferences over the distribution of payoffs. An information partition is composed
of agents’ information sets — subsets of worlds that are undistinguishable from the
individual agent’s point of view, but where the real world actually resides.9 If the agent-
specific elements are added to our model, we will obtain Bayesian Coalitional Games.

9 For more details about the information partition method for modeling uncertainty in the non-
cooperative game area, see [11].
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Nevertheless, the crucial difference between our approach and the others is related to
the representation of a coalitional game. As all the other approaches build upon the con-
ventional game theoretical method of representing games (i.e., characteristic function),
the number of values to be defined is exponential in the number of agents. This pro-
hibits efficient computation of solution concepts even for a moderate number of agents.
Using our approach it is possible to represent many games in a polynomial number of
rules.
In this respect our work is related to the literature on alternative representations of
coalitional games. The aim of this research is to develop representations for coalitional
games that are compact, but still allow for the efficient computation of solution concepts
such as Shapley value and coalitional game cores [7], [6], [4], or for finding an optimal
arrangement of coalitions in a system [10].
For instance, [5,15] give the characteristic function a specific interpretation in terms
of combinatorial structures. The advantage of this method is that the representation
can always be guaranteed to be succinct. The disadvantage is that the representation
is not fully expressive being incapable of expressing the full space of characteristic
function game instances. Many of the other papers propose representations that are
fully expressive but are not always guaranteed to be succinct [7]. Our work falls under
this latter class.

9 Conclusions

In this paper, we proposed a representation for coalitional games which takes into ac-
count the stochastic nature of real-world multi-agent scenarios and which relaxes the
need for a deterministic payoff to coalitions. The representation is based on the idea
of contextualizing coalitional games through the use of logical expressions represent-
ing environmental and other state and placing probability distributions on the space of
contexts in order to model the stochastic nature of the scenarios. The representation
is succinct and intuitive and takes advantage of representational features of logic and
its relation to probability. Additionally, we define and show how to compute expected
Shapley values in such games in a computationally efficient manner. We show the value
of the approach through a generic example involving robotics assistance in emergen-
cies.
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