

Self Organising Maps for Value Estimation to

Solve Reinforcement Learning Tasks

Alexander Kleiner, Bernadette Sharp and Oliver Bittel

Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Alexander Kleiner, Bernadette Sharp and Oliver Bittel, Self Organising Maps for Value

Estimation to Solve Reinforcement Learning Tasks, 2000, Proc. of the 2nd International

Conference on Enterprise Information Systems (ICEIS 2000), 74-83.

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72563

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72563

Self organising maps for value estimation to solve reinforementlearning tasksA. Kleiner,B. Sharp, O. BittelSta�ordshire UniversityMay 11, 2000AbstratReinforement learning has been applied reently more and more for the optimisation ofagent behaviours. This approah beame popular due to its adaptive and unsupervised learningproess. One of the key ideas of this approah is to estimate the value of agent states. Forhuge state spaes however, it is diÆult to implement this approah. As a result, variousmodels were proposed whih make use of funtion approximators, suh as neural networks,to solve this problem. This paper fouses on an implementation of value estimation with apartiular lass of neural networks, known as self organising maps. Experiments with an agentmoving in a \gridworld" and the autonomous robot Khepera have been arried out to showthe bene�t of our approah. The results learly show that the onventional approah, done byan implementation of a look-up table to represent the value funtion, an be out performed interms of memory usage and onvergene speed.Keywords: self organising maps, reinforement learning, neural networks

1

1 INTRODUCTION 11 IntrodutionIn this paper we disuss the redit assignmentproblem, and the reinforement learning issueassoiated with rewarding an agent upon su-essful exeution of a set of ations. Figure 1 il-lustrates the interation between an agent andits environment. For every ation, the agentperforms in any state st, it reeives an imme-diate reinforement rt and the perepts of thesuessor state st+1. This immediate reinfore-ment depends on the performed ation and onthe new state taken as well. For example, anagent searhing for an exit in a maze mightbe rewarded only if this exit is reahed. Ifthis state is found, it is obvious that all for-mer states, whih ontributed to this suess,have to be rewarded as well.Reinforement learning is one solution for theredit assignment problem. The idea of rein-forement learning grew up within two di�er-ent branhes. One branh foused on learningby trial and error, whereas the other branhfoused on the problem of optimal ontrol. Inthe late 1950s Rihard Bellman introdued hisapproah of a value funtion or a \optimal re-turn funtion" to solve the problem of optimalontrol (Bellman 1957). Methods to solve thisequation are nowadays known as dynami pro-gramming. This paper fouses on a generaliza-tion of these methods, known as temporal dif-ferene methods, whih has been introdued in1988 by Rihard Sutton (Sutton 1988). Thesemethods assign, during an iterative proedure,a redit to every state in the state spae, basedon a alulated di�erene between these states.Roughly speaking this implies, that if a futurestate is desirable, the present state is as well.Sutton introdued the parameter � to de�ne,how far in the future states have to be takeninto aount, thus this generalisation is namedTD(�). Within this paper, however, the sim-

Environment

action
at

state
st

AGENT

reward
rt

Figure 1: The agent-environment interationin reinforement learningpler ase TD(0)1 is used, whih only onsidersone suessor state during a temporal update.Current methods for the \optimal return fun-tion" su�er, however, under what Bellmanalled \the urse of dimensionality", sinestates from real world problems onsist usuallyof many elements in their vetors. Thereforeit makes sense to use funtion approximators,suh as neural networks, to learn the \optimalreturn funtion".Suessful appliations of reinforement learn-ing with neural networks are testi�ed by manyresearhers. Barto and Crites (Barto & Crites1996) desribe a neural reinforement learn-ing approah for an elevator sheduling task.Thrun (Thrun 1996) reports the suessfullearning of basi ontrol proedures of an au-tonomous robot. This robot learned with aneural Q learning implementation, supportedby a neural network. Another suessful im-plementation was done by Tesauro at IBM(Tesauro 1992). He ombined a feed-forwardnetwork, trained by bakpropagation, withTD(�) for the popular bakgammon game.This arhiteture was able to �nd strategiesusing less induement and has even defeated1Also known as the value iteration method

2 SELF ORGANIZING MAPS (SOM) 2hampions during an international ompeti-tion.Besides this suessful examples, whih are allbased on neural networks using bakpropaga-tion, there is more and more evidene, that ar-hitetures based on bakpropagation onvergeslowly or not at all. Examples for suh prob-lemati tasks are given by (Boyan & Moore1995) and (Gordon 1995). This diÆultiesarise due to the fat that bakpropagation net-works store information impliit. This meansfor the training that every new update a�etsformer stored information as well. A onver-gene annot be guaranteed anymore, sinethe original approah of reinforement learningis supposed to be used with an expliit look-up table. Therefore our approah makes useof a neural network arhiteture with expliitknowledge representation, known as self organ-ising maps.This paper will disuss the problems assoiatedwith the use of self organising maps (SOMs) tolearn the value funtion and desribe our modi-�ed approah to SOM applied to two problems.2 Self organizing maps (SOM)Self organizing maps were �rstly introduedby Teuvo Kohonen in 1982 (Kohonen 1982).These kind of neural networks are a typialrepresentative of unsupervised learning algo-rithms. During the learning proess partiularneurons are trained to represent lusters of theinput data. The ahieved arrangement of theselusters is suh, that similar lusters, in termsof their Eulidean distane, are near to eahother and di�erent lusters are far from eahother. Hene, the network builds up a topol-ogy depending on the data given to it from theinput spae. This topology is equal to the sta-tistial distribution of the data. Areas of the

input spae, whih are supported by more sam-ples in the data, are represented more detailedthan areas supported with less samples.SOM arhitetureA SOM usually onsists of a two dimensionalgrid of neurons. Every neuron is onnetedvia its weights to the input vetor, where oneweight is spent for every element of this ve-tor. Before the training proess, values of theseweights are set arbitrary. During the train-ing phase, however, the weights of eah neuronare modi�ed to represent lusters of the inputspae.Mapping of patternAfter a network has been trained, a luster foran input vetor an be identi�ed easily. To�nd the neuron, representing this luster, theEulidean distane between this vetor and allweight sets of the neurons on the SOM has tobe alulated. The neuron with the shortestdistane represents this vetor most preiselyand is thus named as \winner" neuron. TheEulidean distane is alulated after the fol-lowing equation:di = nXk=1(wik � xk)2 (1)Where wik denotes the ith neurons kth weightand xk the kth element of the input vetor.Learning of lusters.The learning proess takes plae in a so alledo�ine learning. During a �xed amount of repe-titions, alled epohs, all patterns of the train-ing data are propagated through the network.At the beginning of the learning proess, val-ues of the weights are arbitrary. Therefore forevery input vetor xi a neuron ui is hosen tobe its representative by random as well. Tomanifest the struture of the map, weights aremoved in diretion to their orresponding in-put vetor. After a while the representation of

3 REINFORCEMENT LEARNING 3input vetors beomes more stable, sine theEulidean distane of eah winner neuron de-reases.To build a topologial map, it is important toadjust the weights of neighbours around theneuron as well. Therefore a speial neighbour-hood funtion has to be applied. This funtionshould return to the winner neuron a value of1 and to neurons with inreasing distane to ita dereasing value down to zero. Usually the\sombrero hat funtion" or the Gaussian fun-tion is used for that. By use of the Gaussianfuntion, the neighbourhood funtion is:hi = e� jn�nij22�2 (2)Where n denotes the winner neuron and niany neuron on the Kohonen Layer. The stan-dard deviation � denotes the neighbourhoodradius.For every input vetor the following updaterule will be applied to every neuron on theSOM: 4wik = � � hi � (xk � wik) (3)Where � denotes the step size.By this update rule, weights are updated indisrete steps, de�ned by the step size �. Thenearer neurons are to a hosen winner neu-ron, the more they are a�eted by the update.Thereby neighbouring neurons represent simi-lar lusters, whih leads to a topologial map.The advantage of SOMs is that they are ableto lassify samples of an input spae unsuper-vised. During the learning proess, the mapadapts its struture to the input data. De-pending on the data, the SOM will build lus-ters and order them in an appropriate manner.One disadvantage of SOMs is, however, the ne-essity to de�ne a representative subset of the

input spae and train it over many epohs. Af-ter the SOM is trained it is only possible to adda new luster to the representation by repeat-ing the learning proess with the old trainingset and the new pattern.3 Reinforement LearningClassial approahes for neural networks tendto make use of spei� knowledge about statesand their orresponding output. This givenknowledge is used for a training set and af-ter the training it is expeted to gain knowl-edge about unknown situations by generaliza-tion. However for many problems in the realworld an appropriate training set an't be gen-erated, sine the \teaher" doesn't know thespei� mapping. Nevertheless, it seems to beeasy for the teaher to assess this mapping forevery state. When learning to drive a ar, forexample, one is not told how to operate thear ontrols appropriately, the teaher, how-ever, bridges the gap in learning using appro-priate feedbak, whih improves the learningproess and leads �nally to the desired map-ping between states and ations.The Reinforement problemThe task of reinforement learning is to use re-wards to train an agent to perform suessfulfuntions. Figure 1 illustrates the typial in-teration between agent and environment. Theagent performs ations in its environment andreeives a new state vetor, aused by this a-tion. Furthermore the agent gets feedbak ofwhether the ation was adequate. This feed-bak is expressed by immediate rewards, whihalso depend on the new state taken by theagent. A hess playing agent, for example,would reeive a maximum immediate rewardif it reahes a state where the opponent annotmove the king any more. This example illus-trates very learly the redit assignment prob-

3 REINFORCEMENT LEARNING 4lem. The reward ahieved in the last boardposition is ahieved after a long hain of a-tions. Thus all ations, done in the past, areresponsible for the �nal suess and thereforealso have to be rewarded. For this problemseveral approahes have been proposed; a goodintrodution to these is found in the book byBarto and Sutton (Barto & Sutton 1998). Thispaper, however, fouses on one of these ap-proahes, whih is the value iteration method,also known as TD(0).Rewards 2In reinforement learning, the only hints givento the suessful task are immediate reinfore-ment signals. These signals usually ome di-retly from the environment or an be gener-ated arti�ially by an assessment of the sit-uation. If they are generated for a problem,they should be hosen eonomially. Insteadof rewarding many sub-solutions of a problem,only the main goal should be rewarded. Forexample, for a hess player agent it would notneessarily make sense to reward the taking ofthe opponent's piees. The agent might �nda strategy whih optimises the olletion ofpiees of the opponent, but forgets about theimportane of the king. Reinforement learn-ing aims to maximise the ahieved reinfore-ment signals over a long period of time.In some problems no terminal state an beexpeted, as in the ase of a robot drivingthrough a world of obstales and learning notto ollide with them. An aumulation of re-wards would lead to an in�nite sum. For thease where no terminal state is de�ned, we haveto make use of a disount fator to ensure thatthe learning proess will onverge. This fatordisounts rewards whih might be expeted inthe future 3, and thus an be omputed as fol-2Rewards also inlude negative values whih areequal to punishments3These expetations are based on knowledge

lows: RT = rt+1 + rt+2 + 2rt+3 + :::= TXk=0 krt+k+1 (4)Where RT denotes the rewards ahieved duringmany steps, the disount fator and rt thereward at time t. For T = 1 it has to beensured that < 1The diret goal for reinforement learningmethods is to maximise RT . To ahieve thisgoal, however, a predition for the expetationof rewards in the future is neessary. Thereforewe need a mapping from states to their or-responding maximum expetation. As knownfrom utility theory, this mapping is de�ned bythe value funtion 4.The value funtion V �(s)In order to maximise rewards over time, it hasto be known for every state, what future re-wards might be expeted. The optimal valuefuntion V �(s) provides this knowledge with avalue for every state. this return value is equalto the aumulation of maximum rewards fromall suessor states. Generally this funtionan be represented by a look-up table, wherefor every state an entry is neessary. This fun-tion is usually unknown and has to be learnedby a reinforement learning algorithm. Onealgorithm, whih updates this funtion sues-sive, is value iteration.Value iterationIn ontrast to other available methods, thismethod updates the value funtion after ev-ery seen state and thus is known as value it-eration. This update an be imagined with anahieved in the past4In terms of the utility theory originally named util-ity funtion

3 REINFORCEMENT LEARNING 5agent performing ations and using reeived re-wards, aused by this ations, to update valuesof the former states. Sine the optimal valuefuntion returns for every state the aumula-tion of future rewards, the update of a visitedstate st has to inlude the value of the sues-sor state st+1 as well. Thus the value funtionis learned after the following iterative equation:Vk+1(st) := r(st; at) + Vk(st+1) (5)Where Vk+1 and Vk denote the value fun-tion before and after the update and r(st; at)refers to the immediate reinforement ahievedfor the transition from state st to state st+1by the hosen ation at. While applying thismethod, the value funtion approximates moreand more until it reahes its optimum. Thatmeans that preditions of future rewards be-ome suessively more preise and ations anbe hosen with maximum future rewards.There is an underlying assumption that theagent's ations are hosen in an optimal man-ner. In value iteration, the optimal hoie ofan ation an be done after the greedy-poliy.This poliy is, simply after its name, to hoseations whih lead to maximum rewards. Foran agent this means, to hose from all possi-ble ation a 2 A that one, whih returns afterequation (5) the maximum expetation. How-ever we an see, that after equation (5) thesuessor state st+1, aused by ation at, mustbe known. Thus a model of the environmentis neessary, whih provides for state st andation at the suessor state st+1:st+1 = f(st; at) (6)ExplorationIf all ations are hosen after the greedy-poliy,it might happen that the learning proess re-sults in a sub-optimal solution. This is beauseations are always hosen by use of knowledge

gathered so far. This knowledge however anlead to a loal optimal solution in the searhspae, where global optimal solutions never anbe found. Therefore it makes sense to hoseations, with a de�ned likelihood, arbritary.The poliy to hose ation by a propability of "arbritrary, is alled "-greedy poliy. Certainlythere is a trade-o� between exploration and ex-ploitation of existing knowledge and the opti-mal adjustment of this parameter depends onthe problem domain.Implementation of Value IterationSo far, the algorithm an be summarised in thefollowing steps:� selet the most promising ation at afterthe "-greedy poliyat = argmina2A(st)(r(st; a) + Vk(f(st; a)))� apply at in the environmentst =) st+1� adapt the value funtion for state stVk+1(st) := r(st; at) + Vk(st+1)In theory, this algorithm will de�nitely eval-uate an optimal solution for problems, suhas de�ned at the beginning of this setion. Aproblem to reinforement learning however, isits appliation to real world situations. Thatis beause real world situations are usually in-volved with huge state spaes. The value fun-tion should provide every state with an appro-priate value. But most real world problemsome up with a multi-dimensional state vetor.The state of a robot, for example, whose task isto �nd a strategy to avoid obstales, an be de-sribed by the state of its approximity sensors.

4 MODIFIED SOM TO LEARN THE VALUE FUNCTION 6If every sensor would have a possible returnvalue of 10 Bit and the robot itself owns eightof these sensors, the state spae would onsistof 1:2 � 1024 di�erent states, emphasizing theproblem of tratability in inferening.On the other hand, it might happen, that dur-ing a real experiment with a limited time, allstates an never be visited. Thus it is likely,that even after a long training time, still un-known states are visited. But unfortunatelythe value funtion an't provide a preditionfor them.4 Modi�ed SOM to learn thevalue funtionThe two problems previously identi�ed for re-inforement learning, an be solved using fun-tion approximators. Neural Networks, in par-tiular, provide the bene�t of ompressingthe input spae and furthermore the learnedknowledge an be generalised. This means forthe value funtion, that similar states will beevaluated by one neuron. Hene also unknownstates an be generalized and evaluated by thepoliy. For this purpose the previously intro-dued model of self organising maps has beentaken and modi�ed.Modi�ation to the arhitetureUsually SOMs are used for lassi�ation of in-put spaes, for whih no output vetor is ne-essary. To make use of SOMs as funtion ap-proximator, it is neessary to extend the modelby an output value. Suh modi�ations havebeen �rst introdued by Ritter and Shulten inonnetion with reex maps for omplex robotmovements (Ritter & Shulten 1987). Themodi�ation used here is, that every neuron ofthe Kohonen layer is expanded by one weight,whih onnets it to the salar output. Thisoutput is used for the value funtion. The goal

is to get a generalisation for similar situations.To ahieve this, the output weights have to betrained with a neighbourhood funtion as well.Therefore the output weights are adapted withthe following rule:Æwi = �2hi(y � wi) (7)Where �2 is a seond step size parameter andhi the same neighbourhood funtion as usedfor the input weights and y the desired outputof the network.Modi�ation to the algorithmAs remarked previously, the learning algorithmfor SOMs is supposed to be applied \o�ine"with a spei� training set. The appliation ofvalue iteration however, is an \online" proess,where the knowledge inreases iteratively. Tosolve this ontradition, the learning proess ofthe SOM has been divided into two steps:� First step: pre-lassi�ation of the envi-ronment� Seond step: exeution of reinforementlearning with improvement of lassi�a-tion for visited statesFor the �rst step a representative sample of thewhole state spae is neessary, to build a appro-priate map of the environment. This samplewill be trained, until the struture of the SOMis adequate to lassify states of the problemsstate spae. During the exeution of the se-ond step the reinforement learning algorithmupdates states with their appropriate values.These states are lassi�ed by SOMs, where oneneuron is hosen as winner. The orrespond-ing output weights of this neuron are hangedto the value, alulated by the reinforementlearning algorithm. Furthermore, the outputvalues of the neighbourhood of this neuron are

5 EXPERIMENTS AND RESULTS 7modi�ed as well to ahieve the e�et of gener-alisation.Usually the states, neessary to solve the prob-lem, are a subset of the whole state spae.Thus the SOM has to lassify only this sub-set, using a pre-lassi�ation. During the ap-pliation of reinforement learning, this lassi-�ation will improve, sine for every state vis-ited, its representation is strengthen. States,whih are visited more frequently and thus aremore important for the solution of the prob-lem, will ahieve a better representation thanthose unimportant states, whih are visitedless.5 Experiments and results5.1 The path-planning problemThis setion desribes the appliation of ourmodi�ed SOM with reinforement learning forsolving the path planning problem. The prob-lem is to �nd the shortest path through a mazeor simply a path on a map. For the experi-ment desribed here, a omputer simulation ofa \girdworld" has been taken (see Figure 2).The gridworld is represented by a two dimen-sional arrangement of positions. Wall piee orobstales an oupy these positions and theagent therefore an't ross them. Other po-sitions however, are free to its disovery. Forthe experiment, the upper left orner is de�nedas start position and the lower right orneras end position. The agent's task is to �ndthe shortest path between these two positions,while avoiding obstales on its way.Due to the fat, that the agent is supposed tolearn the \heapest" path, it is punished forevery move with -1 and rewarded with 0 if itreahes the goal. Beside these reinforementsignals, the agent gets no other information,about where it an �nd the goal or whih di-

Figure 2: The gridworld experiment

0 50 100 150 200
Epochs

-1000

-800

-600

-400

-200

0

R
ei

nf
or

ce
m

en
t

Value Iteration Method

Convergence of different implementations

SOM 10x10

SOM 8x8

Look-up table

Figure 3: Ahieved rewards, during learning ofa behaviour for the gridworld experimentretion should be preferred. If it faes an ob-stale, the possible ations are redued to thatations, whih lead to free positions around.Two implementations of a modi�ed SOM with8x8 neurons and 10x10 neurons have beenused. For omparison, the experiment hasbeen arried out with a look-up table, whereevery entry represents a state, as well. Thislook-up table onsists of 289 entries, due tothe used grid size is 17x17 positions.

5 EXPERIMENTS AND RESULTS 8ResultsThe result of this experiment is shown in �g-ure 3. In this graph the ahieved rewards foreah implementation after every episode anbe seen. The optimal path is found, if the a-umulated reinforement during one episode is-53, sine the agent needs at least 53 steps toreah its goal. In the graph an be seen, thatthe implementation of the modi�ed SOM with10x10 neurons leads to a faster result than thelook-up table. After 30 episodes the agent,equipped with the modi�ed SOM, found theheapest path.5.2 Learning obstale avoidanewith a robotA ommon problem in robotis is the au-tonomous drive of a robot. For suh a drivethere are various proesses. One proess mightbring it to a far destination, lead by a path�nding algorithm. For simple movement, how-ever, a proess is neessary to avoid obstales.In this problem, it is very diÆult to de�ne ap-propriate ations for partiular situations. Onthe other hand, we an easily assess the result-ing ations. Therefore this problem seems tobe appropriate for the reinforement learningapproah.In this experiment the autonomous miniaturerobot Khepera, whih was developed at theEPFL in Lausanne, has been used (see �gure4). This 5 m huge robot is equipped with eightapproximity sensors, where two are mounted atthe front, two at the bak, two at the side andtwo in 45Æ to the front. These sensors give a re-turn value between 0 and 1024, whih is orre-sponding to a range of about 5 m. The robotsdrive onsists of two servo motors, whih anturn the two wheels with 2 m per seond in neg-ative and positive diretions. By this on�gu-ration, the robot is able to do 360Æ rotationswithout moving in x or y diretion. Therefore

Figure 4: Autonomous robot Kheperathe robot is very manoeuvrable and should beable to deal with most situations. Furthermorethe robot is equipped with two rehargeablebatteries, whih enable it to drive for about 20minutes autonomously. For exeution of pro-grams, there also exists a CPU from Motorolaand a RAM area of 512KB on the robot.ExperimentDue to the fat, that for value iteration a modelof the environment is required, the robot hasbeen �rst trained using a omputer simulation.Afterwards the experiment ontinued on a nor-mal oÆe desk, where obstales and walls werebuilt up with wooden bloks.In the reinforement learning algorithm, thestate of the robot was represented by the eightsensor values. The allowed ations have beenredued to the three ations: left turn, rightturn and straight forward. Also the reinfore-ment signals were hosen in the most trivialway. If the robot ollides with an obstale, it

6 CONCLUSION 9

Figure 5: A learned lassi�ation of the sensorspaegets a punishment of -1, otherwise a reward of0. The experiment has been arried out overmultiple episodes. One episode has been lim-ited to 50 steps. Therefore the disount fator has been set to 1.0. For exploration purposesthe fator " has been adjusted to 0.01, whihis equal to the probability ations are hosenarbitrary. Conerning to the state vetor, theinput vetor of the SOM onsists of eight ele-ments as well. For the Kohonen Layer an ar-rangement of 30x30 neurons has been hosen.Before the appliation of the reinforementlearning algorithm, the SOM had to be pre-lassi�ed. Therefore a training set of typi-al situations from an obstale world has beentrained over 90 epohs. With the help of visu-alisation tools it ould be ensured that the sit-uations are adequately lassi�ed, as illustratedin �gure 5.During the episodes of the value iterationmethod, identi�ed situations were relearnedwith a small neighbourhood of � = 0:1 andalso small learning step rate of � = 0:3.ResultsThe result of the learning proess of the robot

0 20 40 60 80 100

Episode

-
50

-
40

-
30

-
20

-
10

0

1
0

R
ei

nf
or

ce
m

en
t

Learning to avoid obstacles

Figure 6: Collisions during the autonomouslearning of an obstale avoidiane strategyan be seen in �gure 6. In this graph the au-mulated rewards for every episode are shown.Hene for every ollision the robot has beenpunished with -1, the reinforement for everyepisode is equal to the aused ollisions. After45 episodes the number of ollisions beamesigni�antly less. During the early episodes,the value of ahieved reinforement signalssways strongly. This results from the fat, thatafter the robot overame a situation, it enoun-tered a new situation again, where another be-haviour had to be learned as well. As we see inthe graph, the robot learned to manage mostsituations after a suÆient time of proeed-ing. After the training the learned ontrol hasbeen tested on the real robot. Although theahieved behaviour was not elegant, it proved,that the robot obviously learned the ability toavoid obstales.6 ConlusionThe problem of a huge state spae in realworld appliations and the fat that mostlysome but unlikely all states of a state spae

REFERENCES 10an be enountered, have been takled by useof a modi�ed SOM. The SOMs abilities toompress the input spae and generalize fromknown situations to unknown made it possibleto ahieve a reasonable solution. However, itwas neessary to split the standard algorithmfor SOMs into two parts. One learning bya pre-lassi�ation and twie learning duringvalue iteration. With this modi�ation, the al-gorithm an be applied to an online learningproess, whih is given by the value iterationmethod.The applied modi�ations to the standardSOM have been evaluated within the gridworldexample and the problem of obstale avoidaneof an autonomous robot. These experimentsshowed two main advantages of the modi�edSOM to a standard implementation with alook-up table. First, the example of obstaleavoidane proved that even for enormous statespaes, a strategy an be learned. Seond, thepath �nding example showed, that the use of amodi�ed SOM an lead to faster results, sinethe agent is able to generalize situations in-stead of learning a value for all of them.For the Value Iteration algorithm, applied tothe experiments desribed here, a model ofthe environment is neessary. For real worldproblems, suh as the problem of obstaleavoidane, however, an appropriate model anhardly be provided. Sensor signals are nor-mally noisy or even it might be that a sensoris damaged or don't work properly. Thus it isreommendable to use another reinforementlearning implementation, whih makes it notany more neessary to provide a model of theenvironment. One ommonly used variant ofreinforement learning is the Q-Learning. Inthis algorithm states are represented by thetuple of state and ation, thus a model of theenvironment is not required. We belief that aombination of Q-Learning with the modi�ed

SOM, proposed in this paper, yields better re-sults.One of the big disadvantages enountered how-ever, is that the modi�ation of the SOM dur-ing the seond step hanges the generalisa-tion behaviour of the network. If states arerelearned frequently with a small neighbour-hood funtion, the learned knowledge beomestoo spei� and generalisation is redued. Tooverome this problem, it would be neessaryto relearn the omplete struture of the SOMwith an o�ine algorithm. Unfortunately, expe-riene in terms of training examples are lost af-ter the online proess. A possible solution andprobably subjet of another work, is to store\ritial" pattern temporarily during the on-line proess by dynami neurons. With \riti-al" pattern we mean those, whih ome witha far Eulidean distane to all existing neuronsin the network and thus their lassi�ation bythis neurons would not be appropriate. Giventhe set of these dynamially alloated neuronsand the set of neurons on the SOM, a new ar-rangement with better topologial representa-tion an be trained by an o�ine algorithm5.The exeution of this o�ine algorithm an bedone during a phase of no input to the learnerand is motivated by a human post proessingof information, known as REM phase.ReferenesBarto, A. & Crites, R. (1996), Improving el-evator performane using reinforementlearning, in M. C. Hasselmo, M. C. Mozer& D. S. Touretzky, eds, `Advanes inNeural Information Proessing Systems',Vol. 8.5For example the standard learning algorithm forSOMs

REFERENCES 11Barto, A. & Sutton, R. (1998), ReinfoementLearning - An Introdution, MIT Press,Cambridge.Bellman, R. E. (1957), Dynami Programming,Prineton University Press, Prineton.Boyan, A. J. & Moore, A. W. (1995), General-ization in Renforemen Learning: SavelyApproximating the Value Funtion, inT. K. Leen, G. Tesauro & D. S. Touret-zky, eds, `Information Proessing Sys-tems', Vol. 7, MIT Press, Cambridge MA.Gordon, G. (1995), Stable funtion approxi-mation in dynami programming, in `Pro-eedings of the 12th International Confer-ene on Mahine Learning', Morgan Kauf-mann, San Fransiso, Calif., pp. 261{268.Kohonen, T. (1982), Self-Organized Formationof Topologially Corret Feature Maps, in`Biol. Cybernetis', Vol. 43, pp. 59{69.Ritter, H. & Shulten, K. (1987), ExtendingKohonen's Self-Organizing Mapping Al-gorithm to Learn Ballisti Movements, in`Neural Computers', Springer Verlag Hei-delberg, pp. 393{406.Sutton, R. (1988), Learning to predit by themethods of temporal di�erenes, in `Ma-hine Learning', Vol. 3, pp. 9{44.Tesauro, G. (1992), Pratial issues in tempo-ral di�erene learning, in `Mahine Learn-ing', Vol. 8, pp. 257{277.Thrun, S. (1996), Explanation-based neuralnetwork learning: A lifelong learningapproah, Kluwer Aademi Publishers,Bosten.

	Self Organising Maps for Value Estimation to Solve Reinforcement Learning Tasks-TitlePage.pdf
	kleiner_et_al_iceis00

